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Abstract 

Hundreds of millions of hectares of tropical forest have been selectively logged, either legally or 

illegally. Methods for detecting and monitoring tropical selective logging using satellite data are at an 

early stage, with current methods only able to detect more intensive timber harvest (>20 m
3
 ha

-1
). The 

spatial resolution of widely available datasets, like Landsat, have previously been considered too 

coarse to measure the subtle changes in forests associated with less intensive selective logging, yet 

most present-day logging is at low intensity. We utilized a detailed selective logging dataset from 

over 11,000 ha of forest in Rondônia, southern Brazilian Amazon, to develop a Random Forest 

machine-learning algorithm for detecting low-intensity selective logging (< 15 m
3
 ha

-1
). We show that 

Landsat imagery acquired before the cessation of logging activities (i.e. the final cloud-free image of 

the dry season during logging) was better at detecting selective logging than imagery acquired at the 

start of the following dry season (i.e. the first cloud-free image of the next dry season). Within our 

study area the detection rate of logged pixels was approximately 90% (with roughly 20% commission 

and 8% omission error rates) and approximately 40% of the area inside low-intensity selective 

logging tracts were labelled as logged. Application of the algorithm to 6152 ha of selectively logged 

forest at a second site in Pará, northeast Brazilian Amazon, resulted in the detection of 2316 ha (38%) 

of selective logging (with 20% commission and 7% omission error rates). This suggests that our 

method can detect low-intensity selective logging across large areas of the Amazon. It is thus an 

important step forward in developing systems for detecting selective logging pan-tropically with 

freely available data sets, and has key implications for monitoring logging and implementing carbon-

based payments for ecosystem service schemes. 
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1. Introduction 

Earth’s tropical forests are being rapidly lost and degraded by agricultural expansion and commercial 

logging operations, with population growth projected to further increase pressures on forests globally 

(Asner et al., 2005; DeFries et al., 2010). The ability to monitor forest disturbances is an important 

component in sustainable forest management, understanding the global carbon budget, and 

implementing climate policy initiatives, such as the United Nation’s (UN) Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) programme, which seeks to mitigate climate change 

and biodiversity losses through improved forest management practices (GOFC-GOLD, 2016). The 

UN anticipates that payments to nations under REDD+ initiatives, which compensate countries for 

conserving forests (and sequestering carbon), could reach $30 billion annually (Phelps et al., 2010, 

UN‐REDD Programme, http://www.un‐redd.org).  

Remote sensing is considered the most accurate and cost-effective way to systematically 

monitor forests at large scales (Achard et al., 2007; Herold and Johns, 2007; Shimabukuro et al., 

2014). Large-scale monitoring of deforestation has significantly improved in recent years, and forest 

losses can be identified with accuracies greater than 90% using freely available satellite data (Hansen 

et al., 2013). In addition, near real-time deforestation tracking and alert systems are now possible with 

systems like DETER (Shimabukuro et al., 2012), FORMA (Hammer et al., 2014; Hansen et al., 2013), 

and Global Forest Watch (Hansen et al., 2016). In contrast, methods for detecting and monitoring 

forest degradation are less developed. Forest degradation is an ambiguous term, with over 50 different 

definitions and no internationally established description (Ghazoul et al., 2015; Simula, 2009). This 

makes generalizing its impacts difficult, in part because degradation can include forests subject to 

varying intensities of selective logging, fire, artisanal gold mining, fuelwood extraction, etc., which 

has hampered the development of coordinated international forest policies to track and monitor forest 

degradation (Ghazoul et al., 2015; Sasaki and Putz, 2009). 

Here we focus on detecting a key driver of forest degradation globally, commercial logging 

operations. In contrast to forest clearance (i.e. deforestation), selective logging represents a more 

diffuse disturbance wherein only a subset of trees (typically the most economically valuable) are 

harvested (Fisher et al., 2014; Putz et al., 2001). The resulting forest maintains some degree of its 
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original composition (e.g. canopy cover, biodiversity measures, carbon content, etc.) but is punctured 

by treefall gaps and logging roads and consequently lies on a continuum between primary forest and 

complete deforestation (Ghazoul et al., 2015; Thompson et al., 2013). The intensity of selective 

logging operations can vary in two main ways: (1) the volume of wood harvested typically ranges up 

about 50 m
3
 ha

-1
, as high as 150 m

3
 ha

-1
 in Asia (Burivalova et al., 2014; Putz et al., 2001) and (2) the 

degree to which reduced-impact logging is practiced, in which damage to the remaining forest is 

minimized by careful planning of road networks, skid trails, and directional felling of trees to limit 

additional tree or canopy damage (Putz and Pinard, 1993). 

Selective logging activities are often the first anthropogenic disturbance to affect primary 

tropical forests (Asner et al., 2009b; Nepstad et al., 1999) and are thought to be a major source of 

carbon emissions from degradation (Hosonuma et al., 2012; Pearson et al., 2017). Moreover, road 

networks associated with logging are often precursors to additional land-use changes (such as 

agricultural conversion or development of human settlements) and facilitate further degradation (e.g. 

increased susceptibility to fires or illegal logging) and forest losses (Alamgir et al., 2017; Kumar et 

al., 2014; Matricardi et al., 2010). Estimates suggest over 400 million ha of tropical forest, an area the 

size of the European Union, are earmarked in the tropical timber estate to be logged (Blaser et al., 

2011). However, the extent of forest subjected to selective logging across the tropics has yet to be 

estimated (Asner et al., 2005). 

Several authors have tried to address the challenges of using satellite data to estimate forest 

disturbances from selective logging in the tropics (Asner et al., 2005, 2004a, 2002, Matricardi et al., 

2010, 2007; Shimabukuro et al., 2014; Souza and Barreto, 2000; Souza et al., 2005). The majority of 

approaches employ classification of fractional images derived from spectral unmixing of Landsat 

scenes. Despite these advancements, Landsat imagery has been considered too coarse to monitor less 

intensive selective logging activities, with nearly all applications involving logging intensities > 20 m
3
 

ha
-1

 (Asner et al., 2005, 2004a, 2002, Matricardi et al., 2010, 2007; Shimabukuro et al., 2014; Souza 

and Barreto, 2000; Souza et al., 2005). While most authors acknowledge their methods can detect 

areas of selective logging at moderately high intensities (> 20 m
3
 ha

-1
; 3-7 trees ha

-1
), that possess 

large canopy gaps and an abundance of spectrally distinct features, like log landing decks or large 
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road networks, their respective abilities to detect lower logging intensities are unknown. Therefore, 

using Landsat data to map and quantify selective logging at lower logging intensities (< 20 m
3
 ha

-1
) 

remains a major challenge, and the amount of forest disturbance overlooked using currently available 

techniques is unknown. Yet, growing concerns over the impacts of selective logging on carbon and 

biodiversity (Bicknell et al., 2014; Edwards et al., 2014; França et al., 2017; Martin et al., 2015; Putz 

et al., 2008) has led to increased use of improved forest management practices, such as reduced-

impact logging (Putz and Pinard, 1993). Consequently, the extent of tropical forests being logged at 

lower intensities and with reduced-impact is almost certainly expanding. In addition, there is an ever-

increasing need to detect and account for the estimated 50-90% of tropical timber on the international 

market harvested illegally at very low intensities (Brancalion et al., 2018; Kleinschmit et al., 2016). 

Therefore methods to detect subtle forest disturbances from satellite systems with regular global 

coverage are urgently needed, both to establish reference levels from historical data (e.g. the vast 

amount of freely available Landsat archives) and to obtain maximum benefit from current and future 

systems, such as Landsat 8, 9 and Sentinel-2 (Drusch et al., 2012; Roy et al., 2014). 

The primary objective of this study was to develop a new method for detecting selective 

logging in moist tropical forest with Landsat data. It focuses on reduced-impact selective logging of 

intensity < 15 m
3
 ha

-1
 (1-2 trees ha

-1
), much lower than is typically reported in studies that use remote 

sensing data to estimate selective logging (Asner et al., 2005, 2004a; Souza and Roberts, 2005), but 

still more than three times the background rate of natural mortality estimated for tropical forests 

(Brienen et al., 2015; Clark et al., 2004). We used detailed spatial and temporal logging records from 

Rondônia, Brazil, together with Landsat data, to build a machine learning algorithm for detecting 

selectively logged Landsat pixels. Machine learning (neural networks, decision trees, support vector 

machines, etc.) for classification of satellite imagery has been used with increasing success in recent 

years (Tuia et al., 2011) and can turn a suite of predictor variables weakly correlated with a response 

into a relatively strong classifier (Breiman, 2001). The successful application of this algorithm to a 

test site in northern Pará, Brazil, approximately 1500 km from the location of algorithm development, 

demonstrates that this approach is transferable and can greatly improve existing methods of detecting 

subtle selective logging activities in the tropics. 
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2. Study sites and satellite imagery 

Data from two test sites in the Brazilian Amazon were used in this study (Fig. 1a). The Jamari site 

consists of terra firme tropical forest inside the Jamari National Forest, Rondônia, Brazil. The logging 

concession was subdivided into forest management units (FMUs) that were each approximately 2,000 

ha (Fig. 1b). Selective logging occurred within a single FMU in each year, at an intensity of 

approximately 10 m
3
 ha

-1
 (1-2 trees ha

-1
), beginning at the end of the wet season (roughly June) and 

continuing through the dry season (until November) from 2011 through 2015. Forest inventory 

measurements were recorded by trained foresters and included the spatial location of each marketable 

 

 

(b) (a) 

Fig. 1. Location of the Jamari (black 

star) and Jari (grey star) study sites in 

the Brazilian Amazon (a). Landsat 8 

image (RGB bands 6,5,4) of the Jamari 

site (b) from June 2016 in Rondônia, 

Brazil. The six southern forest 

management units (outlined in black) 

include the locations of data inputs for 

machine learning algorithm 

development, while the northern 2 

units remained unlogged. Landsat 8 

image (bands 6,5,4) of the Jari site (c) 

from September 2016 in Pará, Brazil. 

Jamari and Jari were selectively logged 

from 2011-2015 and in 2012, 

respectively. 

(c) 0                             10 

        kilometres 

0                             10 

        kilometres 
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tree species within the concession, its height, diameter, estimated volume, and if it was logged (only 

trees > 50 cm in diameter can be harvested). Overall, the spatial locations of more than 13,000 

individually identified trees that were selectively logged between 2011 and 2015 were recorded. A 

field survey in 2016 relocated a subset of trees (n = 214) to estimate the geolocation precision of the 

logging inventory records (mean = 6.2 m; standard deviation = 6.6 m). This detailed record of where 

and when trees were selectively removed provided the means to build the machine learning 

algorithms described in Section 3.3 and to test their performance. 

At the Jamari site, heavy cloud cover typically occurs between October and May, but cloud-

free images from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper (ETM+), 

and Landsat 8 Operational Land Imager (OLI) were acquired approximately annually for 2008 to 

2016 in the intervening dry season (Table 1). Note that the 2012 ETM+ images suffered from missing  

 

Table 1. Landsat 5 (TM), 7 (ETM+), and 8 (OLI) scenes used to build and assess Random Forest 

models developed to detect selective logging. The Jamari study site is path 232, row 066 and the 

Jari site is path 226, row 061.  

Study Site Acquisition Date Scene Timing Solar Zenith Angle Landsat Sensor 

Jamari 2008-07-28 Early 49.75 TM 

 2009-07-31 Early 50.00 TM 

 2010-07-18 Early 46.36 TM 

 2011-08-06 Early 51.67 TM 

 2012-08-16 Early 54.05 ETM+ 

 2013-08-27 Early 57.07 OLI 

 2014-08-30 Early 58.84 OLI 

 2015-09-02 Early 60.19 OLI 

 2009-06-29 Late 43.79 TM 

 2010-07-02 Late 43.63 TM 

 2011-07-05 Late 44.30 TM 

 2012-06-13 Late 41.64 ETM+ 

 2013-07-10 Late 42.26 OLI 

 2014-06-11 Late 40.43 OLI 

 2015-06-14 Late 40.47 OLI 

 2016-06-16 Late 40.37 OLI 

Jari 2011-11-08 Early 123.31 ETM+ 

 2012-11-10 Early 125.27 ETM+ 

 2011-07-03 Late 48.12 ETM+ 

 2013-08-17 Late 60.92 OLI 
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data as a result of the scanline corrector error and appear striped (Storey et al., 2005). For the 

analyses, we distinguished “early” and “late” images for a given region. The early image was the last 

cloud-free image of the dry season in the same year the FMU was logged (typically in August, 

approximately 2-3 months before cessation of logging activities for the season). The late image was 

the first cloud-free image of the dry season in the year after cessation of logging activities (typically 

in June, approximately 8-12 months after the FMU was logged). We used early and late imagery to 

generate two separate datasets and build two separate algorithms in order to assess which time period 

provided better detection of selective logging. This is illustrated for a hypothetical logging season in 

Fig. 2. The selection of two time periods reflects the fact that after 8-12 months, regrowth of foliage 

and other vegetation can reduce the spectral signatures required to identify canopy gaps and woody 

debris in tropical systems (Asner et al., 2004a, 2004b; Broadbent et al., 2006).  

The Jari site (Fig. 1c) in Pará, Brazil, consists of terra firme tropical forest inside the 12,500 

ha Jari concession that was selectively logged at an intensity of approximately 12 m
3
 ha

-1
 (1-3 trees 

ha
-1

) between July and December 2012. In contrast to Jamari, the Jari site lacked detailed information 

on where trees were removed, but the volume of wood (m
3
) removed was recorded for 10 ha (400 m x 

250 m) blocks in the concession. The Jari site allowed us to assess whether the algorithms developed 

using the Jamari dataset, located approximately 1500 km away, were transferable to this distant site. 

At Jari heavy cloud cover is common throughout the year, but we used the early and late time period 

imagery with the lowest cloud cover available to assess logging before and after logging activities 

occurred within the FMU (Table 1). 

 

 

Fig. 2. Timeline representation of a single forest management unit in the Jamari study site. Vertical 

blue lines indicate image acquisitions during the early and late time periods (black boxes) relative 

to when logging occurred (red box). In this example the early Landsat image was acquired part 

way through the logging season, so part of the management unit has yet to be cut. The late image 

is the first cloud-free image of the following dry season and is acquired approximately 8 months 

after the management unit was selectively logged. 
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3. Methods 

3.1 Data inputs for detecting selective logging 

For the Landsat scenes given in Table 1, the surface reflectance values for the Blue, Green, Red, Near 

Infrared, Shortwave Infrared 1 and Shortwave Infrared 2 bands were measured at each pixel where 

logging occurred (n = 13699) and 2000 randomly selected pixels in an adjacent FMU that remained 

unlogged. In addition, since logging activities tend to be accompanied by surrounding disturbances 

(residual damage to neighbouring unharvested trees and skid trails along which logs are extracted), 

seven texture measures were calculated for each band (mean, variance, homogeneity, contrast, 

dissimilarity, entropy, and second moment) to provide a local context for each pixel (Beekhuizen and 

Clarke, 2010; Castillo-Santiago et al., 2010; Haralick et al., 1973; Rodriguez-Galiano et al., 2012). 

These were calculated within a 7x7 pixel window, chosen as a trade-off between minimizing window 

size while still capturing the disturbances in a selectively logged forest compared to an unlogged 

forest. The various texture metrics were assigned to the centre pixel, thus maintaining pixel size (i.e. 

30 m), and were added after preliminary modelling efforts with only the surface reflectance bands 

were found to perform inadequately (i.e. approximately double the rate of omission error of logged 

pixels; see Table S1 for details). Because of possible Landsat inter-sensor differences, we added one 

final categorical variable that represented the sensor (TM, ETM+, or OLI) from which the image was 

acquired. The dataset thus comprised a 49-element vector (6 surface reflectance bands, 7 texture 

measures for each band, and a sensor-type indicator) for each pixel where logging occurred and an 

additional 2000 randomly selected pixels in an adjacent FMU that remained unlogged between 2008 

and 2016. 

The early and late datasets were reduced to exclude data from time periods close to when 

each FMU was logged. In the early dataset, for each FMU we excluded data from the year before 

logging because access roads were built and pixel values would therefore not represent undisturbed 

forest. In addition, data from all years following logging were excluded (see Table S2 for details). For 

example, for an FMU logged in 2014 the early dataset comprised data from around August in 2008 

through 2012 (representative of unlogged conditions) and August 2014 (representative of logged 

conditions), but excluded data from August 2013, 2015 and 2016. The same procedure was used for 
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the late dataset. For example, for an FMU logged in 2014 the unlogged dataset included data acquired 

around June in 2008 through 2012, while the logged data was for June 2015. Data were excluded from 

June 2013 (roads being built in the FMU), 2014 (logging recently initiated), and June 2016 (2 years 

post-logging). In both the early and late datasets the data from 2000 randomly selected pixels in an 

adjacent FMU that remained unlogged were retained from all years because they were never logged. 

Note that for early data, the imagery was acquired before the final part of the FMU was logged; this 

introduced some errors into model training, because some pixels labelled as logged in the training 

data were still unlogged. Despite this, we demonstrate in Section 4.1 that detection of selective 

logging was better with early time period data. 

 

3.2 Random Forest for detection of selective logging 

We built Random Forest (RF) models using the randomForest package in program R version 3.3.1 

(Liaw and Wiener, 2002; R Development Core Team, 2016). The RF algorithm (Breiman, 2001) is a 

machine learning technique that uses an ensemble method to identify a response variable (here, 

whether a pixel was logged or unlogged) given a set of predictor variables (e.g. surface reflectance 

values). In contrast to a single decision tree, RF models employ multiple, independent decision trees 

(hence a forest). Random subsets of the training data are drawn, with replacement, to construct many 

trees in parallel, with each tree casting a vote on which class should be assigned to the input data. The 

withheld subset of the data, called the out-of-bag fraction, can be used for validation in the absence of 

independent validation data (Breiman, 2001). To reduce generalization error, RF also uses a random 

subset of predictor variables in the decision at each node within a tree during construction. 

We split the early and late datasets into 75% for training and 25% was withheld for 

validation. We used the out-of-bag data during model training to determine the threshold value for 

classification (i.e. model calibration, see Section 3.3.1). In order to ensure independence, the training 

and validation datasets were spatially filtered such that no observations in the training dataset were 

within 90 m of an observation in the validation dataset. RF models have only two tuning parameters: 

the number of classification trees to be produced (k), and the number of predictor variables used at 

each node (m). We used 10-fold cross-validation to identify the number of trees (k = 1000) and the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 24, 2018. ; https://doi.org/10.1101/451856doi: bioRxiv preprint 

https://doi.org/10.1101/451856


number of variables to use at each node (m = 5) that minimized the out-of-bag error rate on the 

training data.  

 

3.3 Algorithm evaluation 

3.3.1 Calibration: selecting the detection threshold 

RF models typically use a simple majority vote to assign an observation to a particular class, 

for example, in binary decisions when more than 50% of the trees assign a pixel to a particular class 

(Breiman, 2001). However, the proportion of votes cast for a particular class from the total set of trees 

can be obtained for each pixel and a classification threshold can be applied to this proportion (Liaw 

and Wiener, 2002). We adopted this approach here, wherein the proportion of votes that predicted 

each observation to be logged, denoted as X and informally termed the likelihood a pixel was logged, 

was used to select the classification threshold. Model calibration (with the out-of-bag data) was then 

used to define a threshold, T, such that if X > T the pixel was classified as logged (Fig. 3). 

 

 

Pd =  
𝑫

𝑩 + 𝑫
  

  

Pfd =  
𝑪 

𝑨 + 𝑪
 

  

dpL
 =

𝑫 

𝑪 + 𝑫 
 

𝑫     

𝑪     

𝑩     

𝑨     

Fig. 3. Diagram representing the trade-off between the probability of detection (Pd) and the 

probability of false detection (Pfd) associated with using a threshold T (vertical black line) on the 

variable X (the proportion of votes that predicted each observation to be logged) to label pixels as 

logged and unlogged. Here the purple and orange colors correspond to probability distribution 

functions of X for hypothetical logged, 𝑓𝐿(𝑋), and unlogged, 𝑓𝑈𝐿(𝑋), observations, respectively. 

Thus, the areas A and B are the portions of the observations from unlogged and logged pixels, 

respectively, that will be labelled as unlogged. Similarly, C and D represent the portions of the 

observations from logged and unlogged pixels, respectively, that will be labelled as logged. 
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Detection of logging involves only two classes, logged and unlogged forest, so the confusion 

matrix has the form: 

 Reference 

L UL 

Predicted L DL DUL 

UL NL – DL NUL – DUL 

 

where L and UL refer to logged and unlogged, NL and NUL are the numbers of logged and unlogged 

observations in the reference dataset, and DL and DUL are respectively the numbers of logged and 

unlogged pixels detected as logged. The total number of observations is N = NL + NUL. Since logging 

is a relatively rare event, both in our data and on the landscape (i.e. NL << NUL), it is appropriate to use 

the terminology of detection theory. Accordingly, we define the detection probability 𝑃𝑑 = 𝐷𝐿/𝑁𝐿 

and false detection probability 𝑃𝑓𝑑 =  𝐷𝑈𝐿/𝑁𝑈𝐿 as the probabilities that a logged or unlogged pixel is 

classified as logged, respectively. 𝑃𝑑 is equivalent to 1 – the omission error of the logged class and 

𝑃𝑓𝑑 is the omission error of the unlogged class.  

A pixel was classified as logged if X, the proportion of votes from RF that predict the pixel as 

logged, exceeds a given threshold T. Hence the detection and false detection probabilities depend on T 

and can be written  

 𝑃𝑑(𝑇) = ∫ 𝑓𝐿
1

𝑇
(𝑋)𝑑𝑋         (1a) 

and  

𝑃𝑓𝑑(𝑇) = ∫ 𝑓𝑈𝐿
1

𝑇
(𝑋)𝑑𝑋        (1b) 

where 𝑓𝐿(𝑋) and 𝑓𝑈𝐿(𝑋) are the probability distributions of X for the logged and unlogged classes, 

respectively (see Fig. 3).  

The selection of T involves a trade-off between increasing 𝑃𝑑 and reducing 𝑃𝑓𝑑 (Fig. 3). In 

making this choice, the overall accuracy, given by 

 𝐴 =  
𝐷𝐿 + (𝑁𝑈𝐿− 𝐷𝑈𝐿) 

𝑁
,         (2) 
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is not a good guide, since it can be shown that A is maximal (equivalently, the overall probability of 

error is a minimum) when  

 
𝑓𝐿(𝑋)

𝑓𝑈𝐿(𝑋)
=

𝑁𝑈𝐿

𝑁𝐿
.          (3) 

If NL and NUL were equal, the threshold would then be chosen at the intersection of fL(X) and fUL(X), 

but since NL << NUL it has a much higher value (i.e. it moves to the right in Fig. 3). This is because to 

increase overall accuracy it is more effective to reduce 𝑃𝑓𝑑 than to increase 𝑃𝑑, since there are so 

many more unlogged pixels (Schwartz, 1984), and maximizing accuracy would lead to very few (or 

even no) detections. For example, if only 1% of an area was logged and all the pixels were classified 

as unlogged, the overall accuracy would be 99%. Thus, overall accuracy would not sufficiently 

balance the trade-off between true and false detections to meet our objectives.  

Various criteria could be used to select a classification threshold, including maximizing 

Cohen’s kappa (Cohen, 1960) or defining an acceptable rate of omission error; ultimately however, 

there is no wrong threshold, since this depends on the objectives of prediction. The criterion used in 

this study to define T was to fix the proportion of detected pixels that were truly logged, defined here 

as 𝑑𝑝𝐿: 

 𝑑𝑝𝐿 =
𝐷𝐿

𝐷𝐿+𝐷𝑈𝐿
 =

1

1+(
𝑁𝑈𝐿

𝑁𝐿
)(

𝑃𝑓𝑑

𝑃𝑑
)
 .       (4) 

Adopting this criterion is equivalent to a Constant False Discovery Rate detector which is widely used 

in detection problems with rare events (Benjamini and Hochberg, 1995; Neuvial and Roquain, 2011). 

This fixes the rate of prediction error (i.e. type I) when labelling pixels as logged, because 𝑑𝑝L is 

equal to 1 minus the commission error of the logged class, thus limiting the rate of commission error. 

This approach enables the user to select the proportion of detections that will be false. It was chosen 

because in the detection of rare events (e.g. selective logging within the Amazon Basin, for example), 

the implications of a particular error rate when predicting over the majority class (i.e. unlogged forest) 

are greater than an equivalent error rate when predicting over the minority class (i.e. 10% of millions 
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of unlogged pixels is far greater than 10% of thousands of selectively logged pixels). Thus, in order to 

avoid being swamped by false detections, we wanted to fix the proportion of all detected pixels that 

were incorrect and accept the level of accuracy associated with this criterion. The approach outlined 

here, therefore, should be view from a detection theory perspective as opposed to simply being a 

classification problem.  

 Model calibration was used to calculate 𝑃𝑑, 𝑃𝑓𝑑, and 𝑑𝑝L across the full range of threshold 

values. In practice this involved iterating through all values of T between 0 and 1 (in steps of 0.001), 

building each confusion matrix, and calculating the associated values of 𝑃𝑑, 𝑃𝑓𝑑, and 𝑑𝑝L. The 

threshold value was chosen such that 𝑑𝑝L = 0.85 in the training data (i.e. 15% of pixels classified as 

logged were actually unlogged). We initially set 𝑑𝑝L to 95% to strongly limit the rate of false 

detections, but this resulted in very high omission error of truly logged pixels (>75%). Consequently, 

𝑑𝑝L was reduced to 0.85 by lowering the threshold, thus causing the detection and false detection rates 

to increase and causing more logged pixels to be detected. This value was then used to estimate 𝑃𝑑 

and 𝑃𝑓𝑑 during model assessment with the validation dataset.  

 

3.3.2 Validation: assessing model accuracy 

RF models were validated using a random, independent subset of the early and late datasets 

(described in Section 3.2). The threshold value of T, chosen during model calibration, was applied to 

the validation data and the associated error rates were calculated. The values of 𝑃𝑑, 𝑃𝑓𝑑, and 𝑑𝑝L are 

presented across full range of threshold values to thoroughly illustrate model performance. Good 

practices outlined by Olofsson et al. (2014) were used to assess agreement and calculate unbiased 

error estimates when mapping selective logging detections. During mapping, non-forested areas were 

excluded using Brazil's national forest change product, PRODES (INPE 2015), and cloudy pixels 

were masked using the cloud mask provided with Landsat surface reflectance imagery. In addition, 

we provide the value of Cohen’s kappa, , for comparison with other studies (Cohen, 1960).  

 

4. Results  
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4.1 Random Forest classification of selective logging at Jamari 

The rates of true and false detection probabilities for the early and late validation data are shown in 

Fig. 4 for the full range of T (black lines). These curves indicate how a given threshold value used for 

classification influenced the associated values of 𝑃𝑑, 𝑃𝑓𝑑, , and 𝑑𝑝L in the validation data. For 

example, if a 𝑑𝑝L of 0.90 was used (indicating 10% of logging detections would be spurious) then the 

false detection rate (𝑃𝑓𝑑) would be < 1% for both datasets, but the detection rate (𝑃𝑑) would be 

approximately 55% and 30% for the early and late datasets, respectively. These plots clearly 

demonstrate that there is no unambiguous way to choose an optimal value for T, and the choice about 

its value is a trade-off between the number of true and false detections.  

In general, these plots indicate that the early data provided a higher detection rate than the late 

data, for a given false detection rate. The early and late data had similar rates of commission error 

when labelling logged pixels, which is not surprising given we used this measure to constrain models 

during training. However, the late data had higher rates of omission error of logged pixels and 

detected less logging (Table 2). In addition, these plots demonstrate why using the threshold that 

maximized Cohen’s  would lead to higher false detection rates, as the threshold value is higher when 

𝑑𝑝L  = 0.85 than at maximum  (i.e. pixels classified as logged must have a higher likelihood). 

Furthermore, because  is high across a wide range of range of threshold values for both early and late 

data, slight differences in the likelihoods produced by the validation data could result in dramatic 

shifts in the value of T. 

Although 𝑑𝑝L  was fixed at 0.85 during model calibration (i.e. with the training data), the 

values calculated with the validation dataset were slightly lower (Table 2). Thus, the threshold value 

determined during model training did not produce the same values for 𝑑𝑝L  when used against the 

validation dataset (i.e. some loss of performance). Slight differences in the proportion of logged 

observations (16.3% and 14.5% in training and validation, respectively) and minor differences in the 

ratio of 𝑃𝑓𝑑: 𝑃𝑑  between the training and validation datasets account for the disparity (see equation 4). 

In general model assessments seldom give identical performance across training and validation 

phases, and the difference here were marginal and yielded comparable model behavior. 
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Fig. 4. Trade-off curves between true (Pd) and false (Pfd) detection rates (solid and dashed black 

lines, respectively) for the early (top) and late (bottom) Random Forest models at the Jamari 

site as a result of varying the threshold value (T) for classification. Also shown are the 

corresponding values of dpL (the proportion of detections that were truly logged) and Cohen’s 

kappa (solid and dashed grey lines, respectively).  
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The early data displayed higher spatial correspondence between high likelihoods and the locations of logging in Jamari. This is illustrated in Fig. 5, 

where the likelihood of logging provided by RF is shown on a colour scale and the individual locations of tree removal are indicated by black squares. The 

early model yields much higher likelihoods and these match well with reference logging data, whereas there is generally lower correspondence between 

reference logging locations and regions of highest likelihood in the late predictions. Note that we expect some logging locations to be omitted in the early data 

as the corresponding satellite data were acquired part way through the logging period and missed later logging. Evidence for this is provided by the inset 

regions expanded at the bottom of Fig. 5 where the locations of the last 200 trees in the logging records for the season are displayed as crosses instead of 

 

 

Table 2. Confusion matrix summarizing unbiased (Olofsson et al., 2014) results from Random Forest (RF) model classifications of logged and unlogged 

observations at Jamari derived from Landsat data at labelled points (observations before and after selective logging). The classification threshold (T) for RF 

models was set during model calibration such that the proportion of detections that were truly logged (dpL) was fixed at 0.85, resulting in a T of 0.40 and 

0.65 for the early and late datasets, respectively. The corresponding values for overall accuracy (OA), Cohen’s kappa (), the proportion of detected pixels 

that were truly logged (dpL), and the detection probability (Pd) are provided. 

EARLY 
  

LATE 
 

  

OA: 89.7%  

 : 0.78 

dpL: 0.80 

Pd: 0.92 

 
  OA: 91.7% 

 : 0.40 

dpL: 0.80 

Pd: 0.30 

 
  

Reference Class   Reference  Class  

Logged Unlogged Commission   Logged Unlogged Commission 

  Error (%)    Error (%) 

Predicted 

Class 

Logged 0.313 0.076 19.5 
 

Predicted 

Class 

Logged 0.032 0.008 19.9 

Unlogged 0.027 0.584 4.4 
 

Unlogged 0.075 0.885 7.8 

         

Omission Error (%) 8.0 11.5      Omission Error (%) 70.1 1.0  
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Early 
2013-08-27 

Fig. 5. Example of a forest management unit in Jamari logged in 2013 showing the RF 

predicted likelihood that each pixel was logged (highest likelihoods in red) for the early and late 

data. Logging roads are thin black lines and tree removal locations are displayed as black 

squares and crosses. The black crosses (see insets for detail) coincide with the final 200 trees in 

the logging records for 2013. 

3 km 

Early                                               1 km 

Late 
2014-06-11 

Late                                                   

Likelihood Pixel was Logged 
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squares. Many of these locations occur in low likelihood regions in the early data because these 

locations were probably unlogged at the time of the image acquisition (dates for specific tree removal 

were unavailable). 

A further marked difference between the predictions is that, in general, far more pixels were 

labelled as logged in the early data than in the late, as can be seen by comparing the classifications in 

Fig. 6, which shows the years between 2011 and 2015 for the early (top) and late (bottom) datasets, 

respectively. The FMU where logging occurred in each year is outlined in yellow and the 2015 image 

also shows the FMU to be logged in 2016 outlined in white. The early classifications appear to show 

some indication of a retained signal from the previously logged FMU (particularly 2012-08-16 and 

2013-08-27 in Fig. 6) that are less visible in the late classifications. In addition, the range of predicted 

logging likelihoods with late data was more variable from scene to scene, which resulted in some 

scenes having very few pixels of high likelihood of logging (see 2012-06-13 in Fig. 6) and others with 

most of the study area predicted as logged (see 2016-06-16 in Fig. 6). This suggests the threshold 

value from model calibration could not be used reliably for all late images and a scene-specific 

threshold value might need to be calculated for each image to provide better correspondence with 

logging activities.  

The true proportion of logged pixels in each FMU (from the logging records) was roughly 

12% in a given year (mean = 11.8%; standard deviation = 2.4%), but the early classifications 

consistently labelled a greater number of pixels as logged (Fig. 7). For example, the proportion of 

pixels assigned in each FMU for early acquisitions was expected to be around 25% (10% truly logged 

and 15% false positives), but nearly twice as many were identified. However, forest disturbances from 

selective logging affect patches of forest and not just the pixels where trees were logged. Extra 

detections would be expected because of additional tree and canopy damage associated with tree 

removals, roads, and construction of skid trails. Note that the rate of false detections over unlogged 

FMUs (open diamonds in Fig. 7) is roughly as expected for the early algorithm and most dates for the 

late algorithm, but is significantly different for the late algorithm for the FMU logged in 2015. The 

late scene for this FMU clearly shows anomalous behaviour and displays high likelihood of logging 

over most of the study area, including known unlogged regions (see Fig. 6).
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Fig. 6. Classifications for Jamari between 2011 and 2016 with early (top) and late (bottom) Landsat data. The forest management units (FMUs) are 

outlined in black and the FMU logged in each year (where logging should be detected) is outlined in yellow. Blue and green represent classifications for 

logged and unlogged forest, respectively. White areas are no-date and correspond to the Landsat 7 scan-line corrector error (stripes) and pixels that were 

non-forest (irregular patches) in Brazil’s Program to Calculate Deforestation in the Amazon (PRODES) database. The FMU logged in 2016 is outlined 

in white (far right) and the top two FMUs in each image remained unlogged. 

 5 km 

2011-08-06 2013-08-27 
 

2012-08-16 2014-08-30 2015-08-17 

2012-06-13 2013-07-10 2014-06-11 2015-06-14 2016-06-16 
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We used the early algorithm to predict over the available Landsat time series in Jamari that 

coincided with logging in four FMUs (see Table S3 for image dates) and plotted the detections of 

logging through time (Fig. 8). As expected, the proportion of detected pixels increased through the 

logging season during the year a given FMU was logged. There was also a drift upwards in the 

unlogged FMU, but the detections peaked just above the expected rate of 12% by late August (Fig. 8). 

Importantly, known unlogged regions will not exhibit a 𝑑𝑝L of 0.85 (i.e. a false discovery rate of 

15%), as any and all detections in known unlogged areas are wrong (i.e. a 𝑑𝑝L = 0). Consequently, the 

false alarm rate is the expected proportion of detections (i.e. Pfd = 11.5% in Table 2). This suggests 

that the algorithm performed as would be expected for tracking forest disturbances through time in 

both logged and unlogged FMUs. In particular, forest patches subjected to selective logging should 

display measurable increases in detections as the logging season progresses and known unlogged 

regions will exhibit the expected false alarm rate.  

 

Fig. 7. The proportion of pixels in each FMU that were classified as logged in Fig. 6 for the early 

(open symbols) and late (closed symbols) algorithms. Circles are the logged FMUs in each year 

and diamonds are values from an FMU that remained unlogged. The black line represents the 

mean ± 1 standard deviation (dashed lines) of the true rate of logging across all FMUs. Values are 

unbiased (Olofsson et al., 2014) to account for possible sampling bias in the validation data.  
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We assessed the impact of the window size used to calculate texture measures on the 

proportion of pixels labelled as logged FMUs for three logged and one unlogged FMU in the early 

data (Fig. 9). Reducing the window size from 7x7 to 3x3 lowered the proportion labelled as logged by 

nearly 50% within each FMU, resulting in smaller clusters of pixels with high likelihoods (Fig. 9). 

However, as noted above, forest disturbance from selective logging affects chunks of forest and not 

just the pixels where trees are cut. Thus, depending on the scale of interest, larger or smaller window 

sizes may be better for identifying patches of forest that have been selectively logged. In contrast, 

reducing the window size had little impact on the false detection rate over unlogged regions, 

remaining close to the 12% expected irrespective of window size (Fig. 9). This suggests that the 

choice of window size is independent of the false positive rate over undisturbed forested areas and 

primarily affects likelihoods around pixels that the algorithm identifies as disturbed.  

Fig. 8. The proportion of pixels classified as logged through time in three logged and one 

unlogged FMU using the early RF model. Triangles, circles, and squares represent logged 

FMUs (solid lines) and diamonds are an unlogged FMU (dotted line). The grey horizontal 

line at 12% is the approximate detection rate expected for unlogged regions. Values are 

unbiased (Olofsson et al., 2014) to account for possible sampling bias in the validation data. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 24, 2018. ; https://doi.org/10.1101/451856doi: bioRxiv preprint 

https://doi.org/10.1101/451856


 

 

4.3 Random Forest predictions of logging at Jari 

The majority of the best available (sufficiently cloud-free) Landsat scenes over Jari were from the 

ETM+ sensor, which suffered the scan-line corrector error, so approximately 22% of each image has  

missing data that appear as white stripes in Figs. 10 and 11 (Storey et al., 2005). Nonetheless, this 

allowed us to see behaviour similar to Jamari, wherein predictions using early data clearly identified 

active logging (Fig. 10) and predictions using late data detected very little logging (Fig. 11). In 

particular, with late data most of the study area was classified as unlogged both before and after 

logging. Additionally, with early data the predictions of logged pixels in the year before logging were 

close to the expected rate of false positives over unlogged regions (approximately 12%). However, 

with late data the rate of false positives was not close to the expected rate over unlogged regions. 

Maps for the year before logging are displayed to demonstrate that the early dataset identified the 

correct year in which logging occurred and did not simply predict high amounts of logging for every 

year.  

Fig. 9. The proportion of pixels classified as logged in three logged FMUs and one unlogged 

FMU from RF models using texture measures with different window sizes. Triangles, circles, and 

squares represent windows used for texture calculation of 7x7, 5x5 and 3x3 pixels, respectively. 

The dashed line at 12% is the approximate detection rate expected for unlogged regions. Values 

are unbiased (Olofsson et al., 2014) to account for possible sampling bias in the validation data. 
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 2011-11-08 
(pre-logging) 

Figure 10. Logged (blue) and unlogged (green) predictions at the Jari study site using a 

Random Forest model trained from early Landsat inputs. Predictions from November 2011 

(top) were before logging activities began and from November 2012 (bottom) while active 

logging was ongoing. Clouds were masked out and appear as irregular white patches (top). 

Missing data regions from the Landsat 7 scan-line corrector error appear as white stripes 

through the maps. Black boxes indicate the 10 ha blocks inside the Jari concession that were 

not logged. 
 

 2012-11-10 
(active logging in FMU) 
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 2011-07-03 
(pre-logging) 

Figure 11. Logged (blue) and unlogged (green) predictions at the Jari study site using a 

Random Forest model trained from late Landsat inputs. Predictions from July 2011 (top) were 

before logging activities began and from August 2013 (bottom), approximately 8 months post-

logging. Clouds were masked out and appear as irregular white patches. Missing data regions 

from the Landsat 7 scan-line corrector error appear as white stripes through the map (top). 

Black boxes indicate the 10 ha blocks inside the Jari concession that were not logged. 
 

 2013-08-17 
(8 months post logging) 
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In total, an area of 6152 ha was visible in Jari after removing clouds and missing data gaps from the SLC error in the year of logging. Of this area, 

1710 ha was not logged (black boxes in Figs. 10 and 11). Since we lacked detailed logging records and only knew which 10 ha blocks were logged, a formal 

accuracy assessment of logging detections was not possible. However, when using the unbiased proportions and the threshold from Table 4 to classify 

predictions, the early algorithm labelled 2316 ha (38%) as logged (Fig. 10). This value is consistent with predictions from Jamari where approximately 40% 

of logged FMUs were labelled with early data (see Fig. 7). In addition, the rate of commission error when predicting logged pixels (i.e. 1 - dpL) was 19.8%, 

which is also consistent with the rate of commission error between the validation data and prediction errors found for the Jamari site.  

 

 

 

 

Table 3.  Confusion matrix summarizing  unbiased (Olofsson et al., 2014) results from Random Forest (RF)  model classifications of logged and unlogged 

observations at Jari with Landsat data. The thresholds (T) developed at Jamari were used to classify predictions at Jari and were 0.40 and 0.65 for the early 

and late datasets, respectively (Table 2).  The corresponding values for overall accuracy (OA), Cohen’s kappa (), the proportion of detected pixels that 

were truly logged (dpL), and the detection probability (Pd) are provided. 

EARLY 
  

LATE 
 

  

OA: 89.0%  

 : 0.77 

dpL: 0.80 

Pd: 0.93 

 
  OA: 92.2% 

: 0.05 

dpL: 0.80 

Pd: 0.03 

 
  

Reference Class   Reference  Class  

Logged Unlogged Commission   Logged Unlogged Commission 

  Error (%)    Error (%) 

Predicted 

Class 

Logged 0.351 0.085 19.5 
 

Predicted 

Class 

Logged 0.002 0.005 19.9 

Unlogged 0.025 0.538 4.4 
 

Unlogged 0.078 0.919 7.8 

         

Omission Error (%) 6.7 13.7      Omission Error (%) 97.3 0.06  
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5. Discussion 

The spatial resolution of Landsat data has previously been considered too coarse to monitor selective 

logging activities (Asner et al., 2002), with most applications involving logging intensities >20 m
3
 ha

-

1
 at sites with an abundance of spectrally distinct features (Asner et al., 2005; Souza and Barreto, 

2000; Souza et al., 2005). However, we have demonstrated that Landsat surface reflectance data can 

be used effectively, in a supervised machine learning framework, to detect subtle spectral changes 

from selective logging at low intensities. Although a definitive estimate of the amount of logging 

activities that have previously gone undetected is difficult to determine, a dataset of 824 logging 

permits from the state of Pará, Brazil found 18% of permits authorized for logging were harvested at 

intensities < 20 m
3
 ha

-1
 (Richardson and Peres, 2016). Thus, our approach has the potential to 

significantly increase current abilities to detect and monitor selective logging activities that up to now 

have been, at best, marginally detectable (see Supplementary Material, Section 3 for a comparison 

between our method and CLASlite, Asner et al., 2009a). In addition, the approach outlined here has 

the distinct advantage of being able to make predictions about forests on a single scene to map 

disturbances, instead of requiring successive cloud-free images like many approaches (Asner et al., 

2009a). This is particularly important since a single, low-cloud scene may be all that is available for a 

given region (see Souza, Jr et al. 2013). 

 Only the algorithm developed with data close to the time of active logging (i.e. the early data) 

performed well at detecting selective logging.  Many logged pixels were omitted when using data 

from the first cloud-free image of the next dry season (i.e. late). In addition, only the algorithm trained 

with imagery close in time to the logging events was transferable to new areas (Figs. 10 and 11). 

Thus, our results suggest images acquired during, or very soon after, active logging are needed to map 

low intensity selective logging. This is partly because logging activities typically occur in the dry 

season when cloud-free imagery is more likely to be available, but also because the spectral changes 

associated with low-intensity selective logging practices are subtle and short-lived and rapidly 

become obscured under even limited regrowth (Broadbent et al., 2006).  

The decision to fix the proportion of logging detections that were correct (i.e. limiting the 

commission error when predicting logged pixels) defined the classification threshold applied to the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 24, 2018. ; https://doi.org/10.1101/451856doi: bioRxiv preprint 

https://doi.org/10.1101/451856


likelihoods produced by the RF models developed at Jamari. This threshold would likely give 

different values of dpL in regions that contain different proportions of logged and unlogged 

observations (see equation 4). Indeed, the threshold value from model training produced a slightly 

higher dpL when assessed against the validation dataset, yet these data were from the same study site. 

In addition, depending on the distribution of likelihoods produced by the RF models, different 

datasets might yield different threshold values, for example because of higher selective logging 

intensities. However, assuming both classes are present, the proportion of detected pixels that are 

wrong (i.e. 1 - dpL) would be expected to remain invariant. Hence if the same threshold were applied 

over the whole of the Amazon basin, we would expect approximately 20% of all detections to be 

wrong and 11.5% of truly intact forest pixels to be identified as logged. This could be used to refine 

the algorithm (in the absence of field data on logging locations) by examining the rate of false 

detections over known unlogged regions or protected areas to achieve a similar error rate. Adopting 

this threshold (i.e. Pfd = 11.5) would make the method equivalent to a Constant False Alarm Rate 

detector which is widely used in detection problems with rare events (Scharf, 1991). A dpL of 85% 

was the value chosen here as a compromise that gives a high detection rate (0.92 for early data, see 

Table 2) while keeping the proportion of detections that are false to an acceptable level. However, 

other values of dpL could be chosen, depending on the predictive objectives of the particular 

application. This is precisely why Fig. 4 shows the full range of threshold values; to enable a detailed 

assessment of model performance with higher or lower values of T or dpL. 

An important issue when assessing detections of selective logging is that patches of forest are 

affected, not just the isolated pixels where trees are removed. The area around logged pixels is certain 

to be disturbed because of canopy damage associated with tree removals and the construction of roads 

and skid trails, but the precise amount is unknown. Consequently, taking as a reference purely the 

pixels where trees were known to be removed is inadequate for assessing the disturbance due to 

logging. Indeed, the true rate of logged pixels at Jamari was approximately 12% (mean = 11.8%; 

standard deviation = 2.4%), but this represents a minimum expected detection rate and the associated 

forest disturbances would result in more detections. The early algorithm labelled approximately 40% 

of the area inside FMUs in Jamari and Jari as logged. This may be a more realistic estimate and is 
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likely close to the upper limit of what constitutes forest disturbance for this level of logging. 

However, because the choice of window size for texture measure calculation affected the proportion 

of pixels labelled as logged (Fig 9), the appropriate window size for a particular application needs to 

be considered. Smaller windows resulted in fewer detections, but use of too small a window risks 

being unable to adequately measure texture arising from forest disturbances from selective logging. 

Thus, the specific application would best dictate the optimum approach and the user should, if 

possible, use window sizes matched to the expected or known spatial spread of forest disturbance 

around tree removals. 

Selective logging rates in the Brazilian Legal Amazon (BLA) are thought to have remained 

relatively stable since 2000, with Pará and Mato Grosso enduring the highest rates of selective 

logging (Betts et al., 2017; Souza, Jr et al., 2013). However, our findings suggest that their 

assessments of forest disturbance and the associated carbon emissions are likely underestimated. 

Machine learning approaches (neural networks, decision trees, support vector machines, etc.) for 

classification of satellite imagery have been used with increasing frequency and success since their 

initial applications to remote sensing questions in the 1990’s (Tuia et al., 2011), but their effectiveness 

relies heavily on adequate training data. Our results suggest that detailed logging records ought to be a 

reporting requirement for logging companies or for REDD+ projects related to logging. These 

datasets could be used for building, improving, and updating models similar to the one presented here, 

with the aim of facilitating the creation of pan-tropical estimates of (legal and illegal) selective 

logging activities. 

From a conservation perspective, the ability to identify regions of forest that are selectively 

logged is useful for mapping primary forest, but also for delineating logged forests with conservation 

value. Forests subjected to selective logging generally maintain far higher levels of biodiversity than 

other modified habitats, such as plantations or secondary forests (Gibson et al. 2011; Edwards et al., 

2014). Moreover, even after accounting for the amount of wood removed, reduced impact logging 

activities (like those at our study site in Jamari) do better at maintaining biodiversity than 

conventional selective logging practices (Bicknell et al., 2014) while simultaneously sequestering 

more carbon during regrowth (Martin et al., 2015; Putz et al., 2008). Thus, in the context of REDD+ 
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or alternative conservation initiatives, forests affected by low intensity selective logging offer high 

biodiversity value and carbon sequestration potential. Accordingly, our method could be used for 

identifying and prioritizing forest tracts suitable for such initiatives.  

 

5.1 Study limitations 

While the minimum mapping unit remained 30 m, the use of texture measures resulted in some spatial 

aggregation of logging predictions (see Figs. 5 and 6). This was expected around logged pixels, as a 

result of canopy gaps, skid trails, and roads, but clustered detections were also present in unlogged 

FMUs (see Fig. 6). Ideally, predictions of logging in unlogged FMUs would have shown a diffuse 12-

15% of spurious detections. Attempts to refine the accuracy of a final predictive map, by performing a 

post-processing step in which either likelihoods or classified pixels are re-examined (e.g. using a 

window analysis to apply neighbourhood rules whereby likelihoods or counts of nearby pixels are re-

evaluated against some criteria) to enhance the detection rate or limit the false detection rate further, 

would prove difficult (Huang et al., 2014). However, using a smaller window size for texture 

calculation, such as 5x5 pixels, would reduce this effect. Ultimately, the optimal window size for 

textures depends on the objectives of the application and understanding how different window sizes 

affect detection and false detection rates. 

Landsat surface reflectance data is known to exhibit occasional strong scene-to-scene and 

within-scene variations because of discontinuities across focal plane modules (Morfitt et al., 2015) 

and seasonal changes in solar viewing angles (Roy et al., 2016), respectively. We did not take these 

effects into account and likely affected algorithm performance in some instances (e.g. 2016-06-16 in 

Fig. 6). Thus, a large scale application of the approach outlined here should include a step to 

normalize surface reflectance data across scenes to facilitate detection of the subtle and short lived 

spectral changes associated with low-intensity selective logging practices (Broadbent et al., 2006). 

Our analysis used a binary classification (logged and unlogged forest) yet tropical forest 

landscapes are a heterogeneous mixture of land uses (e.g. secondary forests, burned areas inside 

forests, agricultural fields). We avoided some of these complexities by using the PRODES forest 

designations to remove urban areas, agricultural fields, and deforested areas that had regenerated to 
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secondary forest. However, our method cannot distinguish between disturbance types and is best 

suited for tracts of remaining forest that contain logging concessions. In addition, selective logging 

represents a range of forest disturbance intensities and we would have preferred to use the logging 

dataset in a regression framework (i.e. a continuous response, such as logging intensity).  However, 

the range of logging intensities within our Jamari dataset was very limited, since it was such a low 

intensity concession. Consequently, a regression approach was not suitable for the Jamari dataset and 

we chose to use classification. Additional datasets could fold into the framework here and might 

facilitate a continuous response approach as those datasets become available.  

Finally, our analyses used freely available optical datasets. However, the problems associated 

with using optical imagery in the tropics, including the limited availability of cloud-free images over 

many regions and the rapid regeneration of tropical forest vegetation, remain major obstacles to pan-

tropical assessments of tropical selective logging rates. Methods that integrate optical and radar 

dataset into a single algorithm would likely further improve the detection of tropical selective logging 

activities. 

 

6. Conclusion 

Loss and degradation of forests in the tropics has important implications for global climate 

change, local populations and biodiversity (Lewis et al., 2015). Methods to reliably map forest 

disturbances from selective logging would be a key contribution to quantifying the terrestrial portion 

of the carbon budget and the role of land-use change in tropical forests emissions (Baccini et al., 

2017). In addition, reliable forest monitoring systems are actively sought after by tropical nations and 

conservation groups tasked with mitigating global climate change through improved forest 

management practices (GOFC-GOLD, 2016). Our results should stimulate further assessments of 

regional rates of low-intensity selective logging in tropical forests. 

Our analysis, based on training Random Forest models with detailed records of tree removals, 

has demonstrated that Landsat data can be effective at detecting selective logging at much lower 

intensities than has previously been reported. To be successful, the input satellite data needs to be 

acquired within a few months of the logging, as the subtle signal caused by logging (and the more 
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extensive disturbance associated with logging) is rapidly lost. Although we had less complete 

knowledge of logging activities at the Jari site, the algorithm developed at Jamari appeared to transfer 

successfully to this site (despite being 1500 km away). Hence there is reason to expect that it could be 

applied at much wider scales. 
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