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Abstract 

The Notch signalling pathway plays fundamental roles in diverse developmental 

processes in metazoans, where it is important in driving cell fate and directing 

differentiation of various cell types. However, we still have limited knowledge about the 

role of Notch in early preimplantation stages of mammalian development, or how it 

interacts with other signalling pathways active at these stages such as Hippo. By using 

genetic and pharmacological tools in vivo, together with image analysis of single 

embryos and pluripotent cell culture, we have found that Notch is active from the 4-cell 

stage. Transcriptomic analysis in single morula identified novel Notch targets, such as 

early naïve pluripotency markers or transcriptional repressors such as TLE4. Our 

results reveal a previously undescribed role for Notch in driving transitions during the 

gradual loss of potency that takes place in the early mouse embryo prior to the first 

lineage decisions. 
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Introduction 

The totipotent mammalian zygote has the self-organising capacity of generating 

embryonic and extraembryonic structures to build a complete organism [1]. This 

undifferentiated cell will proliferate and its descendants will take lineage decisions that 

entail a progressive loss of potency. The first differentiation event that leads to distinct 

lineages takes place during preimplantation development at the morula to blastocyst 

transition, resulting in the formation of the trophectoderm (TE, extraembryonic 

population) and the inner cell mass (ICM, embryonic population). How the 

establishment of these early lineages is achieved has been widely studied and we now 

know that a combination of morphogenetic cues breaks the symmetry in the embryo 

[2–4]. The first morphological sign of differentiation is evident in the compacting morula, 

2.5 days after fertilization (embryonic day E2.5), when blastomeres increase their 

intercellular interactions and outer cells acquire an apical-basal polarity. These 

polarized cells on the surface enclose an inner group of apolar cells [5,6]. The outer 

versus inner position of the blastomeres correlates with their fate, becoming TE or ICM 

respectively, although cells can change their position within the embryo [7–9]. Prior to 

compaction, blastomeres appear morphologically equivalent. However, transcriptional 

differences among blastomeres have been described as early as in the 4-cell embryo 

[10–12]. Although cells at this stage are not committed to a specific fate, these early 

heterogeneities correlate with specific fate biases before lineage commitment. 

However, how these early heterogeneities arise and their implications in cell plasticity 

are still unclear [13]. 

Once the embryo compacts, differences in contractility and the activity of signalling 

pathways orchestrate the lineage-commitment of cell populations [14–20]. The initial 

stochastic expression of the main lineage-specific transcription factors (such as CDX2 

or GATA3 for the TE, and OCT4 or NANOG for the ICM) is gradually restricted to their 

definitive domains [21,22]. The Hippo pathway has been shown to act as a readout of 
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cell polarity and therefore, differential intercellular distribution of its components and 

thus differential activity in polar or apolar cells, will dictate fate [23–26]. In outer cells, 

the pathway is switched off and the transcriptional coactivator YAP is translocated to 

the nucleus where it will interact with TEAD4, the effector of the pathway, to promote 

the expression of key TE genes such as Cdx2 and Gata3 [15,27]. We have previously 

shown that Notch signalling also has a role in the regulation of Cdx2. It is specifically 

active in the TE, where the intracellular domain of the Notch receptor (NICD) is 

translocated into the nucleus where it binds to the transcription factor RBPJ to promote 

target gene expression. Both Notch and Hippo converge on the TEE, an enhancer 

upstream of Cdx2 [16]. YAP/TEAD and NICD/RBPJ transcriptional complexes interact 

with the chromatin modifier SBNO1 to favour the induction of Cdx2 [28]. 

Nevertheless, we still do not understand how these two signalling pathway interact to 

regulate Cdx2 in the embryo, if there is crosstalk between them, if they are acting in 

parallel during development or otherwise. Furthermore, Notch signalling could have 

other unexplored roles at early stages of mouse development. In this study, we show 

that Hippo and Notch pathways are largely independent, but that Notch is active earlier, 

before compaction, and that differences in Notch levels determines cell fate in the 

blastocyst. Single-embryo RNA-seq points at repressors that block early naïve 

pluripotency markers as Notch targets. We propose that Notch coordinates the 

triggering of initial differentiation events within the embryo and regulates the early 

specification of the trophectoderm. 
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Results 

CDX2 expression in the morula is dependent on the Notch and 

Hippo signalling pathways. 

Previously, we have described how Notch and Hippo pathways converge to regulate 

Cdx2 expression, and that different allelic combinations for Rbpj and Tead4 lead to a 

significantly reduced expression of CDX2 [16]. Notably, we failed to recover double 

mutant embryos at the blastocyst stage (E3.5), suggesting that the lack of both factors 

caused lethality before the blastocyst stage. We therefore decided to investigate 

embryos at the earlier morula stage (E2.5), where we recovered double mutant 

embryos at Mendelian ratios. CDX2 levels were lower in Rbpj-/-;Tead4+/- and Rbpj+/-

;Tead4-/- morulae, as previously observed in blastocysts [16]. Interestingly, this effect 

was exacerbated in double mutant embryos (Rbpj-/-;Tead4-/-) in which we did not detect 

any CDX2 expression, although OCT4 was normally expressed (Fig 1A). 

Compaction of blastomeres and polarization of outer cells are critical morphological 

events that take place at the morula stage and are linked to the onset of CDX2 

expression [29,30]. We therefore decided to investigate if these processes were 

affected in double mutant morulae. We examined the expression of E-cadherin and 

phospho-ERM, as markers of cell-cell adhesion and apical polarity. No differences in 

the distribution or intensity of these markers was observed in any of the allelic 

combinations examined, including double mutants for Rbpj and Tead4 (Fig S1). 

Therefore, disruption of Notch and Hippo signalling does not alter cellular and 

morphological events prior to lineage specification, but does result in a dramatic 

downregulation of Cdx2 at this stage. 

To better understand the contributions of each of the Notch and Hippo pathways to 

CDX2 expression, we performed correlations in single cells between Notch, YAP and 

CDX2. We used a transgenic mouse line carrying CBF1-VENUS as a reporter of Notch 
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activity [31], and we performed immunostaining to detect YAP and CDX2 in morulae 

and blastocysts from that reporter line. In the blastocyst, the three markers were 

restricted to nuclei of the TE, while in the morula their expression was more 

heterogeneous (Fig 1B). Nuclear YAP was detected preferentially in outer cells, 

presumably polarized blastomeres, whereas CBF1-VENUS and CDX2 were detected 

in both inner and outer cells of the morula. We quantified nuclear intensity levels using 

a Matlab based segmentation tool, MINS [32], and found that CBF1-VENUS and YAP 

both correlated positively with CDX2 at morula and blastocyst stages (Fig 1C and 1D, 

respectively). Interestingly, there was no correlation between CBF1-VENUS and YAP 

in the morula, suggesting that the two pathways are activated independently at this 

stage (Fig 1C). By the blastocyst stage, these markers did show a positive correlation, 

albeit weaker than the correlation of either marker with CDX2 (Fig 1D). If all three 

components were taken into account simultaneously, the coefficient of correlation 

increases both in morula (Fig 1E) and blastocyst (Fig 1F), indicating that the 

combination of Notch and Hippo pathways better accounted for CDX2 levels than any 

of them individually. 

In most cases, individual nuclei from morulae were positive for the three markers. 

However, we did find a few cases in which nuclei were positive for CBF1-VENUS and 

CDX2 but negative for YAP (Fig 1B, arrowhead). We therefore analysed all morulae to 

determine the distribution of cells positive for each combination of markers. We found 

that Notch was active in most of the cells at this stage and that the majority of 

blastomeres were positive for all three of the markers (295 blastomeres, 72.3%; Fig 

1G). Another noteworthy population was represented by cells that were only positive 

for CBF1-VENUS and CDX2 (85 blastomeres, 20.8%). However, we rarely found cells 

expressing YAP and CDX2 but not CBF1-VENUS at the morula stage (Fig 1G). 

Together, this set of experiments shows that Notch and Hippo are responsible for 
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CDX2 expression at the morula stage, and suggests that they are generally acting in 

an independent fashion. 

 

Absence of crosstalk between the Notch and Hippo signalling 

pathways in the early mouse embryo. 

The correlation analysis between CBF1-VENUS and YAP expressing blastomeres 

indicated possible independent roles for Notch and Hippo in the regulation of CDX2 

expression (Fig 1C). Furthermore, our previous results showed how these two 

pathways acted in parallel to transcriptionally regulate Cdx2 through a distal enhancer 

element [16]. To further study the interaction between these pathways, we examined 

TEAD4 and YAP expression in Rbpj-/- (Fig S2A and S2B) and Notch1-/- (Fig S2C and 

S2D) blastocysts. We did not detect any differences in levels or pattern of expression 

of TEAD4 and YAP either in Rbpj-/- or in Notch1-/- embryos as compared to wildtype 

embryos. We also studied the reverse situation, crossing the CBF1-VENUS mouse line 

as a reporter of Notch pathway activity into the Tead4 null background. We detected 

VENUS fluorescent protein in both wildtype and Tead4-/- embryos (Fig S2E). 

Interestingly, CBF1-VENUS expression was maintained in outer cells although the 

Tead4-/- embryos do not form a proper blastocyst [33], suggesting that some degree of 

outer identity still is present in Tead4-/- embryos. These results confirm that Notch is not 

required for proper deployment of the transcriptional effectors of the Hippo pathway, 

and vice versa, that activation of the Notch pathway can occur in the absence of 

YAP/TEAD4 activity. 

Given that the Hippo pathway is the major regulator of Cdx2 expression, we wanted to 

assess if forced activation of the Notch pathway would be sufficient to compensate and 

restore Cdx2 wildtype levels in a Tead4 null background. To do this, we crossed the 

Tead4 null allele with a mouse line that conditionally overexpresses the active 
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intracellular domain of the Notch1 receptor (N1ICD) with a GFP reporter under the 

Rosa26 promoter (Rosa26-stop-N1ICD-ires-eGFP) [34], and used a mouse line 

carrying a maternal Sox2-Cre allele to recombine it in oocytes [35]. Although there is a 

certain degree of mosaicism in embryos from this cross (mean of 87% of GFP+ cells in 

recombined blastocysts), we observed a significant increase in CDX2 intensity levels in 

N1ICD-GFP;Tead4-/- embryos as compared to Tead4-/- embryos (Fig S2F and S2G). 

However, this was not sufficient to rescue the Tead4-/- phenotype, as N1ICD-

GFP;Tead4-/- embryos still fail to form a blastocyst (Fig S2F). Thus, both pathways are 

acting independently of each other, and while Notch is able to positively regulate Cdx2 

in the absence of TEAD4 transcriptional activity, it is not sufficient on its own to rescue 

its loss. 

 

Notch regulates the onset of Cdx2 expression. 

To better understand how parallel signalling pathways drive Cdx2 expression, we 

determined if the temporal expression of Cdx2 was regulated differentially by Notch 

and Hippo. To do so, we took advantage of pharmacological compounds that allow 

inhibition of these pathways in a time-controlled manner. We used RO4929097 (RO) to 

inhibit the Notch pathway [36] and Verteporfin to block the YAP-TEAD4 interaction [37]. 

We treated wildtype embryos in two different time-windows: from the two-cell up to 

morula stage, and from morula to blastocyst. As a control, we treated embryos with 

DMSO, the solvent used for diluting both inhibitors. After treatment, gene expression in 

embryos was analysed by RT-qPCR. In the early time window, from two-cell to morula, 

we observed that Cdx2 was downregulated when Notch was inhibited, while there was 

no change when Hippo pathway activity was altered (Fig 2A). Interestingly, the 

opposite was found when we modulated the pathways from the morula onwards. Cdx2 

expression was only affected when YAP-TEAD4 activity was blocked (Fig 2B). These 

results show that, although both pathways cooperate in the regulation of Cdx2, they act 
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sequentially to regulate Cdx2 levels in a stage specific manner rather than being 

redundant. Gata3, Oct4 and Nanog were not significantly changed after Notch or YAP 

inhibition in any of the time windows, indicating that Cdx2 is the main target of the 

pathways. 

Next, we wished to confirm these observations in morula stage embryos using genetic 

loss of function models. We recovered early (8-16 cells) and late (17-32 cells) morulae 

and analysed CDX2 expression in wildtype and Rbpj-/- embryos (Fig 2C and 2E). We 

counted CDX2 positive cells in individual embryos and found that Rbpj-/- early morulae 

had a significantly lower number compared to control littermates (Fig 2D). In contrast, 

we did not observe differences at the late morula stage (Fig 2F). The same 

observations were obtained when we analysed embryos from another mutant for the 

pathway, Notch1-/-: early morulae (8-16 cells) showed a decrease in the number of 

CDX2 positive cells (Fig S3A and S3B), but late (17-32 cells) morulae did not (Fig S3C 

and S3D). This result is interesting, as it demonstrates that Notch1 is the main player of 

the Notch pathway during preimplantation development and its loss is enough to 

recapitulate Rbpj loss of function effects.  

These results indicate that there is an earlier requirement for Notch than for Hippo in 

the regulation of Cdx2, and that both pathways exert non-redundant roles. Our 

observations are suggestive of a model where Notch regulates the onset of Cdx2 

expression, and the Hippo pathway subsequently maintains its expression. 

 

The Notch pathway is heterogeneously active in the embryo starting 

at the 4-cell stage. 

In light of the above findings revealing a requirement of the Notch pathway for the early 

stages of mouse preimplantation development, we decided to investigate when Notch 

is first active, using the CBF1-VENUS reporter line as a transcriptional readout of the 
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pathway. We recovered embryos from the CBF1-VENUS line and found that the 

reporter was first active in 4-cell embryos, albeit at lower levels than at later stages (Fig 

3A). The number of VENUS positive cells was variable among embryos, with at least a 

third of embryos examined having no positive cells (7 out of 20; Fig S4A). This strongly 

suggest that the onset of Notch pathway activation is indeed occurring at this stage. As 

a general rule, the number of positive blastomeres increased with the total number of 

cells per embryo (Fig 3B and Fig S4A). In the compacted morula, most of the cells 

were positive, but the activity of the reporter was quickly restricted to the outer TE cells 

once the blastocyst formed (Fig 1B). 

In order to follow the dynamics of the reporter and determine how restriction of Notch 

activity is achieved during development, we performed live imaging for up to 24 hours 

of embryos from the compacted morula (16-cell) to the early blastocyst stage (Movie 1, 

Fig 3C). After tracking of the cells in each embryo (n=7; Fig S4B), we used a Matlab 

based tool to analyse the behaviour of each individual cell and its progeny within the 

embryo. With this tool, we were able to reconstruct the embryo in each time point and 

assign an initial position (inner or outer) to each blastomere as well as its final location 

in the TE/out or the ICM/in (Movie 2, Fig 3D). We first generated a lineage tree so that 

each lineage or family includes a cell in the time frame 0 and all their descendant cells. 

We next classified families according to the position of the cells in the first and final 

time points. This allowed us to divide the cells in four groups: “IN-ICM” (cells that began 

in an inner position and their descendants remained in an inner position), “IN-TE+ICM” 

(cells that began in an inner position and at least one of their descendants ended up in 

an inner position but other/s in an outer position), “OUT-TE” (cells that began in an 

outer position and their descendants remained in an outer position), and “OUT-

TE+ICM” (cells that began in an outer position and at least one of their descendants 

ended up in an outer position but other/s ended up in an inner position). 
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Confirming previous findings [8,9,22,38,39], although most of the cells of the blastocyst 

retain the position of their predecessor cell in the compacted morula, a small 

percentage change their location (Fig S4C). We next measured intensity levels of the 

reporter in all cells within families, and determined if it correlated with their position 

during the time lapse. Notch activity levels were variable among families and embryos, 

but we detected higher and increasing levels in OUT-TE families while IN-ICM families 

generally showed lower and decreasing levels (Fig S4D and S4E). The intensity levels 

in families that contributed both inner and outer cells did not follow a clear pattern (Fig 

S4F). When we analysed the mean intensity for each group, we saw that VENUS 

levels were significantly lower in the families that were always inside as compared to 

the families that were always outside (Fig 3E). Interestingly, this difference was already 

manifest when we measured the initial intensity in the first time point (Fig 3F). In the 

families whose cells end up in both inner and outer position, VENUS levels were 

intermediate (Fig 3E, F). 

Therefore, the analysis of the CBF1-VENUS line showed that the reporter is active 

before the first lineage decision is taken, and that differences in the levels of pathway 

activation in inner or outer cells of the compacted morula correlate with the final 

position of their descendants in the blastocyst. 

 

Different Notch levels determines cell position in the morula and the 

blastocyst. 

We have previously shown that increasing the activity of the Notch signalling pathway 

leads to a preferential allocation of cells to the outer trophectoderm of the blastocyst 

[16]. However, we had not tested the onset of this effect and whether blocking Notch 

would have an effect in early embryos. To address these questions, we used a genetic 

mosaic line (iChr‐Notch‐Mosaic) that allowed us to generate cells with different Notch 
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activity levels within the same embryo [40]. The construct consists of three different 

cassettes preceded by a specific LoxP site. The first cassette is a H2B-CHERRY 

fluorescent protein and generates wildtype cells. The second cassette contains a 

dominant-negative version of Mastermind-like 1 (DN-MAML1), a transcriptional co-

activator of the Notch pathway, linked to a H2B-eGFP by a cleavable 2A peptide, 

whose expression leads to the loss of function (LOF) of the pathway, while the third is a 

gain of function (GOF) cassette through the expression of a constitutively active NICD 

linked to an HA-H2B-Cerulean (Fig 4A). The specific LoxP sites are mutually exclusive, 

so in any unique cell there will be only one possible outcome as the result of Cre-

mediated recombination. We used a Polr2aCreERT2 driver which is ubiquitously 

expressed and inducible by tamoxifen [41]. We induced recombination by adding 4OH-

Tx (4-hydroxy-tamoxifen) from the 2- to the 4-cell stage, aiming to achieve a situation 

where cells expressing each cassette derive from a single recombined blastomere, and 

we evaluated recombination in the late morula (<32 cells) or in the blastocyst (Fig 4A). 

We performed immunofluorescent assays with three antibodies to distinguish the 3 

cassettes. The wildtype cassette was detected by an anti-RFP antibody, the LOF by an 

anti-GFP antibody, and the GOF an anti-HA antibody. However, GOF cells were triple 

positive because of cross-reactivity between antibodies and the HA-H2B-Cerulean 

protein (Fig 4A, B). 

We selected embryos in which all three recombination events had occurred and 

analysed the percentage of cells expressing the control, LOF or GOF cassette. 

Although the probabilities of recombination are higher when the LoxP sites are closer 

to one another (the control recombination event in this case), we found that most of the 

cells (58%) were Notch GOF while only a small proportion (10%) were Notch LOF, 

suggesting that Notch activity could affect cell proliferation in the embryo (Fig 4C; Fig 

S5A-B). Next, we determined the proportion of cells from each population that were in 

an inner or outer position. Approximately 60% of wildtype (red) cells were located at 
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outer positions in both morula and blastocyst stage. However, Notch-LOF cells (green) 

were enriched at inner positons of the morula or in the inner cell mas of the blastocyst, 

while Notch-GOF cells (blue) tended to occupy outer positions (Fig 4D, E). These 

experiments show how manipulating levels of Notch pathway activity as early as the 4-

cell stage instructs cells to adopt an inner or outer position at later stages. 

 

Lack of Rbpj represses Tle4 and Tbx3, and disrupts the triggering of 

differentiation programs in the early embryo. 

Results described above show that the Notch pathway plays an early role in mouse 

development, non-redundant with that of the Hippo pathway, in regulating Cdx2 gene 

expression and in determining the position of cells to inner or outer locations. To gain 

further insight into how Notch is acting during preimplantation development, we carried 

out RNA-sequencing (RNA-seq) in control and Rbpj-/- single morulae, obtained from the 

same litter to reduce variability. Hierarchical clustering separated the control group 

(wildtype and heterozygotes) from homozygotes Rbpj-/- morulae (Fig S6A). 1273 genes 

were differentially expressed (Table S1), 79% of which were downregulated suggesting 

that Rbpj is mainly activating gene expression at the morula stage. 

Among the downregulated genes we found Cdx2 and other TE associated genes such 

as Gata2, Gata3 or Fgfr2 [27,42–44]; genes related with the Hippo pathway (Tead4, 

Nf2, Lats2) and, interestingly, also genes related with the embryonic pluripotency 

network including Sall1, Sall4, Tbx3 or Sox21 [10,45–48] (Fig 5A, Fig S6B). Among the 

upregulated genes, we found Dppa3 (Stella) and Prdm14, which have been 

characterised as naïve pluripotency markers [49,50]. In addition, a large set of 

chromatin modifiers were differentially expressed (Fig S6C). Important chromatin 

dynamics have been reported during preimplantation development [51], which could fit 

in with the broad mis-regulation of transcription in the mutant embryos. Remarkably, 
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some of the downregulated modifiers like Dnmt3b or Kdm6a have been shown to be 

enriched in TE conversely to Prdm14 [12]. Overall, the transcriptome profiling suggests 

that embryos lacking Rbpj do not properly trigger trophectoderm differentiation 

programs, and that they also affect pluripotency related genes. 

To identify direct targets of Notch signalling at this stage, we searched for putative 

RBPJ binding sites in the vicinity of differentially expressed genes. We established an 

arbitrary window of 10 Kb surrounding each gene to perform the analysis and found 

RBPJ binding motifs in 921 genes. We then examined how many of these putative 

binding sites were located in regions of open chromatin, a hallmark for active regulatory 

elements. For this, we took advantage of ATAC-seq profiles from published datasets of 

8-cell mouse embryos [52], and reduced our list to 186 genes (Fig 5B; Table S2). 

Among these was Cdx2, where the predicted RBPJ sites and ATAC-seq open 

chromatin signature mapped to the TEE enhancer we had previously characterized 

[16], thus validating this approach. 

We selected two genes as putative Notch targets, that were downregulated in Rbpj-/- 

morulae and had been previously associated with exit from pluripotency in mouse ES 

cells: those coding for the Groucho-family transcriptional repressor TLE4 [53], and the 

T-box family transcription factor TBX3 [54,55]. Both genes are heterogeneously 

expressed in ES cells and repress naïve pluripotency genes. We hypothesized that 

Tle4 and Tbx3 could be direct targets of Notch, and that their downregulation could in 

part explain the blockade in differentiation that we observe in the RNA-seq. We 

independently confirmed downregulation of their expression after blocking the Notch 

pathway by treating wildtype embryos with the RO4929097 inhibitor from 2-cell to 

morula stage (Fig 5C). 

An RBPJ motif search within ATAC-seq peaks in the vicinity of the genes identified two 

potential candidate regions located 1.3 Kb upstream of Tle4 (Tle4-up; Fig 5D) and in 

the seventh intron of Tbx3 (Tbx3-i7; Fig S6D), respectively. By means of transient 
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transgenic assays, we proved that these regions could act as transcriptional enhancers 

driving H2B-mRFP reporter expression in the morula (32% positive embryos for the 

700 bp Tle4-up element, Fig 5E; and 56% for the 600 bp Tbx3-i7 element; Fig S6E). To 

test if Notch was directly involved, we mutated the RBPJ motif inside these regions and 

found that the activity of the Tle4-up mutRBPJ fragment was significantly diminished 

(from 32% to 13% positive embryos, Fig 5E, F) while the Tbx3-i7 mutRBPJ fragment was 

not affected (60% positive embryos, Fig S6E-F). Finally, to examine whether these 

enhancers were necessary for the expression of their putative target genes, we deleted 

the regions within the enhancers that contained the RBPJ motif by CRISPR/Cas9 

mediated genome editing [56], and analysed gene expression by qPCR on individually 

edited morulae. We observed a significant decrease in Tle4 expression in edited 

embryos (deleted, n=10) as compared to injected embryos that had been partially 

(mosaic, n=9) or not (wildtype, n=14) edited (Fig 5G). However, Tbx3 expression did 

not change when the RBPJ motif from the seventh intron was deleted (Fig S6G). These 

assays provide evidence that these genomic regions act as cis-regulatory elements 

and, in the case of Tle4, are directly regulated by RBPJ and necessary for correct 

expression. 

 

Notch levels coordinate the balance between naïve pluripotency and 

triggering of differentiation in ES cells. 

The transcriptomic profiling carried out in Rbpj-/- embryos identified genes related with 

naïve pluripotency among the upregulated genes. Naïve pluripotency corresponds to a 

state in which cells are not prone to differentiate, in contrast to primed pluripotency 

[57]. These pluripotent states as well as the transition between them have been 

extensively studied in ES cells and EpiLCs, in vitro counterparts of the epiblast of the 

blastocyst stage preimplantation embryo and the postimplantation pre-gastrulating 

epiblast respectively [58]. Interestingly, some of these naïve markers such as Prdm14 
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are initially expressed at the 2- and 4-cell stage, switched off in the morula and re-

expressed in the ICM of the blastocyst [12]. Analysis of published single-cell RNA-seq 

data [10] confirmed that Prdm14 decreased dramatically from the 4-cell to 8-cell stage, 

and expression of Dppa3 also decreases from the 2-cell to the 4-cell stage (Fig S7A). 

In contrast, Tle4 and Tbx3 levels increased from the 4- to 8-cell stage (Fig S7A). Our 

data from Rbpj-/- morulae suggests that embryos do not switch off Prdm14 and Dppa3, 

and inhibiting Notch with RO4929097 from the 2-cell to 4-cell stage confirmed the 

effect on Prdm14, whose levels were significantly increased after the treatment (Fig 

S7B). 

We wondered if the effect of Notch guiding differentiation programs that we had seen in 

the embryo was also occurring in ES cells. We used iChr-Notch-Mosaic ES cells [40] to 

confront populations with different Notch levels using the same strategy than we had 

previously used in the embryo (Fig 6A). After recombination by transfection with Cre, 

ES cells were sorted according to the fluorescent reporter cassette they expressed (Fig 

6B). We measured expression levels of naïve pluripotency markers by qPCR, and 

found that levels of Prdm14 and Dppa3 correlated negatively with Notch activity but 

other markers such as Nanog or Esrrb were not altered (Fig 6C). We next asked how 

Notch would affect the differentiation potential of pluripotent cells using this system. For 

that, we allowed sorted iChr-Notch-Mosaic ES cells to differentiate for 48 hours after 

LIF removal and analysed the expression of genes related to early differentiation at 

different time points (Fig 6C). On the one hand, we observed that the peak of 

expression of Tle4, and the early epiblast markers Fgf5 and Pou3f1 occurred earlier 

and remained at higher levels in Notch GOF than in wildtype ES cells. On the other 

hand, Notch LOF cells never reached normal levels of Tbx3 or Fgf5 during the 

differentiation process (Fig 6E). These results suggest that Notch is not only sufficient 

to drive expression of some differentiation markers such as Tle4, but also necessary to 

achieve proper levels of others such as Tbx3. However, modulation of Notch levels is 
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not enough to change expression of pluripotency markers once ES cells have started 

the differentiation process (Fig S7C). Overall, our results suggest that Notch is involved 

in coordinating exit from pluripotency and promoting cell differentiation in ES cells, 

mirroring its role in the early embryo. 

 

Discussion 

During the first three days of mouse embryonic development, cells lose their totipotent 

capacity as they form the first differentiated population, the trophectoderm (TE). In this 

study, we show that Notch signalling regulates the early expression of Cdx2, a key 

element in TE specification, and that this is later reinforced by the input of Hippo 

signalling through YAP and TEAD4. Hippo has been shown to act as a readout of cell 

polarity [8,59] and it activates Cdx2 in cells that have established an apical domain. 

However, the initial triggering of Cdx2 both in inner and outer cells [21,22] suggested 

that inputs other than Hippo would initially be acting because its expression could not 

be explained only by YAP/TEAD4 activity. In fact, previous reports have described that 

although in most Tead4-/- blastocysts CDX2 is not detected; earlier Tead4-/- morulae 

retain CDX2 expression [33]. In agreement with these observations, we found 

blastomeres in the morula that express CDX2 but do not have nuclear YAP. In this 

situation, expression of CDX2 is likely due to Notch activity as the CBF1-VENUS 

reporter, used as a proxy for activity of the pathway [31], is present in those cells. The 

analysis of Rbpj and Notch1 mutants in early and late morulae, as well as 

pharmacological treatments of preimplantation embryos, further support the notion that 

the input provided by Notch is necessary for the early phases of Cdx2 expression. 

These results, together with the fact that Notch overexpression cannot fully rescue the 

Tead4 mutant phenotype, shows that Notch and Hippo have non-redundant but 

partially overlapping roles in early and late phases of Cdx2 expression, respectively. 
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Furthermore, only double knockout morulae for Rbpj and Tead4 completely lack CDX2, 

and all CDX2 positive cells have at least one of the two pathways active. These 

findings support a model whereby overlapping or complementary inputs from different 

signalling pathways may provide robustness in the system, buffering any disturbances 

and ensuring proper development [60]. In such a model, Notch and Hippo would 

ensure the correct specification and maintenance of the TE respectively [16]. 

The crosstalk between YAP and Notch has been studied in different cellular contexts 

[61]. YAP acts upstream of Notch in controlling epidermal stem cell fate or liver cell fate 

[62,63] while Notch is upstream of YAP in the corneal epithelium during chronic 

inflammation [64]. Also, YAP and Notch can cooperate to control the onset of 

oscillations in the segmentation clock [65] and they interact to promote the expression 

of Jag1 in smooth muscle cells [66]. During TE establishment, YAP and Notch have 

also been shown to interact through SBNO1, and act synergistically to regulate Cdx2 

[28]. In this context, our results show that both pathways are acting in parallel since 

there is no correlation among YAP and CBF1-VENUS expression levels in single 

blastomeres in morula stage embryos. In addition, loss of the NOTCH1 receptor or 

RBPJ does not affect YAP/TEAD4 localisation and vice versa, Tead4 knockout does 

not alter CBF-VENUS expression in the blastocyst. Nevertheless, several components 

of the Hippo pathway are downregulated in Rbpj-/- morulae, so we cannot rule out the 

possibility of cross-transcriptional regulation between the pathways. 

The role of Notch signalling in the specification of cell fates during development has 

been widely studied [67]. Notch promotes heterogeneities and reinforces differences 

between neighbouring cells, explaining the segregation of cell fates in multiple 

processes and in different species [68]. The heterogeneous activity of CBF-VENUS in 

the 4-cell stage coincides with the loss of cell equivalence and emergence of 

differences among blastomeres. Other factors have been shown to be differentially 

expressed among blastomeres of the 4-cell mouse embryo [10,12], suggesting that this 
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is the moment when cells lose their homogeneous state to start desynchronizing and 

differentiating. Interestingly, Prdm14, one of these factors, and Notch show divergent 

patterns of expression during development. Prdm14 is first expressed at the 2- and 4- 

cell stage, to be turned off and then re-expressed in the ICM of the blastocyst and later 

in the primordial germ cells [12,69]. In contrast, the Notch pathway, as revealed by the 

CBF-Venus reporter, begins to be active at the 4-cell stage, it is active in most of the 

cells of the morula, and is later restricted to the TE of the blastocyst. After implantation, 

Notch activity is detected throughout the epiblast [31]. It has been suggested that 

Prdm14 expression coincides with conditions where groups of cells show an 

undetermined state, while Notch is activated when cells transition towards their next 

developmental phase. Our results suggest that Notch would be regulating these 

transitions by downregulating Prdm14 expression. In line with the upregulation of 

Prdm14 in embryos that lack Notch activity, we observed in the RNA-seq data from 

Rbpj-/- morulae a downregulation of Fgf receptors (Fgfr1, 2 and 3) and DNA 

methyltransferases (Dnmt3b, Dnmt1), which are known to be repressed by PRDM14 

[50,70]. It is also interesting to note that in our mosaic ES cell experiments, Notch 

levels correlate with those of Prdm14 and Dppa3, but not with other pluripotency 

markers such as Nanog or Esrrb. Therefore, Notch is not simply turning off the general 

pluripotency network to promote differentiation, but acting on a subset of early naïve 

pluripotency markers. 

Interplay between Notch and chromatin remodellers has been reported in several 

situations [71]. Expression changes in chromatin modifiers precede the action of 

transcription factors that consolidate lineage choices during preimplantation 

development [12]. Therefore, these alterations suggest that Rbpj-/- embryos do not 

established correct epigenetic landscapes, do not switch off early markers such as 

Prdm14 or Dppa3 and are not able to properly trigger differentiation programs leading 

to a delay in the expression of lineage specifiers such as Cdx2. In this regard, it is 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 24, 2018. ; https://doi.org/10.1101/451922doi: bioRxiv preprint 

https://doi.org/10.1101/451922
http://creativecommons.org/licenses/by-nc/4.0/


Menchero et al. 

20 
 

interesting to note that Rbpj mutant morulae downregulate Chaf1a, which encodes the 

large subunit of the histone-chaperone CAF-1. Loss of CAF-1 promotes ES cells to 

transit to an earlier, totipotent 2-cell-like state [72], and acts as a barrier for 

reprogramming [73]. Furthermore, knockout of Chaf1a leads to developmental arrest at 

the 16-cell stage and a loss of heterochromatin [74]. Thus, CAF-1 acts as a driver of 

differentiation in pluripotent cells. Interestingly, studies in Drosophila have shown that 

CAF-1 mediates downstream effect of the Notch pathway [75]. On the other hand, 

Asf1a, which encodes another histone chaperone, is among the few genes observed to 

be upregulated in Rbpj-/- embryos. Forced expression of Asf1a promotes 

reprogramming of human ES cells [76], revealing a critical role in maintaining 

pluripotency. Furthermore, regulators of H3K9me3-heterochromatin that restrict cell 

plasticity and stemness, such as those encoded by Setdb1 or Suv39h1 [77], are also 

downregulated in Notch loss-of-function morulae. In conclusion, we observed that 

during preimplantation development, Notch regulates critical epigenetic components 

that mediate transitions along the progressive restriction of potency that occurs in the 

early embryo. 

In this study, we have also identified novel putative targets positively regulated by the 

Notch pathway, such as Tle4 and Tbx3 whose role in the exit from pluripotency has 

been described in ES cells [53–55]. Their increase in expression from 2-cell to morula 

supports their possible role in promoting early differentiation in vivo as well. TLE4 does 

not bind directly to DNA, but associates with other proteins to act as a transcriptional 

corepressor [78]. It will be of great interest to identify its transcriptional partners during 

preimplantation development and elucidate the mechanism by which it allows cell 

differentiation in this context. The role of TBX3 is more complex since, in addition to 

promoting differentiation, it has also been associated with pluripotency maintenance 

[45,46]. Furthermore, in vivo TBX3 is detected in most of the cells of the morula but it is 

later restricted to the ICM [54], following a complementary pattern to Notch. Thus, Tbx3 
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regulation must involve Notch-dependant and Notch-independent inputs, what could 

explain why the mutation or deletion of the RBPJ motif present in the intronic Tbx3 

regulatory element did not disrupt enhancer activity or endogenous expression. 

The role of Notch in ES cells had already been explored in the context of neural 

differentiation [79]. Blocking Notch signalling prevents ES cells from adopting a neural 

fate while its overexpression increases the frequency of neural specification. Our 

results suggest that Notch might have a more general role in promoting early 

differentiation, with a more specific function in neural specification at later stages [79]. 

In summary, our findings suggest that Notch acts by promoting the gradual loss of 

potency in the early embryo which is subsequently reinforced by additional 

mechanisms, such as heterochromatin formation before the morula stage, or 

differential activation of the Hippo pathway at the morula-to-blastocyst transition. 

Therefore, in order to correctly specify a given lineage, such as the trophectoderm, 

Notch is simultaneously activating fate choice markers such as Cdx2 and inducing a 

differentiation-prone state by lowering levels of naïve markers. 

 

Materials and Methods 

Animal experimentation 

The following mouse lines were used in this work: CBF1-VENUS [31], Rbpj null [80], 

Tead4 null [33], Notch1 null [81], iChr-Notch-Mosaic [40], Rosa26-stop-N1ICD-ires-

eGFP [34], Polr2aCreERT2 [41], Sox2Cre [35]. All the lines were maintained in 

heterozygosis in an outbred background. Adults were genotyped by PCR of tail-tip 

DNA using primers and conditions previously described for each line. For 

preimplantation embryos, genotyping was performed directly on individually isolated 

embryos after recovery, culture or antibody staining. 
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Mice were housed and maintained in the animal facility at the Centro Nacional de 

Investigaciones Cardiovasculares (Madrid, Spain) in accordance with national and 

European Legislation. Procedures were approved by the CNIC Animal Welfare Ethics 

Committee and by the Area of Animal Protection of the Regional Government of Madrid 

(ref. PROEX 196/14). 

 

Embryo collection and culture 

Females from the different mouse lines or outbred CD1 were superovulated as 

previously described [82], except in the case of embryos to be used for RNA-seq. For 

embryo culture, zygotes were collected from oviducts, treated with hyaluronidase 

(Sigma) to remove cumulus cells and cultured until the desired stage at 37.5°C, 5% 

CO2, in M16 medium (Sigma) covered with mineral oil (NidOil, EVB). For experiments 

that did not require culture, embryos were collected at morula or blastocyst stage by 

flushing the oviduct or the uterus with M2 medium (Sigma) and fixed. 

 

Immunofluorescence of preimplantation embryos 

Immunofluorescence was performed as previously described (Dietrich and Hiiragi, 

2007). The following antibodies and dilutions were used: monoclonal mouse anti-CDX2 

(MU392-UC, BioGenex) 1:200, rabbit monoclonal anti-CDX2 (ab76541, Abcam) 1:200, 

mouse monoclonal anti-Oct4 (sc-5279, Santa Cruz Biotechnology) 1:200, mouse 

monoclonal anti-YAP (sc-101199, Santa Cruz Biotechnology) 1:200, rat monoclonal 

anti-NANOG (14-5761, eBioscience) 1:200, rabbit polyclonal anti-pERM (3141, Cell 

Signaling) 1:250, rat monoclonal anti-E-Cadherin (U3254, Sigma) 1:250, mouse 

monoclonal anti-TEAD4 (ab58310, Abcam) 1:100, rabbit polyclonal anti-DsRed 

(632496 living colors Clontech) 1:500, goat polyclonal anti-GFP (R1091P, Acris, 

Origene) 1:200, rat monoclonal anti-HA (11867423001, Sigma) 1:200. Secondary 
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Alexa Fluor conjugated antibodies (Life Technologies) were used at 1:1000. Nuclei 

were visualized by incubating embryos in DAPI at 1 μg/ml. 

 

Imaging and quantification 

Images of antibody-stained embryos were acquired on glass-bottomed dishes (Ibidi or 

MatTek) with a Leica SP5, Leica SP8 or Zeiss LSM880 laser scanning confocal 

microscopes. The same parameters were used for imaging each experiment. Semi-

automated 3D nuclear segmentation for quantification of fluorescence intensity was 

carried out using MINS, a MATLAB-based algorithm (http://katlab-tools.org/) [32], and 

analysed as previously described [83]. Mitotic and pyknotic nuclei were excluded from 

the analysis. 

For live imaging, embryos were cultured in microdrops of PBS on glass-bottomed 

dishes (MatTek) in an environmental chamber as described previously [84]. Images 

were acquired with a Zeiss LSM880 laser scanning confocal microscope system using 

a 40x objective. An optical section interval of 1.5 μm was acquired per z-stack, every 

15 minutes. 

Cell tracking of 3D-movies was carried out using a TrackMate plugin in Fiji [85–87]. 

The 3D reconstruction of the embryos and position of the cells was done using MatLab. 

The shape of the embryos was fitted into an ellipse and the coordinates in X, Y, Z for 

each blastomere were normalised to the centroid of the ellipse. 

 

Pharmacological inhibitor treatments 

Two-cell or morula stage embryos were cultured in drops of M16 medium (Sigma) 

covered with mineral oil (NidOil, EVB) at 37ºC, 5% CO2, containing the corresponding 

pharmacological inhibitor or only DMSO as control until the corresponding stage. The 
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following inhibitors and concentrations were used: 10 or 20 μM of the γ-secretase 

inhibitor RO4929097 (S1575, Selleckchem) [36] and 10 μM of the TEAD/YAP inhibitor 

Verteporfin (Sigma) [37]. 

 

Quantitative-PCR 

RNA from pools of 25-30 embryos (for pharmacological inhibitor experiments) or from 

single embryos (for CRISPR/Cas9 editing) was isolated using the Arcturus PicoPure 

RNA Isolation Kit (Applied Biosystems) and reverse transcribed using the Quantitect Kit 

(Qiagen). RNA was isolated from ES cells with the RNeasy Mini Kit (Qiagen) and 

reverse transcribed using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). cDNA was used for quantitative-PCR (qPCR) with Power SYBR® Green 

(Applied Biosystems) in a 7900HT Fast Real-Time PCR System (Applied Biosystems). 

Expression of each gene was normalized to the expression of the housekeeping genes 

Actin (in mESC or pools of embryos) or 18S rRNA (in single embryos). Primers used 

are detailed in Table S3. 

 

RNA-sequencing data analysis 

RNA-seq was performed on single morulae from the same litter. cDNA synthesis was 

performed using SMART-Seq Ultra Low Input RNA Kit (Clontech). Library preparation 

and sequencing was performed by the CNIC Genomics Unit using the Illumina HiSeq 

2500 sequencer. Gene expression analysis was performed by the CNIC Bioinformatics 

Unit. Reads were mapped against the mouse transcriptome (GRCm38 assembly, 

Ensembl release 76) and quantified using RSEM v1.2.20 [88]. Raw expression counts 

were then processed with an analysis pipeline that used Bioconductor packages 

EdgeR [89] for normalisation (using TMM method) and differential expression testing. 

Expression data of Rbpj and Neo were used to genotype the samples. Two mutant and 
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three control (two wildtype and one heterozygote) embryos were selected for analysis. 

Changes in gene expression were considered significant if associated to Benjamini and 

Hochberg adjusted p-value < 0.05. 

RBPJ binding motifs were located according to the consensus motif from CIS-BP 

database (M6499_1.02 motif) using FIMO [90]. Association of RBPJ motifs to DEG was 

performed using BEDTOOLS [91] using a 10 Kb window surrounding the transcriptional 

start site of genes. ATAC-seq data from 8-cell stage embryos [52] was mapped to the 

GRCm38 assembly and integrated with the coordinates of RBPJ motifs previously 

detailed. 

 

Transient transgenic assay 

For the generation of transient transgenics, F1 (C57Bl/6 x CBA) females were 

superovulated to obtain fertilized oocytes as described [82]. Each construct was 

microinjected into the pronucleus of fertilized oocytes at E0.5 at a concentration of 2 

ng/μl. Microinjected oocytes were cultured in microdrops of M16 medium (Sigma) 

covered with mineral oil (NidOil, EMB) at 37°C, 5% CO2 until the morula stage. 

Each fragment to be tested was amplified from mouse genomic DNA and by means of 

NEBuilder HiFi DNA Assembly kit (New England Biolabs), they were cloned into a 

modified pBluescript vector [92] containing a H2BmRFP reporter gene under the 

control of the human beta-globin minimal promoter and including an SV40 

polyadenylation signal. Primers for amplifying and cloning the 700 bp Tle4-up region 

are ctatagggcgaattggagctcTTCTTTAGAGGCACCAGTC and 

ggatccactagttctagagcggccgcATAAAGCCATTTTGCTTAACTG. Primers to amplify and 

clone the 600 bp Tbx3-i7 region are 

ctatagggcgaattggagctcCAAGCCAGCCTCAGTCCC and 

ggatccactagttctagagcggccgcCACACAAGCTTGCCAGCC. Lower case indicates 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 24, 2018. ; https://doi.org/10.1101/451922doi: bioRxiv preprint 

https://doi.org/10.1101/451922
http://creativecommons.org/licenses/by-nc/4.0/


Menchero et al. 

26 
 

sequence annealing to the plasmid and capital letters indicates sequence annealing to 

the genome. Constructs were linearized and plasmid sequences removed before 

microinjection. For H2BmRFP detection, embryos were fixed in 4% paraformaldehyde 

for 10 min at room temperature and immunostained. 

 

Mutagenesis 

Mutated version of Tle4-up (Tle4-up mutRBPJ) was generated by site-directed 

mutagenesis (Mutagenex Inc.), changing the TGTGGGAAA binding motif to 

TGTccGAAA. Mutated version of Tbx3-i7 (Tbx3-i7 mutRBPJ) was generated using 

QuickChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) changing 

CGTGGGAAA to CGTccGAAA. Lower case indicates the altered residues. Changes 

that abolish RBPJ binding were based on previously described mutated versions of the 

binding site [93]. 

 

CRISPR/Cas9 genome editing 

Two guide-RNAs at 60 ng/µl were incubated with tracRNA (Sigma) at 240 ng/µl for 5 

min at 95ºC. The hybridised gRNAs were then incubated with the Cas9 protein (PNA 

bio) at 30 ng/µl for 15 min at RT and microinjected into the pronuclei of (CBAxC57) F1 

zygotes. sgRNAs were designed using the CRISPOR tool (http://crispor.tefor.net/) [94]. 

The following guide RNAs were used: Tle4, TTAGCCTGCACTTCGAGTTA and 

CCCAATTCAAGGCGTTCTGT; Tbx3, TAACCCTTTAGAGATAGGCT and 

TACCAGAGAGGTTTCCTACT. Embryos were recovered at E2.5 and lysed in 50 µl 

extraction buffer from the Arcturus PicoPure RNA Isolation Kit (Applied Biosystems). 

Aliquots of 10 µl were used for DNA extraction for PCR genotyping. Mosaic embryos 

were those where we detected both the deleted and the wildtype allele. The remaining 

40 µl were used for RNA extraction for RT-qPCR. 
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Cell culture 

iChr-Notch-Mosaic ES cells were cultured in standard ESC media (DMEM, Gibco) 

supplemented with 15% foetal bovine serum (HyClone), 1% Glutamine, 1% NEAA 

(Hyclone), 0.1% ß-mercaptoethanol (Sigma) and LIF (produced in-house) in dishes 

seeded with a feeder layer of mouse embryonic fibroblasts (MEFs). Cells were 

transfected with a Cre expressing plasmid to induce recombination using Lipofectamine 

2000 (Invitrogen) for 24 hours. After recombination, cells were sorted using a Becton 

Dickinson FACS Aria Cell Sorter. To promote spontaneous differentiation, cells were 

cultured on gelatine-covered dishes for 48 hours in DMEM (Gibco) supplemented with 

20% serum, 1% Glutamine and 0.1% ß-mercaptoethanol (Sigma). 

 

Statistics 

Statistical analyses were performed with GraphPad Prism 7 or R studio. Data are 

presented as means ± s.d. or ± s.e.m. as indicated. Differences were considered 

statistically significant at p-value < 0.05. Tests used to calculate p-value are detailed in 

the figure legends. Student’s t-test was used to compare two groups. ANOVA with 

Fisher or Bonferroni post-test was used to compare several groups. Fisher’s exact test 

was used to compare distributions. 
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Figure legends 

Fig 1. CDX2 expression depends on Notch and Hippo inputs. (A) Maximal 

projections of confocal images after immunostaining for CDX2 and OCT4 in different 

combinations of wildtype and mutant alleles for Rbpj and Tead4 at E2.5. Scale bars, 20 

μm. (B) Optical sections of confocal images after immunostaining for CDX2 and YAP in 

the CBF1-VENUS reporter line at morula (upper row) and blastocyst (lower row) stage. 

Fluorescent VENUS reporter is directly detected. Arrowheads indicate a cell positive for 

CDX2 and VENUS, but negative for nuclear YAP. Nuclei were stained with DAPI. Scale 

bars, 20 μm. (C-D) Pairwise correlations of single cell fluorescence intensity levels for 

CDX2, VENUS and YAP from embryos represented at morula (C) and blastocyst (D) 

stage. Person correlation (R2) is indicated for each correlation. (E-F) Three-way 

correlations of single cell fluorescence intensity levels for CDX2, VENUS and YAP from 

embryos represented at morula (E) and blastocyst (F) stage. Cronbach Alpha (α) to 

measure internal consistency reliability among the three variables is indicated. (G) 

Venn diagram showing number of positive cells for CBF1-VENUS, YAP and CDX2 at 

morula stage. n=415 blastomeres from 28 embryos (morula stage); n=428 blastomeres 

from 6 embryos (blastocysts). 

 

Fig 2. Notch regulates CDX2 in the early morula. (A-B) Relative expression of Cdx2, 

Gata3, Oct4 and Nanog in pools of 25 embryos treated with RO4929097 to inhibit 

Notch (left) or Verteporfin to inhibit YAP/TEAD interaction (right), from the 2-cell to 

morula stage (A; n=6) or from morula to blastocyst stage (B; Notch inhibition, n=4-6; 

Hippo inhibition, n=6-11). Pools of embryos treated with DMSO were used as controls. 

* p-value < 0.05 by Student’s t test. (C) Optical sections of confocal images after 

immunostaining of CDX2 in wildtype and Rbpj-/- early morulae. (D) Quantification of 

number of CDX2 positive cells in early morulae (n=11 embryos). (E) Optical sections of 
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confocal images after immunostaining of CDX2 in wildtype and Rbpj-/- late morulae. (F) 

Quantification of number of CDX2 positive cells in late morulae (Wildtype, n=4 

embryos; Rbpj-/-, n=5 embryos). Nuclei were stained with DAPI. Scale bar, 20 μm. Data 

are means ± s.d. *** p<0.001 by Fisher’s exact test. 

 

Fig 3. CBF1-VENUS dynamics in the mouse preimplantation embryo. (A) Maximal 

projections of confocal images of CBF1-VENUS reporter line in 4-cell, 6-cell, 8-cell and 

compacted morula stages. Immunostaining of pERM (bottom row) confirms acquisition 

of apical polarity in compacted morulae. Nuclei were stained with DAPI. Scale bar, 20 

μm. (B) Percentage of VENUS positive cells per embryo at different stages (4-5 cell 

embryos, n=24; 6-7 cell embryos, n=7; 8-cell embryos, n=9). (C) Maximal projections of 

four time-frames during live imaging of embryos from the CBF1-VENUS reporter line. 

Time since the onset of time lapse is indicated. (D) 3D reconstruction of the time-lapse 

imaging of a representative embryo. A selected cell and its progeny are highlighted in 

orange. Blue blastomeres indicate inner position and grey blastomeres indicate outer 

position. (E) Mean intensity levels of VENUS in all the families of the live imaged 

embryos (n=7) according to the position of a cell and their progeny in the first and the 

final time frame. (F) Initial intensity levels of VENUS in all the families of the live 

imaged embryos according to the position of a cell and their progeny in the first and the 

final time frame. For (E) and (F), n=13 families for IN-ICM, n=11 families for IN–

TE+ICM, n=55 families for OUT TE, n=16 families for OUT–TE+ICM. *** p<0.001, * 

p<0.05 by ANOVA with Bonferroni post-test. 

 

Fig 4. Differences in Notch activity drive cell fate in the preimplantation embryo. 

(A) Schematic diagram of the experimental strategy, where iChr-Notch-Mosaic mice 

were crossed with Polr2aCreERT2 driver. Embryos were collected and treated with 4OH-
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Tamoxifen from 2- to 4-cell stage to induce recombination. At morula and blastocyst 

stage, embryos were fixed and immunostained. (B) Optical section of confocal images 

after immunostaining for RFP, GFP and HA. Arrowheads indicate examples of cells 

recombined for the wildtype cassette (red), the Notch loss of function cassette (LOF, 

green) or the Notch gain of function cassette (GOF, blue). Nuclei were stained with 

DAPI. Scale bars, 20 μm. (C) Percentage of cells recombined for each cassette (n=11). 

(D-E) Percentage of cells for each cassette that are in are inner or outer position at the 

morula (D; wildtype, n=21; LOF, n=6; GOF, n=44) or blastocyst stage (E; wildtype, 

n=75; LOF, n=26; GOF, n=131). ** p<0.01, **** p<0.0001  by Fisher’s exact test. 

 

Fig 5. Tle4 is a direct transcriptional target of Notch. (A) Volcano plot of 

differentially expressed genes between wildtype and Rbpj-/- single morulae. In blue, 

genes downregulated in Rbpj-/- (p-adj<0.05 and logFC < -1); in orange, genes 

upregulated in Rbpj-/- (p-adj<0.05 and logFC > 1). Representative genes are indicated. 

(B) Number of differentially expressed genes (DEG) between wildtype and Rbpj-/- 

morulae (top), those that have a RBPJ motif in a 10 Kb window surrounding the gene 

(middle), and those in which this site is included in an open chromatin ATAC-seq peak 

in 8-cell embryos [52] (bottom). (C) Tbx3 and Tle4 relative expression in pools of 25 

embryos after treatment with RO4929097 to block Notch from 2-cell to morula stage. 

Pools of embryos treated with DMSO were used as controls. (D) Genomic landscape of 

the region upstream Tle4 indicating the location of the RBPJ motif and the ATAC-seq 

track. (E) Maximal projection confocal images after RFP immunostaining of 

representative transgenic embryos for the region highlighted in pink in (D) (top) or the 

mutated version for the RBPJ site (bottom). Nuclei were stained with DAPI. Scale bar, 

20 μm. (F) Percentage of positive embryos in the transient transgenic assay of Tle4-up 

region (n=137) or the mutated version (n=169). (G) Tle4 relative expression in single 

embryos (wildtype, n=14; mosaic, n=9; deleted, n=10) after CRISPR/Cas9 deletion of 
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the region containing the RBPJ motif. Data are means ± s.d. * p<0.05 by Student’s t 

test in (C) and (G). ** p<0.01 by Student’s t test in (G) or by Fisher’s exact test in (F). 

 

Fig 6. Notch promotes exit from naïve pluripotency and cell differentiation of ES 

cells. (A) Construct showing the wildtype (red), Notch loss of function (green) and 

Notch gain of function (blue) cassettes from iChr-Notch-Mosaic ES cells. (B) Schematic 

diagram of experimental design, where iChr-Notch-Mosaic ES cells were recombined 

with Cre and sorted according to Notch activity. (C) Prdm14, Dppa3, Nanog and Esrrb 

relative expression in iChr-Notch-Mosaic ESCs after sorting of Notch LOF, Wildtype 

and Notch GOF populations (n=13 for Prdm14, n=17 for Dppa3, n=16 for Nanog, n=11 

for Esrrb). (D) Schematic diagram of experimental design, where sorted recombined 

iChr-Notch-Mosaic ES cells were differentiated after LIF removal. (E) Tle4, Tbx3, Fgf5 

and Pou3f1 relative expression in Notch LOF, Wildtype and Notch GOF cells at 0h, 

12h, 24h and 48h after LIF withdrawal (n=6). Data are means ± s.e.m. * p<0.05, ** 

p<0.01, *** p<0.001, **** p<0.0001 by ANOVA with Fisher post-test. 
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Supplementary Figure legends 

Fig S1. Lack of Rbpj and Tead4 does not affect compaction or polarization. Single 

confocal plane for E-cadherin immunostaining (top row), and maximal projections of 

confocal images after immunostaining for E-Cadherin and pERM (middle row) in 

different combinations of wildtype and mutant alleles for Rbpj and Tead4 at E2.5. 

Nuclei were stained with DAPI. Scale bars, 20 μm. 

 

Fig S2. Notch and Hippo act independently in the blastocyst. (A-B) Maximal 

projections of confocal images after immunostaining for TEAD4 (A) or YAP (B) in 

wildtype and Rbpj-/- embryos. (C-D) Maximal projections of confocal images after 

immunostaining for TEAD4 (C) or YAP (D) in wildtype and Notch1-/- embryos. (E) 

Maximal projections of confocal images of the CBF1-VENUS line in wildtype and 

Tead4-/- embryos. (F) Maximal projections of confocal images after immunostaining for 

CDX2 and GFP in wildtype, Tead4-/-, and N1ICD-GFP;Tead4-/- embryos. (G) 

Quantification of CDX2 intensity levels in Tead4-/- (n=75 blastomeres from 2 embryos) 

and N1ICD-GFP;Tead4-/- (n=224 blastomeres from 5 embryos) embryos. *** p<0.001 

by Student’s t-test. 

 

Fig S3. Downregulation of CDX2 in Notch1-/- early morulae. (A) Optical sections of 

confocal images after immunostaining of CDX2 in wildtype and Notch1-/- early morulae. 

(B) Quantification of the number of CDX2 positive cells in wildtype (n=11) and Notch1-/- 

(n=11) early morulae. (C) Optical sections of confocal images after immunostaining of 

CDX2 in wildtype and Notch1-/- late morulae. (D) Quantification of the number of CDX2 

positive cells in wildtype (n=5) and Notch1-/- (n=3) late morulae. Nuclei were stained 

with DAPI. Scale bars, 20 μm. *** p<0.001 by Fisher’s exact test. 
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Fig S4. CBF1-VENUS activity during preimplantation development. (A) Percentage 

of VENUS positive cells in individual embryos of 4- to 8-cell stage (indicated on the x-

axis) from the CBF1-VENUS line. (B) Cell tracking and family tree (each family in a 

different colour) after live imaging of a CBF1-VENUS embryo from morula to blastocyst 

stage (see Movie 1). (C) Percentage of cells from the ICM or from the TE according to 

the position (IN/OUT) of their progenitor cell in the first frame of the time lapse (n=7). 

(D-F) Representative examples of VENUS intensity levels of cells from families with 

different outcomes relating to their position in the first and final frame of the time lapse 

movies. 

 

Fig S5. Confronting Notch activity levels in the preimplantation embryo. (A-B) 

Percentage of cells recombined for each cassette (wildtype, red; LOF, green; GOF, 

blue) in individual morulae (A) or blastocysts (B) from the iChr-Notch-Mosaic mouse 

line. 

 

Fig S6. Transcriptome analysis of Rbpj-/- single morulae. (A) Hierarchical clustering 

separates control (wildtype and heterozygotes) from Rbpj-/- embryos. (B-C) log FC of 

selected differentially expressed genes between control and Rbpj-/- embryos related 

with lineage programs (B) or chromatin modifiers (C). (D) Genomic landscape of the 

region surrounding the seventh intron of Tbx3 indicating the location of the RBPJ motif 

and the ATAC-seq track. (E) Maximal projection confocal images after RFP 

immunostaining of representative transgenic embryos for the region highlighted in pink 

in (D) (top) or the mutated version for the RBPJ site (bottom). Nuclei were stained with 

DAPI. Scale bars, 20 μm. (F) Percentage of positive embryos in the transient 
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transgenic assay of Tbx3-i7 region (n=75) or the mutated version (n=80). (G) Tbx3 

relative expression in single embryos (wildtype, n=7; mosaic, n=9; deleted, n=10) after 

CRISPR/Cas9 deletion of the region containing the RBPJ motif. Data are means ± s.d. 

 

Fig S7. Expression of naïve pluripotency markers in the preimplantation embryo 

and in differentiating ES cells. (A) Expression of Pdrm14, Dppa3, Tle4 and Tbx3 in 

2-cell, 4-cell and 8-cell stage single-cell RNA-seq data from Goolam [10]. (B) Dppa3 

and Prdm14 relative expression in pools of 30 embryos after treatment with 

RO4929097 to block Notch from 2-cell to 4-cell stage. Pools of embryos treated with 

DMSO were used as controls. (C) Nanog, Prdm14 and Dppa3 relative expression in 

Notch LOF, Wildtype and Notch GOF ES cells at 0h, 12h, 24h and 48h after LIF 

withdrawal to promote differentiation (n=6). Data are means ± s.d. in (A) and (B) or ± 

s.e.m in (C). * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 by ANOVA with Fisher 

post-test in (A) and (C) or by Student’s t-test in (B). 
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