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Abstract 35 

Monitoring the hypnotic component of anesthesia during surgeries is critical to prevent 36 

intraoperative awareness and reduce adverse side effects. For this purpose, 37 

electroencephalographic methods complementing measures of autonomic functions and 38 

behavioral responses are in use in clinical practice. However, in human neonates and 39 

infants existing methods may be unreliable and the correlation between brain activity 40 

and anesthetic depth is still poorly understood. Here, we characterize the effects of 41 

different anesthetics on activity of several brain areas in neonatal mice and develop 42 

machine learning approaches to identify electrophysiological features predicting inspired 43 

or end-tidal anesthetic concentration as a proxy for anesthetic depth. We show that 44 

similar features from electroencephalographic recordings can be applied to predict 45 

anesthetic concentration in neonatal mice, and human neonates and infants. These 46 

results might support a novel strategy to monitor anesthetic depth in human newborns. 47 

  48 
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Introduction 49 

Reliable monitoring of anesthesia depth is critical during surgery. It allows for loss 50 

of consciousness, analgesia and immobility without incurring the risk of side effects and 51 

complications due to anesthetic misdosing. Typically used measures to monitor 52 

anesthesia depth are inspired and end-tidal anesthetic concentrations as well as 53 

physiologic parameters, including respiratory rate and depth (in the absence of 54 

neuromuscular blockade or controlled ventilation), heart rate, blood pressure, and 55 

responses to noxious stimuli (1). These measures all respond to spinal and brainstem 56 

reflexes and are not specific for arousal or cortical responses to noxious events. 57 

Anesthesia-induced changes in brain activity can be measured with 58 

electroencephalographic (EEG) recordings. Specific algorithms have been developed to 59 

predict anesthesia depth in adults (2-4). The most commonly used of such methods, the 60 

Bispectral Index, has been shown to significantly reduce intraoperative awareness, 61 

amount of anesthetic used, recovery time and post-anesthesia care unit stay in a recent 62 

Cochrane meta-analysis (5), but see (6, 7). However, evidence of similar benefits in 63 

infants and younger children is sparse, as recently shown (8-10). EEG in anesthetized 64 

infants changes dramatically depending on postnatal age (8, 11-14). 65 

EEG recordings mainly monitor neocortical activity. Converging evidence from 66 

animal and human studies has shown that most anesthetics slow 67 

electroencephalographic oscillations (15-17). While power at high frequency oscillations 68 

is reduced (>40 Hz), power at slower frequencies (<15 Hz) is enhanced (15). The 69 

computations underling proprietary indexes such as the Bispectral index or Narcotrend 70 

are thought to take advantage of these phenomena (18). However, in preterm and term 71 

neonates for the first weeks of life, EEG during sleep-wake cycles is weakly correlated 72 
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with behavioral states and shows characteristic bursts or spontaneous activity transients 73 

(19, 20). Anesthesia-induced theta and alpha oscillations have been reported to emerge 74 

around 3-4 months of age, albeit with less frontal predominance than in older children 75 

and adults (8, 10). Moreover, high concentrations/doses of anesthetics have been 76 

reported to depress brain activity and enhance signal discontinuity in both human and 77 

rodent neonates (9, 21, 22). However, to our knowledge, a comprehensive algorithmic 78 

approach identifying electroencephalographic parameters that robustly correlate with 79 

anesthetic depth during early postnatal development is still lacking. 80 

Here, we developed a novel strategy to model anesthesia depth by using 81 

common electrophysiological features that correlate with inhaled anesthetic 82 

concentrations during early development in age-matched mice and humans. We 83 

performed intracranial electrophysiological recordings to study the temporal and dose-84 

dependent dynamics of brain activity in neonatal mice (postnatal day (P) 8-10) during 85 

bolus urethane administration, and during dose-titrated isoflurane general anesthesia, 86 

respectively. Dominant local field potential (LFP) features of anesthetic state were 87 

identified and used to develop a machine-learning algorithm that distinguishes non-88 

anesthetized from deeply anesthetized states, and predicts anesthetic concentration as 89 

a proxy for anesthetic depth. Using a similar approach, we used multielectrode EEG 90 

recordings to study the dose-dependent dynamics of brain activity in a secondary 91 

analysis of a combined new and previously reported data set (10) of human infants 0-6 92 

months of age during induction, maintenance and emergence from general anesthesia 93 

(sevoflurane, isoflurane, or desflurane) administered for routine surgical care. Dominant 94 

EEG features of anesthetic state were identified and used to develop a machine-learning 95 
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algorithm to predict end-tidal volume anesthetic concentration (an indirect measure of 96 

anesthetic concentration in the brain, and anesthetic depth). 97 

 98 

Results 99 

Anesthesia affects the occurrence but not the spectral and temporal structure of 100 

oscillatory events in neonatal mice 101 

We monitored the impact of anesthesia on immature brain activity in several cortical 102 

areas (prefrontal cortex (PFC), hippocampus (HP), and lateral entorhinal cortex (LEC)) 103 

as well as in a sensory area (olfactory bulb (OB)). For this, multi-site extracellular 104 

recordings of LFP and multi-unit activity (MUA) were performed from P8-10 mice before 105 

and for 45 minutes after induction of anesthesia by intraperitoneal urethane injection 106 

(Fig. 1A), an anesthetic commonly used in rodents (23, 24). 107 

The recorded network activity had a highly fragmented structure (defined as 108 

discontinuous activity) in all investigated areas (PFC, HP, LEC and OB). The full signal 109 

(i.e. entire LFP trace) consisted of transient episodes of oscillatory discharges with 110 

mixed frequencies (from here referred to as ‘active periods’), alternating with periods of 111 

relative electrical silence and suppressed activity (from here referred to as ‘silent 112 

periods’) (Fig. 1A) (23, 25-28). The prevalence of active periods decreased rapidly and 113 

robustly over time in all investigated brain areas upon urethane injection (Fig. 1B). The 114 

most prominent reduction was observed 5 to 15 minutes after urethane injection. A 115 

partial recovery towards baseline levels during the following 30 minutes was detected in 116 

cortical areas, and to a lesser extent in OB (Fig. 1B). The temporal sequence of events 117 

likely reflects the pharmacokinetics of urethane and is line with the previously reported 118 

long-lasting effects of urethane anesthesia (29).  119 
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The anesthesia-induced reduced occurrence of active periods was reflected in a 120 

broadband (1-100 Hz) decrease in oscillatory power shown as modulation index (MI) 121 

defined as (powerpost-powerpre) / (powerpost+powerpre). In contrast, power spectra during 122 

active periods were largely unaffected (Fig. 1C). Spectral properties of full signal and 123 

active periods were quantified for delta (2-4Hz), theta-alpha (4-12 Hz), beta (12-30 Hz) 124 

and gamma (30-100 Hz) frequency bands for the first 15 minutes post urethane 125 

administration. In contrast to the significant reduction of full signal power in all frequency 126 

bands, the power during active periods was only marginally affected by anesthesia (Fig. 127 

1D). Thus, urethane anesthesia affected network activity in the immature rodent brain 128 

predominantly by decreasing the amount of active periods without perturbing the 129 

frequency structure of active periods. This is in stark contrast with the well-characterized 130 

switch from a low-amplitude high-frequency regime to a high-amplitude low-frequency 131 

regime of electrical activity that has been reported for the adult rodent and human brain 132 

(17, 30). 133 

Anesthesia was shown to induce alterations of long-range network interactions in 134 

adult rodents (31) and humans (32-34). We examined whether similar alterations are 135 

present in the immature mouse brain. Simultaneous recordings of HP and PFC, as well 136 

as OB and LEC were analyzed to assess the effects of anesthesia on long-range 137 

functional coupling. We previously showed that at the end of the first postnatal week 138 

hippocampal theta bursts drive the oscillatory entrainment of local circuits in the PFC, 139 

whereas discontinuous activity in OB controls the network activity in LEC (26, 27, 35). 140 

Urethane did not modify these interactions. The synchrony within networks quantified by 141 

HP-PFC and OB-LEC coherence was similar during baseline (no urethane anesthesia) 142 
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and in the presence of urethane (Fig. S1A). These data indicate that the core features of 143 

long-range functional coupling are retained under anesthesia in neonatal mice. 144 

Anesthesia modified neuronal firing in all investigated areas. Firing rates in PFC, 145 

HP, LEC and OB decreased after urethane injection and only partially recovered during 146 

the following 45 min (Fig. 1E). However, firing rates during active periods were only 147 

marginally affected. To examine whether the timing of neuronal firing to the phase of 148 

oscillatory activity was altered by anesthesia, we calculated pairwise phase consistency 149 

(PPC), a firing rate-independent measure of spike-LFP phase locking (36). All four brain 150 

regions showed similar frequency-resolved phase locking profiles before and after 151 

urethane injection (Fig. S1B,C). 152 

Anesthetics have been shown to alter the excitation/inhibition balance in the adult 153 

brain through their action on specific ion channels involved in synaptic transmission (37). 154 

Such alteration is usually monitored by changes in the 1/f slope of power spectral 155 

density. Further, signal complexity and information content measured by sample entropy 156 

have been correlated with behavioral states of adults, such as consciousness, 157 

sleep/wake states and anesthesia (38, 39). For neonatal mice, we observed similar 158 

values of 1/f slope and sample entropy before and during urethane anesthesia (Fig. 159 

S1D-F), suggesting that urethane does not perturb cortical excitation/inhibition balance 160 

and signal complexity at this early age. The findings provide additional evidence to the 161 

hypothesis that anesthesia has unique effects on the immature brain. 162 

To add additional evidence for this hypothesis, we extended the time window of 163 

investigation and performed extracellular recordings from the PFC of juvenile mice (P24-164 

39). In contrast to the frequency-unspecific reduction of active periods in neonates, 165 

urethane anesthesia increased the oscillatory power in the delta frequency band and 166 
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suppressed power in beta and gamma frequency bands (Fig. S2), confirming the 167 

anesthetic effects in the adult brain (15-17). 168 

Taken together, these results indicate that urethane anesthesia dampened 169 

neonatal brain activity mainly by augmenting the discontinuity of network activity, i.e. 170 

reducing the proportion of time the brain spent in active periods. However, the active 171 

periods were largely unaffected in their temporal structure and firing dynamics. In 172 

contrast, urethane anesthesia in older mice led to frequency-specific changes. Thus, 173 

urethane anesthesia differently impacts neonatal and adult brain activity in mice. 174 

 175 

Suppression of active periods predicts anesthetic concentration in neonatal mice 176 

To test whether the effects of urethane on neonatal brain activity generalize to other 177 

anesthetics, we performed LFP and MUA recordings from HP and PFC of P8-10 mice at 178 

increasing doses of isoflurane-induced anesthesia (0, 1, 2 and 3%; 15 min per 179 

concentration) (Fig. 2A). Isoflurane reduced the incidence of active periods in a dose-180 

dependent manner (Fig. 2B). Accordingly, the broadband reduction of LFP power was 181 

also dependent on isoflurane concentration (Fig. 2C,D). Power spectra of active periods 182 

remained largely unaffected in the presence of isoflurane, similarly to the urethane 183 

effects (Fig. 2C,D). MUA rates during active periods in PFC and HP were hardly 184 

modified in the presence of isoflurane, yet the overall firing decreased corresponding to 185 

the reduced occurrence of active periods (Fig. 2E). Together, these findings identify the 186 

suppression of active periods as the main effect of bolus urethane injection and 187 

isoflurane anesthesia in the neonatal mouse brain. 188 

The development-specific response of the immature brain to anesthesia might 189 

represent the main obstacle when trying to predict anesthesia depth in infants using 190 
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algorithms based on the mature brain activity of adults. Therefore, we next aimed to use 191 

electrophysiological properties specific for anesthetized neonatal mice to predict the 192 

concentration of administered isoflurane. We used support vector regression (Fig. S3), 193 

with the following input features: median amplitude of broadband LFP, percent of time 194 

spent in active periods, and spectral power from 1 to 100 Hz in 10 Hz bins for both 195 

hippocampal and prefrontal activity. An additional feature was the output of a support 196 

vector classifier that received the same features as for the support vector regression, 197 

and that was designed to predict whether the animal was under anesthesia or not. The 198 

algorithm accurately predicted anesthesia depth across all levels of isoflurane 199 

concentration (Fig. 2F,G). Estimation of information content of the different features 200 

identified the median amplitude of broadband LFP as the most informative feature (Fig. 201 

S4A). As the power of active periods was only marginally affected by anesthesia, this 202 

feature mainly mirrors the suppression of active periods. Interestingly, the algorithm was 203 

also able to distinguish non-anesthetized from anesthetized recordings from neonatal 204 

mice under urethane, even though it had not been exposed to this dataset during 205 

training (Fig. S4B).  206 

Thus, features of electrophysiological activity that capture the particularities of 207 

immature neuronal networks can predict anesthetic concentration in neonatal mice. The 208 

generalization of the classifier to a different anesthetic indicates that it can identify 209 

general anesthesia-related features of brain activity in neonatal mice. 210 

 211 

Frequency-unspecific suppression of activity in anesthetized human neonates 212 

and young infants 213 
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To test if human neonates and infants, similarly to mice, respond to anesthesia with a 214 

broadband decrease of periods of oscillatory activity, we examined EEG recordings from 215 

humans aged 0-6 months postnatal age, who received general anesthesia with volatile 216 

anesthetics (sevoflurane 32 subjects, isoflurane 2 subjects, desflurane 1 subject) for 217 

surgery (Tab. S1). 218 

In neonatal mice, the median LFP amplitude of broadband activity was identified 219 

as the most informative feature to predict anesthetic depth. We therefore applied the 220 

same data analysis approach to human EEG data (Fig. S5). We found the median 221 

amplitude of broadband EEG activity (averaged across all recording electrodes across 222 

the scalp) was negatively correlated with endtidal anesthetic concentration 223 

(etAnesthetic) in human neonates from birth until 2 months postnatal age (Fig. 3A,B). 224 

For older human infants, the correlation of the median EEG amplitude with the 225 

anesthetic concentration switched to a positive correlation, in agreement with adult 226 

human data (40). This relationship was even stronger using expected birth age, 227 

corrected for conceptional age (Fig. S6A). This switch from negative to positive 228 

correlation was also visible in the normalized median EEG amplitude when averaged for 229 

age-grouped babies (0-2, 2-4, 4-6 months) (Fig. 3C).  230 

Quantification of median EEG amplitude across frequencies revealed a 231 

broadband suppression of EEG activity in human neonates of 0-2 months (Fig. 3D). In 232 

contrast, the relationship between activity amplitude and etAnesthetic indicated 233 

frequency-specificity in human infants of 2-4 and 4-6 months, as previously reported (9). 234 

Frontal activity has been shown to be particularly sensitive to age-varying anesthesia-235 

related effects in human neonates (8). Analysis of only frontal electrodes (Fp1, Fp2, F3, 236 
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F4, F7, F8, Fpz) showed the same age-dependent anesthesia-induced changes as 237 

analysis of full scalp electrodes (Fig. S6B-D). 238 

 Thus, analogous to what we found in neonatal mice, general anesthesia in 239 

human infants younger than 2 months suppressed neuronal population activity, as 240 

reported previously (8), while at older age anesthesia induced frequency-specific effects. 241 

 242 

A model to predict end-tidal volume of sevoflurane anesthesia in human neonates 243 

and infants 244 

The correlation of EEG activity with etAnesthetic as well as the similar effects of 245 

anesthesia in neonatal mice and in humans from birth to 2 months old, suggests that 246 

anesthetic depth in babies might be predicted using similar features to those used in 247 

neonatal mice. To test this, we used a machine-learning algorithm with a similar 248 

architecture as the one we developed for neonatal mice (Fig. S3). The algorithm was 249 

modified to account for the developmental switch from broadband suppression to 250 

frequency-specific modulation by training three different regressors using 2 and 4 251 

months as cut-offs. All regressors received the same input features (see Methods and 252 

Fig. S5). Features derived from EEG activity were able to predict etAnesthetic with high 253 

accuracy for all age groups (0-2 months R²=0.806, 2-4 months R²=0.688, 4-6 months 254 

R²=0.787) (Fig. 4A-C). In line with the frequency-specific alterations observed only in the 255 

older age groups, frequency-related features were rated more important for prediction of 256 

anesthesia depth in infants of 2-4 and 4-6 months than in neonates of 0-2 months (Fig. 257 

S7A-C). Predicting anesthesia depth for all ages with a single classifier considering age 258 

as an input feature performed with high accuracy (0-6 months R²=0.689) (Fig. 4D, S7D). 259 

This result confirms the age-varying effects of anesthesia on the brain and stresses the 260 
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importance of considering age when developing algorithms aiming to assess anesthetic 261 

depth. 262 

Thus, mouse and human neonates show similar changes in network activity in 263 

response to anesthesia. These results highlight how neurophysiological activity could be 264 

beneficial for future attempts at predicting anesthetic depth in clinical settings. 265 

 266 

Discussion 267 

Monitoring brain function during anesthesia is desirable to avoid intraoperative 268 

awareness and side effects resulting from unnecessarily high doses of anesthetics. 269 

Since consciousness is an elusive concept and cannot be directly measured, EEG 270 

features have been used to guide anesthesia delivery during human surgery. Monitoring 271 

methods developed for adults perform poorly in human neonates and infants, particularly 272 

during the first months of life (11-13, 41). Age-specific effects of anesthetics on 273 

immature brain activity are considered the main reason for such poor performance. 274 

Implementation of neonate- and infant-specific anesthesia monitors requires elucidation 275 

of distinct anesthesia-induced EEG features during early development. We took 276 

advantage of a translational approach to address this open question. We first carried out 277 

an in depth investigation of anesthesia effects on brain activity in neonatal mice, and 278 

then applied this knowledge to develop features that would correlate with anesthetic 279 

concentration in human neonates. 280 

In contrast to the continuous EEG signal observed in adults, neonatal EEG 281 

around birth is characterized by a highly discontinuous and fragmented temporal 282 

organization, with bursts of cerebral activity (active periods) alternating with interburst 283 

intervals lacking activity (silent periods) (42-48). Neonatal mice show a similar 284 
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discontinuous organization of cortical activity (23, 25, 26). In accordance with the similar 285 

organization of early activity patterns in age-matched mouse pups and human infants, 286 

we found comparable effects of anesthesia on LFP and EEG signals, respectively. 287 

It is well established that in the adult rodent and human brain most anesthetics 288 

favor slow oscillations at the expense of faster ones, thereby slowing the 289 

electroencephalographic rhythm (15-17). This principle is thought to underlie most 290 

algorithms that are clinically used to predict anesthesia depth (13). Indeed, such 291 

algorithms perform poorly with anesthetics, such as ketamine, that do not share this 292 

mechanism of action (49). In line with previous studies (50, 51), we report that both 293 

urethane and isoflurane anesthesia affect brain activity in a different way in neonatal 294 

mice. Instead of favoring slow oscillations at the expense of faster ones, anesthesia in 295 

neonatal mice broadly suppresses activity in a frequency-unspecific manner. The 296 

dampening of cortical activity for human infants of 0-2 months suggests a development 297 

specific effect of anesthesia on immature brain activity that translates between mice and 298 

humans. 299 

In rodents, the switch from activity suppression to frequency-specific modulation 300 

of neuronal activity by anesthesia has been reported to occur around P12 (50). This 301 

coincides with the emergence of slow oscillations during sleep, suggested to depend on 302 

the maturation of thalamocortical networks (50, 52). Consistent with our previous studies 303 

evaluating EEG properties of this data set, we found that theta and alpha oscillatory 304 

activity under anesthesia emerges in humans at around 4 months postnatal age (8-10). 305 

Future studies with an increased age range in mice and humans, including data of 306 

human infants studied at preterm, and children in older than 6 months of age, may 307 
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deepen the understanding of anesthetic effects on brain activity throughout 308 

development. 309 

The anesthetics evaluated across species in this study were comparable but not 310 

identical in terms of mechanism of action. Moreover, anesthetic management practices 311 

used in mice were simplified compared to commonly-used anesthetic practices in the 312 

clinic. Multimodal anesthesia requires the use of low-dose anesthetics in combination 313 

with analgesic and neuromuscular blocking agents to provide optimal anesthesia and 314 

reduce side effect. These agents act on different drug targets in the nervous system and 315 

may have subtle but different effects on brain oscillatory activity (53). 316 

In adult human volunteers, the correlation with anesthetic depth and EEG 317 

parameters can be performed using verbal reports to establish a threshold for 318 

unconsciousness (15). However, in non-verbal populations such as human infants, one 319 

must rely on indirect behavioral measures which are more readily performed on 320 

emergence rather than induction and incision (54). Future investigations need to include 321 

surgical incision and other stimuli into the mouse models to understand with greater 322 

granularity the anesthetic titration around the minimal concentrations required to 323 

suppress movement, autonomic, and cortical responses to noxious stimuli. 324 

In summary, we report that the suppression of brain activity in mouse and human 325 

neonates correlates with anesthetic concentration. The detailed understanding of 326 

anesthesia effects on network activity in mice allowed us to identify features and develop 327 

a machine-learning algorithm that is able to predict anesthetic concentration from EEG 328 

recordings in human neonates. We propose that, after appropriate training, an algorithm 329 

based on what we introduce here could learn to associate specific EEG effects with 330 

certain anesthetic doses. Eventual mismatches between administered and predicted 331 
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anesthetic dose would then identify patients that are particularly sensitive/insensitive to 332 

an anesthetic, thus helping the anesthetist in administering appropriate levels of 333 

anesthetics. By these means, the risk of adverse neurodevelopmental outcome might be 334 

mitigated. 335 

 336 

Materials and methods 337 

Animals 338 

All experiments were performed in compliance with the German laws and the guidelines 339 

of the European Community for the use of animals in research and were approved by 340 

the local ethical committee (G132/12, G17/015, N18/015). Experiments were carried out 341 

on C57Bl/6J mice of both sexes. Timed-pregnant mice from the animal facility of the 342 

University Medical Center Hamburg-Eppendorf were housed individually at a 12 h 343 

light/12 h dark cycle, with ad libitum access to water and food. Day of birth was 344 

considered P0. 345 

In vivo electrophysiology in neonatal mice 346 

Multisite extracellular recordings were performed in the PFC and HP, or LEC and OB of 347 

P8–10 mice. Pups were on a heating blanket during the entire procedure. Under 348 

isoflurane anesthesia (induction: 5%; maintenance: 2.5%), craniotomies were performed 349 

above PFC (0.5 mm anterior to bregma, 0.1-0.5 mm right to bregma) and HP (3.5 mm 350 

posterior to bregma, 3.5 mm right to bregma), or LEC (0 mm anterior to lambda, 6.5 mm 351 

right to lambda) and OB (0.5-0.8 mm anterior from the frontonasal suture, 0.5 mm right 352 

from internasal suture). Pups were head-fixed into a stereotaxic apparatus using two 353 

plastic bars mounted on the nasal and occipital bones with dental cement. Multisite 354 

electrodes (NeuroNexus, MI, USA) were inserted into PFC (four-shank, A4x4 recording 355 
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sites, 100 µm spacing, 2.0 mm deep) and HP (one-shank, A1x16 recording sites, 50 µm 356 

spacing, 1.6 mm deep, 20° angle from the vertical plane), or LEC (one-shank, A1x16 357 

recording sites, 100 µm spacing, 2 mm deep, 10° angle from the vertical plane) and OB 358 

(one-shank, A1x16 recording sites, 50 µm spacing, 1.4-1.8 mm deep). A silver wire was 359 

inserted into the cerebellum and served as ground and reference electrode. Pups were 360 

allowed to recover for 30 min prior to recordings. Extracellular signals were band-pass 361 

filtered (0.1-9,000 Hz) and digitized (32 kHz) with a multichannel extracellular amplifier 362 

(Digital Lynx SX; Neuralynx, Bozeman, MO, USA). 363 

In vivo electrophysiology in juvenile mice 364 

Multisite extracellular recordings were performed in the PFC of P24–39 mice. Under 365 

isoflurane anesthesia (induction: 5%; maintenance: 2.5%), a metal head-post (Luigs and 366 

Neumann) was attached to the skull with dental cement and 2-mm craniotomies were 367 

performed above PFC (0.5-2.0 mm anterior to bregma, 0.1-0.5 mm right to bregma) and 368 

protected by a customized synthetic window. A silver wire was implanted in the 369 

cerebellum as ground and reference electrode. Surgery was performed at least five days 370 

before recordings. After recovery mice were trained to run on a custom-made spinning-371 

disc. For recordings craniotomies were uncovered and multisite electrodes 372 

(NeuroNexus, MI, USA) were inserted into PFC (one-shank, A1x16 recording sites, 50 373 

µm spacing, 2.0 mm deep). Extracellular signals were band-pass filtered (0.1-9,000 Hz) 374 

and digitized (32 kHz) with a multichannel extracellular amplifier (Digital Lynx SX; 375 

Neuralynx, Bozeman, MO, USA). 376 

Recordings under urethane 377 
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Activity was recorded for 15 min without anesthesia before intraperitoneally injecting 378 

urethane (1 mg/g body weight; Sigma-Aldrich, MO, USA). Activity was recorded for 379 

further 45 min. Animals were transcardially perfused after recordings, brains were 380 

sectioned coronally, and wide field images were acquired to verify recording electrode 381 

positions. 382 

Recordings under isoflurane 383 

Mouth piece of an isoflurane evaporator (Harvard apparatus, MA, USA) was placed in 384 

front of the pups in the recording setup until animals accustomed to it. Activity was 385 

recorded for 15 min 0% isoflurane, but with the evaporator running (1.4 l/min). 386 

Afterwards, isoflurane was added to the airflow and increased every 15 min (1, 2, 3 %). 387 

Animals were transcardially perfused after recordings, brains were sectioned coronally, 388 

and wide field images were acquired to verify recording electrode positions. 389 

Electroencephalographic recordings in human neonates and young infants 390 

Neonates and infants who were scheduled for an elective surgical procedure were 391 

recruited from the pre-operative clinic at Boston Children’s Hospital from 12/2012 to 392 

08/2018 (under Institutional Review Board P-3544, with written informed consent 393 

obtained from parents/legal guardians). Subjects required surgery below the neck, were 394 

clinically stable on the day of study and American Society of Anesthesiologists’ physical 395 

status I or II. Exclusion criteria were born with congenital malformations or other genetic 396 

conditions thought to influence brain development, diagnosed with a neurological or 397 

cardiovascular disorder, or born at <32 weeks post-menstrual age. Datasets from 398 

previously published work (n=25) (10) and new subjects (n=10) were included in the 399 

analysis. Data are presented from 35 subjects aged 0-6 months. 400 
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Anesthetic management. Each patient received anesthesia induced with sevoflurane (32 401 

subjects), isoflurane (2 subjects) or desflurane (1 subject) alone, or a combination of one 402 

of the previous and nitrous oxide. Epochs used for analysis were comprised of 403 

sevoflurane, isoflurane or desflurane administration with air and oxygen, titrated to 404 

clinical signs; end-tidal anesthetic concentration was adjusted per the anesthetist’s 405 

impression of clinical need, not a pre-set end-tidal anesthetic concentration. 406 

EEG recording. EEG data were acquired using an EEG cap (WaveGuard EEG cap, 407 

Advanced NeuroTechnology, Netherlands). 33- or 41-recording electrodes were 408 

positioned per the modified international 10/20 electrode placement system. Reference 409 

and ground electrodes were located at Fz and AFz respectively. EEG activity from 0.1-410 

500 Hz was recorded with an Xltek EEG recording system (EMU40EX, Natus Medical 411 

Inc., Canada). Signals were digitized at a sampling rate of 1024Hz and a resolution of 412 

16-bit. 413 

Clinical data collection. Demographics and clinical information were collected from the 414 

electronic medical records and from the in-house Anesthesia Information Management 415 

System (AIMS) (Tab. S1). End-tidal sevoflurane, oxygen, and nitrous oxide 416 

concentrations were downloaded from the anesthetic monitoring device (Dräger Apollo, 417 

Dräger Medical Inc., PA, USA) to a recording computer in real-time using ixTrend 418 

software (ixcellence, Germany). Signals were recorded at a 1 Hz sampling rate.  419 

Data analysis 420 

In vivo data were analyzed with custom-written algorithms in the Matlab environment. 421 

Data were processed as following: band-pass filtered (500–5,000 Hz) to analyze MUA 422 

and band-pass filtered (2-100 Hz) using a third-order Butterworth filter before 423 
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downsampling to analyze LFP. Filtering procedures were performed in a phase 424 

preserving manner. 425 

Multi-unit activity. MUA was detected as the peak of negative deflections exceeding five 426 

times the standard deviation of the filtered signal and having a prominence larger than 427 

half the peak itself. Firing rates were computed by dividing the total number of spikes by 428 

the duration of the analyzed time window. 429 

Detection of oscillatory activity. Discontinuous active periods were detected with a 430 

modified version of a previously developed algorithm for unsupervised analysis of 431 

neonatal oscillations (55). Briefly, deflections of the root mean square of band-pass 432 

filtered signals (1–100 Hz) exceeding a variance-depending threshold were considered 433 

as network oscillations. The threshold was determined by a Gaussian fit to the values 434 

ranging from 0 to the global maximum of the root-mean-square histogram. If two 435 

oscillations occurred within 200 ms of each other they were considered as one. Only 436 

oscillations lasting >1 s were included, and their occurrence, duration and amplitude 437 

were computed. 438 

Power spectral density. For power spectral density analysis, 1 s-long windows of full 439 

signal or network oscillations were concatenated and the power was calculated using 440 

Welch’s method with non-overlapping windows. 441 

Imaginary coherence. The imaginary part of coherence, which is insensitive to volume-442 

conduction-based effects (56), was calculated by taking the absolute value of the 443 

imaginary component of the normalized cross-spectrum: 444 

Pairwise phase consistency. Pairwise phase consistency was computed as previously 445 

described (36). Briefly, the phase in the band of interest was extracted using Hilbert 446 
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transform and the mean of the cosine of the absolute angular distance  among all pairs 447 

of phases was calculated. 448 

1/f slope. 1/f slope was computed as previously described (19). We used robust linear 449 

regression (MATLAB function robustfit) to find the best fit over 20-40 Hz frequency range 450 

of the power spectral density, in one minute bins. 451 

Sample entropy. Sample Entropy was computed using the SampEn function (MATLAB 452 

File Exchange) in 1.5 seconds windows and in 2 Hz frequency bins. Tolerance was set 453 

to 0.2 * std(signal), and tau to 1. 454 

EEG data analysis. EEG signal was visually inspected to detect and reject channels with 455 

low signal to noise ratio, and re-referenced to a common average reference. The signal 456 

was automatically scored in five seconds epochs, and channels in which signal was 457 

significantly contaminated by artifacts (patient handling, surgical electrocautery etc.) 458 

were discarded. Epochs were rejected if signal was saturated due to electrocautery, 459 

signal exceeded 150µV, or the median signal across all EEG channels exceeds 30µV 460 

(Fig. S5). Minutes containing more than 10s of contaminated signal were removed from 461 

further analysis. On average 14 +/- 9% (median +/- median absolute deviation) of the 462 

signal was discarded. To compute EEG amplitude, we smoothed the absolute value of 463 

the signal, using a moving average filter with a window of 1024 points (1 second). If 464 

more than one volatile anesthetic was used, we retained only epochs in which the main 465 

anesthetic was used in isolation. Subjects with epidural anesthesia halfway through the 466 

surgery (n=2 subjects), or with less than 20 minutes of artifact-free signal (n=5 subjects) 467 

were excluded from further analysis. 468 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/451831doi: bioRxiv preprint 

https://doi.org/10.1101/451831


Anesthesia and network dynamics during development    Chini et al. 

21 

Feature engineering. Features to predict anesthetic concentration in neonatal mice were 469 

calculated in one minute bins. LFP power in the 1-100 Hz range in 10 Hz bins, the 470 

percentage of active periods, median length and number of oscillations, median and 471 

maximum signal amplitude were computed. All features were computed for both PFC 472 

and HP, and were normalized to their median value in the non-anesthetized 15 minutes 473 

of recordings. Features to predict anesthetic concentration in human infants were also 474 

calculated in one minute bins. The median amplitude of the smoothed EEG signal, and 475 

the percentage of the EEG envelope that fell into each amplitude quartile was computed. 476 

Amplitude quartiles were computed on the entire EEG trace, averaged over channels. 477 

All features were calculated for unfiltered signal, and in the 1-50 Hz range in 5 Hz bins, 478 

averaged over channels. Features were normalized to their median value in the non-479 

anesthetized portion of the recording, or lowest anesthetic concentration, if no artifact-480 

free minute was available. 481 

Regressors. Machine-learning analyses were performed using Python (Python Software 482 

Foundation, NH, USA) in the Spyder (Pierre Raybaut, The Spyder Development Team) 483 

development environment. Model training and performance evaluation were carried out 484 

using the scikit-learn toolbox. The set was iteratively (n=100) divided in a training (2/3 of 485 

the set) and a cross-validation (1/3) set. Hyper-parameter of the model were tuned on 486 

the training set, which was further split using the standard 3-fold cross-validation split 487 

implemented by the function “GridSearchCV”, to which a “pipeline” object was passed. 488 

The “pipeline” object was built using the “Pipeline” function, and concatenating quantile 489 

transformation of the input features (“Quantile Transformer”, tuning the number of 490 

quantiles), feature selection (“Select Percentile”, using mutual information and tuning the 491 

percentage of features to select) and Radial Basis Function (RBF) kernel support-vector 492 
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classification/regression (tuning the regularization parameters C and epsilon (regression 493 

only), and the kernel coefficient gamma). The classifier input was fed to the regressor as 494 

an additional feature. Performance assessment was then computed on the cross-495 

validation set. Regressor decision space was reduced and plotted with t-sne. The 496 

decision space was approximated by imposing a Voronoi tessellation on the 2d plot, 497 

using k-nearest regression on the t-sne coordinates (57). 498 

Statistics Statistical analyses were performed using R Statistical Software (Foundation 499 

for Statistical Computing, Austria). Data were tested for significant differences (*P<0.05, 500 

**P<0.01 and ***P<0.001) using non-parametric one- and two-way repeated-measures 501 

ANOVA (ARTool R package) with Bonferroni corrected post hoc analysis (emmeans R 502 

package). Correlations were computed using Spearman’s rank correlation coefficient 503 

(rho). No statistical measures were used to estimate sample size since effect size was 504 

unknown. For main experimental results, more information about tests used, values and 505 

parameters are provided in the supplementary material (Tab. S2). 506 

  507 
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Fig. 1. Frequency-unspecific dampening of neuronal activity during urethane 663 

anesthesia in neonatal mice. (A) Schematic representation of experimental paradigm 664 

and recording sites as well as characteristic LFP recordings of discontinuous activity in 665 

the PFC, HP, LEC, and OB of neonatal mice (P8-10) during non-anesthetized and 666 

urethane-anesthetized state. Time windows of active periods are marked by red lines. 667 

(B) Line plots displaying the relative occurrence of active periods normalized to total 668 

recording time in PFC, HP, OB and LEC before and after urethane injection. (C) Color-669 

coded MI of power spectra for full signal (top) and active periods (bottom) recorded in 670 

PFC, HP, LEC and OB of neonatal mice before and after urethane injection. (D) Violin 671 

plots displaying the MI of power in delta (2-4 Hz), theta-alpha (4-12 Hz), beta (12-30 Hz) 672 

and gamma (30-100 Hz) frequency bands for full signal (blue) and active periods (red) 673 

recorded in the PFC, HP, LEC and OB. (E) Line plots displaying MUA rates during full 674 

signal (blue) and active periods (red). In (B), (C) and (E) green lines correspond to the 675 

time point of urethane injection. 676 
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 678 

Fig. 2. Suppression of active periods in relationship with the depth of isoflurane 679 

anesthesia in neonatal mice. (A) Schematic representation of experimental protocol 680 

for LFP recordings without anesthesia and during increasing levels of isoflurane 681 

anesthesia in neonatal mice (P8-10). (B) Line plots displaying the relative occurrence of 682 

active periods in PFC and HP during increasing levels of isoflurane anesthesia. (C) 683 

Color-coded MI of power spectra for full signal (top) and active periods (bottom) during 684 

increasing levels of isoflurane anesthesia. (D) Violin plots displaying the MI of power in 685 

delta (2-4 Hz), theta (4-12 Hz), beta (12-30 Hz) and gamma (30-100 Hz) frequency 686 

bands for full signal (blue) and active periods (red). (E) Line plots displaying MUA firing 687 
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rates during full signal (blue) and active periods (red). In (B), (C) and (E) green lines 688 

correspond to the time points of increasing isoflurane anesthesia. (F) Visualization of 689 

anesthesia depth prediction by t-sne plots. Background color codes for predicted 690 

anesthesia depth, while the color of the dots represents the actual anesthesia level in 691 

the training (left) and test set (right). (G) Scatter plots displaying anesthesia depth 692 

predictions with support vector regression (left) and absolute errors between anesthesia 693 

depth prediction and actual anesthesia depth (right). 694 
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 696 

Fig. 3. Age-dependent switch from broadband suppression to frequency-specific 697 

effects of general anesthesia on EEG activity in human neonates and infants. (A) 698 

Scatter plots displaying the median EEG amplitude as a function of anesthetic 699 

concentration for representative examples of 0-2, 2-4 and 4-6 months of age. (B) Scatter 700 

plot displaying the correlation coefficient of median EEG amplitude and anesthetic 701 

concentration in relationship to birth age for sevoflurane (black), isoflurane (red), and 702 

desflurane (blue). (C) Line plots displaying normalized EEG amplitude as a function of 703 

anesthetic concentration. (D) Color-coded MI of median EEG amplitudes in different 704 

frequency bands as a function of anesthetic concentration for human babies of 0-2 705 

months (left), 2-4 months (middle) and 4-6 months (right). 706 
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 708 

Fig. 4. EEG activity is predictive for anesthetic concentration in human infants. (A) 709 

Scatter plots displaying anesthetic concentration predictions of support vector regression 710 

(left) and absolute errors between anesthetic concentration prediction and actual 711 

anesthetic concentration (right) for human neonates of 0-2 months. (B) Same as (A) for 712 

human infants of 2-4 months. (C) Same as (A) for human infants of 4-6 months. (D) 713 

Same as (A) for human neonates and infants of 0-6 months.  714 
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 748 

Fig. S1. Urethane anesthesia does not affect spectral features and timing of 749 

activity in neonatal mice. (A) Line plots displaying the imaginary coherence between 750 

PFC-HP and LEC-OB in neonatal mice (P8-10) as a function of frequency before (black) 751 

and after (green) urethane injection. Violin plots displaying the MI of the imaginary 752 

coherence in delta (2-4 Hz), theta-alpha (4-12 Hz), beta (12-30 Hz) and gamma (30-100 753 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/451831doi: bioRxiv preprint 

https://doi.org/10.1101/451831


Anesthesia and network dynamics during development    Chini et al. 

36 

Hz) frequency bands. (B) Line plots displaying the PPC of MUA to the oscillatory phase 754 

before and after urethane injection. (C) Violin plots displaying the MI of PPC in delta, 755 

theta, beta and gamma frequency bands. (D) Line plots displaying the slope of the 1/f 756 

decay for gamma frequencies over time. Green lines mark the time point of urethane 757 

injection. (E) Line plots displaying the sample entropy as a function of frequency before 758 

and after urethane injection. (F) Violin plots displaying the MI of the sample entropy in 759 

delta, theta, beta and gamma frequency bands. 760 
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 762 

Fig. S2. Frequency-specific effects of urethane anesthesia in juvenile mice. (A) 763 

Schematic representation of experimental paradigm of LFP recordings in PFC of non-764 

anesthetized and urethane-anesthetized juvenile mice (P24-39). (B) Color-coded MI of 765 

oscillatory power for full signal before and after urethane injection. Green line 766 

corresponds to the time point of urethane injection. (C) Violin plots displaying the MI of 767 

oscillatory power in delta (2-4 Hz), theta-alpha (4-12 Hz), beta (12-30 Hz) and gamma 768 

(30-100 Hz) frequency bands for full signal. 769 
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 771 

Fig. S3. Machine learning algorithm. Flowchart depicting steps for machine learning 772 
algorithm. 773 
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 775 

Fig. S4. Median amplitude is most informative for predicting anesthetic 776 

concentration in neonatal mice. (A) Bar plot displaying the feature ranking for 777 

anesthesia depth prediction by mutual information between each feature and anesthesia 778 

depth. (B) Scatter plot displaying predicted isoflurane concentration using features of 779 

LFP recordings from PFC and HP of urethane-anesthetized mice. Green line marks the 780 

time point of urethane injection. 781 
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 783 

Fig. S5. EEG data processing. Flowchart depicting analysis steps for EEG data 784 
processing. 785 
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 787 

Fig. S6. Age-dependent switch from broadband suppression to frequency-specific 788 

effects of general anesthesia on EEG activity for post conceptual age and frontal 789 

electrodes. (A) Scatter plot displaying the correlation coefficient of median EEG 790 

amplitude and anesthetic concentration in relationship to expected birth age for 791 

sevoflurane (black), isoflurane (red), and desflurane (blue). (B) Scatter plot displaying 792 

the correlation coefficient of median EEG amplitude of frontal electrodes and anesthetic 793 

concentration in relationship to birth age for sevoflurane (black), isoflurane (red), and 794 

desflurane (blue). (C) Line plots displaying normalized EEG amplitude of frontal 795 

electrodes as a function of anesthetic concentration. (D) Color-coded MI of median EEG 796 

amplitudes of frontal electrodes in different frequency bands as a function of anesthetic 797 

concentration for human babies of 0-2 months (left), 2-4 months (middle) and 4-6 798 

months (right). 799 
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 801 

Fig. S7. Features predicting anesthetic concentration from EEG recordings in 802 

human infants. (A) Violin plots displaying mutual information between each feature and 803 

predicted anesthetic concentration for amplitude-related features (left) and frequency-804 
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related features (right) for human infants of 0-2 months of age. (B) Same as (A) for 805 

human infants of 2-4 months of age. (C) Same as (A) for human infants of 4-6 months of 806 

age. (D) Same as (A) for human infants of 0-6 months of age. 807 
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Tab. S1. Demographic information. 809 

  All Subjects Age Groups 

 
0-6 months 0-2 months 2-4 months 4-6 months 

  N=35 n=6 n=19 n=10 

Age  at birth (weeks; 
median, IQR) 

38.00 [36.64, 
39.00] 

39.71 [38.25, 
40.53] 

37.00 
[34.00, 
39.00] 

39.00 
[37.44, 
39.00] 

PNA (months; median, 
IQR)) 3.06 [2.64, 4.42] 

1.51 [1.36, 
1.73] 

2.89 [2.74, 
3.52] 

5.54 [5.08, 
5.91] 

Weight (kg, median, 
IQR) 5.97 [4.89, 7.09] 

4.91 [4.80, 
5.01] 

5.76 [4.89, 
6.62] 

7.29 [6.42, 
8.10] 

Male (n, %) 30 (85.7)  5 (83.3)  16 (84.2)  9 (90.0)  

     
Duration of Anesthesia 

(mins; median, IQR) 
114.00 [82.5, 

181.00] 

190.00 
[123.50, 
211.50] 

114.00 
[85.00, 
154.00] 

89.00 [76.5, 
181.75] 

 810 

ID 
Age at 
birth 
(weeks) 

Postnatal 
age 
(months) 

Weight 
(kg) Sex Surgery Duration 

Anesthesia 

1 39,0 0,53 3,7 Female Anorectoplasty 217 
2 38,0 1,35 5,7 Male Hernia Repair 103 
3 41,0 1,41 4,8 Male Hernia Repair 93 

4 40,4 1,61 5,0 Male 
Extrophy of 
Bladder Closure, 
Spica Cast 

185 

5 40,6 1,77 4,8 Male Colostomy 
Closure 268 

6 37,5 1,87 5,0 Male Hernia Repair, 
Frenulotomy 195 

7 39,0 2,04 5,0 Male Circumcision 60 
8 42,0 2,60 6,0 Male Hernia Repair 89 
9 34,0 2,60 4,8 Male Hernia Repair 103 

10 29.1 2,69 3,3 Male Hernia Repair, 
Circumcision 152 

11 39,0 2,73 7,2 Male Hernia Repair, 
Orchidopexy 187 

12 30,3 2,76 3,4 Male Hernia Repair 149 

13 35,4 2,79 4,7 Male Hernia Repair, 
Meatoplasty 114 

14 34,0 2,83 5,0 Male Hernia Repair 79 
15 39,0 2,89 6,1 Female Hernia Repair 96 
16 37,0 2,89 6,3 Male Hernia Repair 140 
17 39,0 3,02 5,8 Female Vaginoscopy 156 
18 29,0 3,06 4,2 Male Hernia Repair 185 
19 38,0 3,45 6,9 Male Hernia Repair 72 
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20 39,0 3,52 7,2 Male Fistulotomy 58 
21 37,0 3,52 6,1 Female Nephrectomy 170 
22 37,0 3,58 5,7 Male Hernia Repair 118 
23 41,0 3,71 5,8 Male Hernia Repair 102 
24 39,0 3,81 7,0 Male Pyleoplasty 177 
25 39,0 3,81 7,6 Male Fistulotomy 81 
26 39,0 4,04 7,4 Male Hernia Repair 94 
27 42,0 4,80 6,3 Female Hernia Repair 76 
28 29,1 5,03 7,8 Male Hernia Repair 78 

29 38,0 5,26 6,3 Male Hypospadias 
Repair 22 

30 39,0 5,36 8,5 Male Orchidopexy 76 

31 39,1 5,72 7,2 Male Colostomy 
Closure 310 

32 29,0 5,78 9,1 Male Fistulotomy 62 

33 40,4 5,95 8,2 Male Hypospadias 
Repair 189 

34 39,0 6,01 6,7 Male Chordee Release 160 
35 30,3 6,05 3,2 Male Circumcision 84 

 811 

 812 

Tab. S2. Statistics summary. 813 

Figure 1B Figure 1B Figure 1B Figure 1B 

    Active periods PFC Active periods HP Active periods LEC Active periods OB 
one-way anova one-way anova one-way anova one-way anova 
Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

    
Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Response: art(variable) Response: art(variable) Response: art(variable) Response: art(variable) 

    
       Error Df Df.res F value     
Pr(>F)     

       Error Df Df.res F value    
Pr(>F)     

       Error Df Df.res F value     
Pr(>F)     

       Error Df Df.res F value     
Pr(>F)     

1 time anm:t  3     54  59.792 
< 2.22e-16 *** 

1 time anm:t  3     54   35.13 
9.916e-13 *** 

1 time anm:t  3     60  29.392 
8.1185e-12 *** 

1 time anm:t  3     60  27.283 
2.9636e-11 *** 

--- --- --- --- 
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 contrast   estimate       SE df 
t.ratio p.value 

 contrast  estimate       SE df 
t.ratio p.value 

 contrast   estimate      SE df 
t.ratio p.value 

 contrast   estimate     SE df 
t.ratio p.value 

 1 - 2     35.000000 3.280084 
54  10.670  <.0001 

 1 - 2    31.894737 3.912163 
54   8.153  <.0001 

 1 - 2     26.285714 3.86664 
60   6.798  <.0001 

 1 - 2    28.4761905 4.2771 60   
6.658  <.0001 

 1 - 3     40.105263 3.280084 
54  12.227  <.0001 

 1 - 3    36.631579 3.912163 
54   9.364  <.0001 

 1 - 3     29.142857 3.86664 
60   7.537  <.0001 

 1 - 3    32.5714286 4.2771 60   
7.615  <.0001 

 1 - 4     29.000000 3.280084 
54   8.841  <.0001 

 1 - 4    26.947368 3.912163 
54   6.888  <.0001 

 1 - 4      4.666667 3.86664 60   
1.207  0.6249 

 1 - 4    32.9523810 4.2771 60   
7.704  <.0001 

 2 - 3      5.105263 3.280084 
54   1.556  0.4118 

 2 - 3     4.736842 3.912163 
54   1.211  0.6228 

 2 - 3      2.857143 3.86664 60   
0.739  0.8810 

 2 - 3     4.0952381 4.2771 60   
0.957  0.7739 
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 2 - 4     -6.000000 3.280084 
54  -1.829  0.2711 

 2 - 4    -4.947368 3.912163 
54  -1.265  0.5891 

 2 - 4    -21.619048 3.86664 
60  -5.591  <.0001 

 2 - 4     4.4761905 4.2771 60   
1.047  0.7229 

 3 - 4    -11.105263 3.280084 
54  -3.386  0.0071 

 3 - 4    -9.684211 3.912163 
54  -2.475  0.0754 

 3 - 4    -24.476190 3.86664 
60  -6.330  <.0001 

 3 - 4     0.3809524 4.2771 60   
0.089  0.9997 

    
P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

    Figure 1D Figure 1D Figure 1D Figure 1D 

    Power full signal PFC Power full signal HP Power full signal LEC Power full signal OB 
two-way anova two-way anova two-way anova two-way anova 
Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

    
Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Response: art(variable) Response: art(variable) Response: art(variable) Response: art(variable) 

    
            Error Df Df.res F value     
Pr(>F)     

            Error Df Df.res F value     
Pr(>F)     

            Error Df Df.res F value     
Pr(>F)     

            Error Df Df.res F value   
Pr(>F)   

1 cond      anm:c  1     18  
69.487 1.3576e-07 *** 

1 cond      anm:c  1     18  
46.382 2.2384e-06 *** 

1 cond      anm:c  1     20  
29.561 2.5383e-05 *** 

1 cond      anm:c  1     20  
4.2525 0.052427 . 

2 cond:freq anm::  3     54  
61.935 < 2.22e-16 *** 

2 cond:freq anm::  3     54  
48.874 2.0854e-15 *** 

2 cond:freq anm::  3     60  
14.028 4.8921e-07 *** 

2 cond:freq anm::  3     60  
3.6152 0.018139 * 

--- --- --- --- 
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

    
Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

delta theta beta gamma delta theta beta gamma delta theta beta gamma delta theta beta gamma 
3.051758e-05 1.525879e-05 
1.525879e-05 1.525879e-05 

1.525879e-05 1.525879e-05 
1.525879e-05 1.525879e-05 

0.08628464 4.703522e-03 
3.814697e-06 0.0003356934 

1.00000000 2.883911e-03 
1.171112e-03 0.0171394348 

  
  

Power active periods PFC Power active periods HP Power active periods LEC Power active periods OB 
two-way anova two-way anova two-way anova two-way anova 
Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

    
Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Response: art(variable) Response: art(variable) Response: art(variable) Response: art(variable) 

    
            Error Df Df.res F value     
Pr(>F)     

            Error Df Df.res F value    
Pr(>F)    

            Error Df Df.res F value     
Pr(>F)     

            Error Df Df.res F value   
Pr(>F)   

1 cond      anm:c  1     18  
22.274 0.00017099 *** 

1 cond      anm:c  1     18 
13.4602 0.0017565 ** 

1 cond      anm:c  1     20  
17.512 0.00045669 *** 

1 cond      anm:c  1     20  
1.3282 0.262711   

2 cond:freq anm::  3     54  
13.800 8.5004e-07 *** 

2 cond:freq anm::  3     54  
4.4602 0.0071739 ** 

2 cond:freq anm::  3     60  
11.020 7.3369e-06 *** 

2 cond:freq anm::  3     60  
2.5393 0.064904 . 

--- --- --- --- 
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

    
Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

delta theta beta gamma delta theta beta gamma delta theta beta gamma delta theta beta gamma 
2.471924e-02 9.650116e-01 9.012909e-01 7.232666e-02 1.00000000 1.907349e-05 0.11605835 9.713669e-01 
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1.000000e+00 2.857971e-02 4.943848e-02 6.256104e-01 4.703522e-03 0.0862846375 2.840424e-02 0.0862846375 

    Figure 1E Figure 1E Figure 1E Figure 1E 

    Log firing rate full signal 
PFC Log firing rate full signal HP 

Log firing rate full signal 
LEC Log firing rate full signal OB 

one-way anova one-way anova one-way anova one-way anova 
Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

    
Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Response: art(variable) Response: art(variable) Response: art(variable) Response: art(variable) 

    
       Error Df Df.res F value     
Pr(>F)     

       Error Df Df.res F value     
Pr(>F)     

       Error Df Df.res F value    
Pr(>F)     

       Error Df Df.res F value    
Pr(>F)    

1 time anm:t  3     54  27.752 
5.3925e-11 *** 

1 time anm:t  3     54  13.869 
8.0251e-07 *** 

1 time anm:t  3     60  12.998 
1.204e-06 *** 

1 time anm:t  3     60  5.1927 
0.0029577 ** 

--- --- --- --- 
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 contrast   estimate       SE df 
t.ratio p.value 

 contrast   estimate      SE df 
t.ratio p.value 

 contrast      estimate       SE 
df t.ratio p.value 

 contrast   estimate       SE df 
t.ratio p.value 

 1 - 2    18.3684211 2.347886 
54   7.823  <.0001 

 1 - 2     9.3684211 1.71104 
54   5.475  <.0001 

 1 - 2     1.123810e+01 
2.139859 60   5.252  <.0001 

 1 - 2     6.3333333 2.434027 
60   2.602  0.0551 

 1 - 3    18.5263158 2.347886 
54   7.891  <.0001 

 1 - 3     9.7105263 1.71104 
54   5.675  <.0001 

 1 - 3     1.123810e+01 
2.139859 60   5.252  <.0001 

 1 - 3     9.4047619 2.434027 
60   3.864  0.0015 

 1 - 4    14.1578947 2.347886 
54   6.030  <.0001 

 1 - 4     5.8684211 1.71104 
54   3.430  0.0062 

 1 - 4     1.009524e+01 
2.139859 60   4.718  0.0001 

 1 - 4     5.6904762 2.434027 
60   2.338  0.1009 

 2 - 3     0.1578947 2.347886 
54   0.067  0.9999 

 2 - 3     0.3421053 1.71104 
54   0.200  0.9971 

 2 - 3     1.421085e-14 
2.139859 60   0.000  1.0000 

 2 - 3     3.0714286 2.434027 
60   1.262  0.5905 

 2 - 4    -4.2105263 2.347886 
54  -1.793  0.2877 

 2 - 4    -3.5000000 1.71104 
54  -2.046  0.1844 

 2 - 4    -1.142857e+00 
2.139859 60  -0.534  0.9504 

 2 - 4    -0.6428571 2.434027 
60  -0.264  0.9935 

 3 - 4    -4.3684211 2.347886 
54  -1.861  0.2571 

 3 - 4    -3.8421053 1.71104 
54  -2.245  0.1241 

 3 - 4    -1.142857e+00 
2.139859 60  -0.534  0.9504 

 3 - 4    -3.7142857 2.434027 
60  -1.526  0.4286 

    
P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

P value adjustment: tukey 
method for comparing a family 
of 4 estimates  

P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

    Log firing rate active 
periods PFC 

Log firing rate active 
periods HP 

Log firing rate active 
periods LEC 

Log firing rate active 
periods OB 

one-way anova one-way anova one-way anova one-way anova 
Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

    
Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Response: art(variable) Response: art(variable) Response: art(variable) Response: art(variable) 

    
       Error Df Df.res F value    
Pr(>F)    

       Error Df Df.res F value  
Pr(>F)   

       Error Df Df.res F value     
Pr(>F)     

       Error Df Df.res F value  
Pr(>F)   

1 time anm:t  3     54  4.7319 
0.0052906 ** 

1 time anm:t  3     54  1.9002 
0.14053   

1 time anm:t  3     60  11.826 
3.4682e-06 *** 

1 time anm:t  3     60  1.0235 
0.38868   

--- --- --- --- 
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 contrast   estimate       SE df 
t.ratio p.value 

 contrast estimate       SE df 
t.ratio p.value 

 contrast  estimate       SE df 
t.ratio p.value 

 contrast   estimate       SE df 
t.ratio p.value 

 1 - 2     7.3684211 2.394314  1 - 2    2.052632 1.936114 54    1 - 2    -3.761905 2.429108  1 - 2    -3.2380952 2.486221 
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54   3.077  0.0168 1.060  0.7149 60  -1.549  0.4155 60  -1.302  0.5650 
 1 - 3     7.7368421 2.394314 
54   3.231  0.0110 

 1 - 3    3.368421 1.936114 54   
1.740  0.3136 

 1 - 3    -4.761905 2.429108 
60  -1.960  0.2145 

 1 - 3    -2.4285714 2.486221 
60  -0.977  0.7631 

 1 - 4     6.8947368 2.394314 
54   2.880  0.0283 

 1 - 4    4.368421 1.936114 54   
2.256  0.1214 

 1 - 4     8.238095 2.429108 
60   3.391  0.0066 

 1 - 4    -4.1428571 2.486221 
60  -1.666  0.3503 

 2 - 3     0.3684211 2.394314 
54   0.154  0.9987 

 2 - 3    1.315789 1.936114 54   
0.680  0.9044 

 2 - 3    -1.000000 2.429108 
60  -0.412  0.9763 

 2 - 3     0.8095238 2.486221 
60   0.326  0.9880 

 2 - 4    -0.4736842 2.394314 
54  -0.198  0.9972 

 2 - 4    2.315789 1.936114 54   
1.196  0.6319 

 2 - 4    12.000000 2.429108 
60   4.940  <.0001 

 2 - 4    -0.9047619 2.486221 
60  -0.364  0.9834 

 3 - 4    -0.8421053 2.394314 
54  -0.352  0.9849 

 3 - 4    1.000000 1.936114 54   
0.516  0.9548 

 3 - 4    13.000000 2.429108 
60   5.352  <.0001 

 3 - 4    -1.7142857 2.486221 
60  -0.690  0.9007 

  
 

 
P value adjustment: tukey 
method for comparing a family 
of 4 estimates  

P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

P value adjustment: tukey 
method for comparing a family 
of 4 estimates  

P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

    Figure 2B Figure 2B 
  

    Active periods PFC Active periods HP 
  one-way anova one-way anova 
  Analysis of Variance of 

Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

  
  

  Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated Measures Analysis of Variance Table 
(Type I)  

 Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

  Response: art(variable) Response: art(variable) 
  

  
         Error Df Df.res F value     

Pr(>F)     
       Error Df Df.res F value     
Pr(>F)     

  1 time anm:t  3     48  52.546 
3.3847e-15 *** 

1 time anm:t  3     48  59.575 
3.2938e-16 *** 

  --- --- 
  Signif. codes:   0 ‘***’ 0.001 

‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

   contrast estimate       SE df 
t.ratio p.value 

 contrast  estimate       SE df 
t.ratio p.value 

   1 - 2    10.41176 2.962703 48   
3.514  0.0052 

 1 - 2    11.235294 2.538526 
48   4.426  0.0003 

   1 - 3    21.29412 2.962703 48   
7.187  <.0001 

 1 - 3    23.382353 2.538526 
48   9.211  <.0001 

   1 - 4    35.47059 2.962703 48  
11.972  <.0001 

 1 - 4    31.617647 2.538526 
48  12.455  <.0001 

   2 - 3    10.88235 2.962703 48   
3.673  0.0033 

 2 - 3    12.147059 2.538526 
48   4.785  0.0001 

   2 - 4    25.05882 2.962703 48   
8.458  <.0001 

 2 - 4    20.382353 2.538526 
48   8.029  <.0001 

   3 - 4    14.17647 2.962703 48   
4.785  0.0001 

 3 - 4     8.235294 2.538526 
48   3.244  0.0112 

  
  

  P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

P value adjustment: tukey method for comparing a family of 4 
estimate 

 
    Figure 2D Figure 2D 

  
    Power full signal PFC Power full signal HP 

  two-way anova two-way anova 
  Analysis of Variance of 

Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

  
  

  Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated Measures Analysis of Variance Table 
(Type I)  
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Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

  Response: art(variable) Response: art(variable) 
  

  
              Error Df Df.res F value     

Pr(>F)     
            Error Df Df.res F value     
Pr(>F)     

  1 cond      anm:c  1     16  
34.631 2.3047e-05 *** 

1 cond      anm:c  1     16  
21.758 0.00025899 *** 

  2 cond:freq anm::  3     48  
13.074 2.2956e-06 *** 

2 cond:freq anm::  3     48  
17.300 9.4437e-08 *** 

  --- --- 
  Signif. codes:   0 ‘***’ 0.001 

‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

  
    Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

  delta theta beta gamma delta theta beta gamma 
  0.01538086 0.05145264 

0.0033569336 0.0001220703 
0.31872559 0.04394531 
0.0006103516 0.0003051758 

  
    Power active periods PFC Power active periods HP 

  two-way anova two-way anova 
  Analysis of Variance of 

Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

  
  

  Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated Measures Analysis of Variance Table 
(Type I)  

 Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

  Response: art(variable) Response: art(variable) 
  

  
              Error Df Df.res F value     

Pr(>F)     
            Error Df Df.res F value    
Pr(>F)    

  1 cond      anm:c  1     16  
19.642 0.00041858 *** 

1 cond      anm:c  1     16  
2.8510 0.1107108    

  2 cond:freq anm::  3     48  
13.957 1.1375e-06 *** 

2 cond:freq anm::  3     48  
5.6962 0.0020285 ** 

  --- --- 
  Signif. codes:   0 ‘***’ 0.001 

‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

  
    Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

  delta theta beta gamma delta theta beta gamma 
  0.28564453 0.35461426 

1.0000000000 1.0000000000 
0.12207031 1.00000000 
1.0000000000 0.4355468750 

  
    Figure 2E Figure 2E 

  
    Log firing rate full signal 
PFC Log firing rate full signal HP 

  one-way anova one-way anova 
  Analysis of Variance of 

Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

  
  

  Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated Measures Analysis of Variance Table 
(Type I)  

 Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

  Response: art(variable) Response: art(variable) 
  

  
         Error Df Df.res F value    

Pr(>F)    
       Error Df Df.res F value     
Pr(>F)     
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1 time anm:t  3     48  5.0897 
0.0038626 ** 

1 time anm:t  3     48  21.092 
7.4021e-09 *** 

  --- --- 
  Signif. codes:   0 ‘***’ 0.001 

‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

   contrast  estimate       SE df 
t.ratio p.value 

 contrast  estimate       SE df 
t.ratio p.value 

   1 - 2     2.735294 3.186585 
48   0.858  0.8261 

 1 - 2     4.911765 3.228287 
48   1.521  0.4329 

   1 - 3    10.441176 3.186585 
48   3.277  0.0102 

 1 - 3    14.352941 3.228287 
48   4.446  0.0003 

   1 - 4     9.411765 3.186585 
48   2.954  0.0242 

 1 - 4    23.676471 3.228287 
48   7.334  <.0001 

   2 - 3     7.705882 3.186585 
48   2.418  0.0872 

 2 - 3     9.441176 3.228287 
48   2.925  0.0261 

   2 - 4     6.676471 3.186585 
48   2.095  0.1693 

 2 - 4    18.764706 3.228287 
48   5.813  <.0001 

   3 - 4    -1.029412 3.186585 
48  -0.323  0.9882 

 3 - 4     9.323529 3.228287 
48   2.888  0.0286 

  
  

  P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

P value adjustment: tukey method for comparing a family of 4 
estimates  

 
    Log firing rate active 
periods PFC 

Log firing rate active 
periods HP 

  one-way anova one-way anova 
  Analysis of Variance of 

Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

  
  

  Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated Measures Analysis of Variance Table 
(Type I)  

 Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

  Response: art(variable) Response: art(variable) 
  

  
         Error Df Df.res F value     

Pr(>F)     
       Error Df Df.res F value   
Pr(>F)   

  1 time anm:t  3     48  11.305 
9.9724e-06 *** 

1 time anm:t  3     48  2.6759 
0.057595 . 

  --- --- 
  Signif. codes:   0 ‘***’ 0.001 

‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

   contrast   estimate      SE df 
t.ratio p.value 

 contrast   estimate      SE df 
t.ratio p.value 

   1 - 2     -4.000000 3.69339 48  
-1.083  0.7015 

 1 - 2    -0.8235294 3.42545 
48  -0.240  0.9950 

   1 - 3     -7.588235 3.69339 48  
-2.055  0.1829 

 1 - 3    -6.4705882 3.42545 
48  -1.889  0.2463 

   1 - 4    -20.294118 3.69339 
48  -5.495  <.0001 

 1 - 4    -7.8823529 3.42545 
48  -2.301  0.1120 

   2 - 3     -3.588235 3.69339 48  
-0.972  0.7662 

 2 - 3    -5.6470588 3.42545 
48  -1.649  0.3619 

   2 - 4    -16.294118 3.69339 
48  -4.412  0.0003 

 2 - 4    -7.0588235 3.42545 
48  -2.061  0.1807 

   3 - 4    -12.705882 3.69339 
48  -3.440  0.0064 

 3 - 4    -1.4117647 3.42545 
48  -0.412  0.9761 

  
  

  P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

P value adjustment: tukey method for comparing a family of 4 
estimates 

 
  

  Figure S1A 
 

Figure S1A 
 

    Imaginary coherence PFC-
HP 

 

Imaginary coherence LEC-
OB 

 two-way anova 
 

two-way anova 
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Analysis of Variance of 
Aligned Rank Transformed 
Data 

 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

 
 

 
 

 Table Type: Repeated Measures Analysis of Variance Table 
(Type I)  

Table Type: Repeated Measures Analysis of Variance Table 
(Type I)  

Model: Repeated Measures 
(aov) 

 

Model: Repeated Measures 
(aov) 

 Response: art(variable) 
 

Response: art(variable) 
 

 
 

 
             Error Df Df.res  F 

value  Pr(>F)   
 

            Error Df Df.res F value   
Pr(>F)   

 1 cond      anm:c  1     18 
0.274684 0.60660   

 

1 cond      anm:c  1     20 
0.55076 0.466636   

 2 cond:freq anm::  3     54 
0.098025 0.96078   

 

2 cond:freq anm::  3     60 
2.20480 0.096781 . 

 --- 
 

--- 
 Signif. codes:   0 ‘***’ 0.001 

‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 two-way anova 
 

two-way anova 
 

    Bonferroni post-hoc 
comparison 

 

Bonferroni post-hoc 
comparison 

 delta theta beta gamma 
 

delta theta beta gamma 
 1.000000e+00 1.000000e+00 

1.000000e+00 1.000000e+00 
 

0.81166840 1.000000e+00 
1.000000e+00 0.9159431458 

 
    Figure S1C Figure S1C Figure S1C Figure S1C 

    PPC PFC PPC HP PPC LEC PPC OB 
two-way anova two-way anova two-way anova two-way anova 
Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

    
Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Response: art(variable) Response: art(variable) Response: art(variable) Response: art(ppcOB) 

    
            Error Df Df.res F value   
Pr(>F)   

            Error Df Df.res F value  
Pr(>F)   

            Error Df Df.res F value   
Pr(>F)   

                            Error Df 
Df.res F value Pr(>F)   

1 cond      anm:c  1     18  
2.5610 0.126930   

1 cond      anm:c  1     18 
0.76678 0.39275   

1 cond      anm:c  1     20  
2.2892 0.145922   

1 cond_ppcOB            
an_OB:_OB  1     11 1.70329 
0.2185   

2 cond:freq anm::  3     54  
2.3506 0.082532 . 

2 cond:freq anm::  3     54 
1.11065 0.35286   

2 cond:freq anm::  3     60  
2.8296 0.045918 * 

2 cond_ppcOB:freq_ppcOB 
a_OB:_OB:  3     33 0.49268 
0.6898   

--- --- --- --- 
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

    Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

delta theta beta gamma delta theta beta gamma delta theta beta gamma delta theta beta gamma 
1.000000e+00 6.751709e-01 
1.000000e+00 1.000000e+00 

1.000000e+00 2.408295e-01 
1.000000e+00 1.000000e+00 

0.23802948 1.000000e+00 
1.000000e+00 1.0000000000 

1.00000000 1.000000e+00 
1.000000e+00 0.1367187500 

    Figure S1D Figure S1D Figure S1D Figure S1D 

    1/f slope PFC 1/f slope HP 1/f slope LEC 1/f slope OB 
one-way anova one-way anova one-way anova one-way anova 
Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 
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Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Response: art(variable) Response: art(variable) Response: art(variable) Response: art(variable) 

    
       Error Df Df.res F value  
Pr(>F)   

       Error Df Df.res F value  
Pr(>F)   

       Error Df Df.res F value  
Pr(>F)   

       Error Df Df.res F value  
Pr(>F)   

1 time anm:t  3     54 0.18187 
0.90826   

1 time anm:t  3     54 0.59431 
0.62144   

1 time anm:t  3     60  0.2308 
0.87458   

1 time anm:t  3     60  0.3423 
0.79481   

--- --- --- --- 
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 contrast   estimate       SE df 
t.ratio p.value 

 contrast  estimate       SE df 
t.ratio p.value 

 contrast   estimate       SE df 
t.ratio p.value 

 contrast   estimate       SE df 
t.ratio p.value 

 1 - 2    -3.0000000 7.083249 
54  -0.424  0.9742 

 1 - 2     3.684211 7.330003 
54   0.503  0.9581 

 1 - 2     3.8095238 6.694838 
60   0.569  0.9409 

 1 - 2    -0.7142857 6.768396 
60  -0.106  0.9996 

 1 - 3    -5.1578947 7.083249 
54  -0.728  0.8854 

 1 - 3     9.263158 7.330003 
54   1.264  0.5897 

 1 - 3    -1.3333333 6.694838 
60  -0.199  0.9972 

 1 - 3    -3.4761905 6.768396 
60  -0.514  0.9555 

 1 - 4    -3.3157895 7.083249 
54  -0.468  0.9657 

 1 - 4     1.894737 7.330003 
54   0.258  0.9939 

 1 - 4    -0.4761905 6.694838 
60  -0.071  0.9999 

 1 - 4     3.3333333 6.768396 
60   0.492  0.9605 

 2 - 3    -2.1578947 7.083249 
54  -0.305  0.9901 

 2 - 3     5.578947 7.330003 
54   0.761  0.8715 

 2 - 3    -5.1428571 6.694838 
60  -0.768  0.8685 

 2 - 3    -2.7619048 6.768396 
60  -0.408  0.9768 

 2 - 4    -0.3157895 7.083249 
54  -0.045  1.0000 

 2 - 4    -1.789474 7.330003 
54  -0.244  0.9948 

 2 - 4    -4.2857143 6.694838 
60  -0.640  0.9186 

 2 - 4     4.0476190 6.768396 
60   0.598  0.9323 

 3 - 4     1.8421053 7.083249 
54   0.260  0.9938 

 3 - 4    -7.368421 7.330003 
54  -1.005  0.7470 

 3 - 4     0.8571429 6.694838 
60   0.128  0.9992 

 3 - 4     6.8095238 6.768396 
60   1.006  0.7465 

    
P value adjustment: tukey 
method for comparing a family 
of 4 estimates  

P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

P value adjustment: tukey 
method for comparing a family 
of 4 estimates  

P value adjustment: tukey 
method for comparing a family 
of 4 estimates 

    Figure S1F Figure S1F Figure S1F Figure S1F 

    Sample entropy PFC Sample entropy HP Sample entropy LEC entropy OB 
two-way anova two-way anova two-way anova two-way anova 
Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

Analysis of Variance of 
Aligned Rank Transformed 
Data 

    
Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Table Type: Repeated 
Measures Analysis of 
Variance Table (Type I)  

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Model: Repeated Measures 
(aov) 

Response: art(variable) Response: art(variable) Response: art(variable) Response: art(variable) 

    
            Error Df Df.res  F 
value  Pr(>F)   

            Error Df Df.res  F 
value  Pr(>F)   

            Error Df Df.res F value  
Pr(>F)   

            Error Df Df.res  F 
value  Pr(>F)   

1 cond      anm:c  1     18 
0.043354 0.83740   

1 cond      anm:c  1     18 
0.051911 0.82234   

1 cond      anm:c  1     20  
0.4563 0.50709   

1 cond      anm:c  1     20 
0.092223 0.76451   

2 cond:freq anm::  3     54 
0.721699 0.54341   

2 cond:freq anm::  3     54 
1.105389 0.35498   

2 cond:freq anm::  3     60  
1.4887 0.22671   

2 cond:freq anm::  3     60 
0.134148 0.93933   

--- --- --- --- 
Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Signif. codes:   0 ‘***’ 0.001 
‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

    Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

Bonferroni post-hoc 
comparison 

delta theta beta gamma delta theta beta gamma delta theta beta gamma delta theta beta gamma 
1.000000e+00 1.000000e+00 
1.000000e+00 1.000000e+00 

1.000000e+00 5.787506e-01 
1.000000e+00 1.000000e+00 

1.00000000 1.000000e+00 
1.000000e+00 1.0000000000 

1.00000000 1.000000e+00 
1.000000e+00 1.0000000000 
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Figure S2C 
   

    Power full signal PFC 
   two-way anova 
   Analysis of Variance of 

Aligned Rank Transformed 
Data 

   
 

   Table Type: Repeated Measures Analysis of Variance Table 
(Type I)  

  Model: Repeated Measures 
(aov) 

   Response: art(variable) 
   

 
               Error Df Df.res F value     

Pr(>F)     
   1 cond      anm:c  1      9  

28.661 0.00046016 *** 
   2 cond:freq anm::  3     27  

12.890 2.0587e-05 *** 
   --- 
   Signif. codes:   0 ‘***’ 0.001 

‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
   

 
   Bonferroni post-hoc 

comparison 
   delta theta beta gamma 
   0.03710938     0.3222656       

0.001953125    0.001953125 
    814 
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