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Abstract15

To better predict how populations and communities respond to climatic temperature vari-

ation, it is necessary to understand how the shape of the response of fitness-related traits

to temperature evolves (the thermal performance curve). Currently, there is disagreement18

about the extent to which the evolution of thermal performance curves is constrained. One

school of thought has argued for the prevalence of thermodynamic constraints through en-

zyme kinetics, whereas another argues that adaptation can—at least partly—overcome such21

constraints. To shed further light on this debate, we perform a phylogenetic meta-analysis

of the thermal performance curves of growth rate of phytoplankton—a globally important

functional group—, controlling for environmental effects (habitat type and thermal regime).24

We find that thermodynamic constraints have a minor influence on the shape of the curve.

In particular, we detect a very weak increase of maximum performance with the temperature

at which the curve peaks, suggesting a weak “hotter-is-better” constraint. Also, instead of27

a constant thermal sensitivity of growth across species, as might be expected from strong

constraints, we find that all aspects of the thermal performance curve evolve along the phy-

logeny. Our results suggest that phytoplankton thermal performance curves adapt to thermal30

environments largely in the absence of hard thermodynamic constraints.

Keywords

Thermal response, phytoplankton, thermal adaptation, constraints, growth rate, trait.33
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Introduction

Temperature changes can affect the dynamics of all levels of biological organization by chang-

ing the metabolic rate of individual organisms (Brown et al., 2004; Pörtner et al., 2006;36

Hoffmann and Sgrò, 2011; Pawar et al., 2015). Thus, to better understand the impacts of

current and future climate change on whole ecosystems, it is essential to understand how key

fitness-related metabolic traits (e.g., growth rate, photosynthesis rate) respond to changes39

in environmental temperature.

In ectotherms, the relationship of fitness-related traits with temperature (the “thermal

performance curve”; TPC) is typically unimodal (Fig. 1; Angilletta 2009). Trait values42

increase with temperature until a critical point (Tpk), after which they drop rapidly. To

understand the capacity for adaptation of the TPC to different thermal environments, it is

important to investigate how the shape of the TPC evolves across species and, in so doing, to45

identify any constraining factors that operate over both short (ecological and microevolution-

ary) and long (macroevolutionary) timescales. This remains an area of ongoing debate, with

multiple competing hypotheses existing in the literature. Such hypotheses can be broadly48

classified along a continuum that ranges from strong and insurmountable constraints on TPC

evolution due to thermodynamic constraints on enzyme kinetics, to weak constraints that

can be overcome through adaptation (Fig. 2).51

At the strong thermodynamic constraints extreme, the “hotter-is-better” hypothesis (Fra-

zier et al., 2006; Kingsolver and Huey, 2008; Knies et al., 2009; Angilletta et al., 2009;

Angilletta, 2009) posits that TPCs evolve under severe constraints, due to the impact of54

thermodynamics on enzyme kinetics. More precisely, it predicts that a rise in the peak

temperature (Tpk) through adaptation to a warmer environment will necessarily lead to an

increase in the maximum height of the curve (Bpk; Fig. 2A). This adaptive increase in Bpk57

with temperature is assumed to be the direct outcome of the acceleration of enzyme-catalysed

reactions because enzyme activity also has a unimodal relationship with temperature (Feller,

2010). Hotter-is-better is implicit in the “Universal Temperature Dependence” (UTD) con-60
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Figure 1. The relationship of growth rate (rmax) with temperature in ectotherms (the thermal

performance curve; TPC). The TPC is generally unimodal and asymmetric, here quantified

by the four-parameter Sharpe-Schoolfield model (black line; Schoolfield et al. 1981) fitted to

growth rate measurements of the dinoflagellate Amphidinium klebsii (Morton et al., 1992).

The parameters of the model are B0 (in units of s−1), E (eV), Tpk (K), and ED (eV). B0 is

the growth rate at a reference temperature below the peak (Tref) and controls the vertical

offset of the TPC. E sets the rate at which the curve rises and is, therefore, a measure of

thermal sensitivity at the operational temperature range. Tpk is the temperature at which

growth rate is maximal, and ED controls the fall of the curve. Two other parameters control

the shape of the curve and can be calculated from the four main parameters: Bpk (s−1); the

maximum height of the curve, and Wop (K); the operational niche width, which we define as

the difference between Tpk and the temperature at the rise of the curve where growth rate

is half of Bpk. Further information regarding the assumptions of the model are provided in

the section “Estimation of TPC parameter values” of the Methods.
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Figure 2. The spectrum of hypotheses for the evolution of thermal performance curves across

species. A key area of difference among these hypotheses concerns the impact of thermo-

dynamic constraints on the shape of the TPC. Thus, hypotheses can be classified between

those lying near the strong thermodynamic constraints end, the middle of the spectrum, or

the weak thermodynamic constraints end where thermodynamic constraints can be overcome

through biochemical adaptation. It is worth clarifying that in panel D, the maximum value

that Bpk can take would also be under a thermodynamic constraint, but this constraint would

be different from those assumed in panels A and B. A detailed description of each hypothesis

and its assumptions (e.g., the impact of body size on trait performance) is provided in the

main text.
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cept of the Metabolic Theory of Ecology (MTE; Brown et al. 2004). MTE also (implicitly)

posits that increases in Bpk should be associated with body size declines, as metabolic trait

performance (normalised to a standard temperature) scales negatively with body size across63

diverse taxonomic groups (Brown et al., 2004). In its strictest form (Fig. 2A), hotter-is-

better makes a number of strong and possibly unrealistic assumptions. First, because of

thermodynamic constraints, E (a measure of thermal sensitivity, also referred to as “activa-66

tion energy”; Fig. 1) is expected to vary very little across species, with negligible capacity

for environmental adaptation (the UTD; Gillooly et al. 2006). Second, if B0 is calculated at

a low enough normalisation temperature (Tref), then it is expected to be nearly invariant,69

that is, performance at a low temperature would be almost constant across species (Fig.

2A). This also implies that the body size-scaling of growth rate predicted by MTE must

occur at temperatures close to the peak of the curve and not at a low Tref.72

Thus, under the strict hotter-is-better hypothesis, both B0 (at a low Tref) and E must be

nearly constant across species. Relaxing at least one of these leads to a more realistic weak

hotter-is-better hypothesis (Figs. 2B; also see SI Fig. S1 for three variants). For example,75

variation in B0 can arise from vertical shifts in the whole TPC, driven by changes in body

size (Brown et al., 2004). Part of the variation in B0 may also be driven by the process of

metabolic cold adaptation, which results in an elevation of baseline performance in species78

adapted to low-temperature environments (e.g., see Wohlschlag 1960; Clarke 1993; Seibel

et al. 2007; White et al. 2012; Clarke 2017; DeLong et al. 2018). Similarly, recent work has

shown that significant variation in E exists within and across species, suggesting that this81

variation is likely adaptive (Dell et al., 2011; Nilsson-Örtman et al., 2013; Pawar et al., 2016;

Garćıa-Carreras et al., 2018). In any case, under a weak hotter-is-better hypothesis, growth

rate is still expected to increase with temperature but the correlation between Tpk and Bpk84

should be weaker.

A third hypothesis, also lying in the middle of the spectrum, is the specialist-generalist

tradeoff hypothesis (Huey and Hertz 1984; Angilletta 2009; Fig. 2C). It posits a tradeoff87
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between maximum trait performance (Bpk) and thermal niche width (Wop). That is, a

widening of the niche necessarily incurs a metabolic cost (e.g., a cost in enzyme performance),

leading to a decrease in peak performance. Note that the weak hotter-is-better and the90

specialist-generalist tradeoff hypotheses are not mutually exclusive, as their predictions stem

from very different mechanisms which could potentially interact.

Finally, at the other end of the spectrum lies a class of hypotheses which posit that the93

influence of thermodynamic constraints should be minimised through adaptation of species’

biochemical machinery (Hochachka and Somero, 2002; Clarke and Fraser, 2004; Angilletta,

2009; Clarke, 2017). An extreme example is “perfect biochemical adaptation”, which posits96

that adaptation should allow species to maximise their performance (Bpk) in any thermal

environment (Fig. 2D) by overcoming biochemical constraints. An upper limit to the max-

imum possible Bpk across species or evolutionary lineages would still exist, but due to a99

different thermodynamic constraint from that expected under hotter-is-better. This hypoth-

esis further predicts the existence of strong correlations between environmental conditions

and TPC parameter values (due to adaptation), with the exception of Bpk which would be102

nearly invariant. While some studies have found support for biochemical adaptation (e.g.,

for photosynthesis rate; Padfield et al. 2016, 2017), it remains unclear whether adaptation

can indeed equalize Bpk across different environments.105

The above hypotheses are not an exhaustive list but lie on a spectrum (Fig. 2). To

understand the position of different metabolic traits and/or species groups on this spec-

trum, it is necessary to investigate i) the correlations between multiple thermal parameters108

and ii) how each thermal parameter evolves across species. Here we tackle this challenge

by performing a thorough phylogenetic analysis to investigate the evolution of TPCs of a

fundamental measure of fitness—population growth rate (rmax)—using a global database111

for phytoplankton species. We chose phytoplankton as a study system for ecological and

practical reasons. First, phytoplankton form the autotroph base of most aquatic food webs

and contribute around half of the global primary production (Field et al., 1998). Second,114
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phytoplankton are one of the few species groups for which sufficiently large TPC datasets

for growth rate are available.

Within phytoplankton, we also explore whether the impact of thermodynamic constraints117

on the shape of the TPC varies between freshwater and marine species. In particular, as

freshwater phytoplankton have a relatively more limited potential for dispersal compared to

marine phytoplankton which are passively moved by ocean currents across large distances120

(Doblin and van Sebille, 2016), the timescale of temperature fluctuations that the former

experience can be quite different from that of the latter. Such intricacies of the marine envi-

ronment could potentially be reflected in the TPCs of marine species, which could be under123

stronger selection for overcoming thermodynamic constraints. Through this detailed analy-

sis, we also shed light on the processes that underlie the Eppley curve (i.e., the relationship

between the maximum possible growth rate of all marine phytoplankton and temperature;126

Eppley 1972), which is widely used in marine ecosystem models (e.g., Palmer and Totterdell

2001; Stock et al. 2014).

Methods129

To understand whether and how thermodynamic constraints influence the evolution of the

shape of TPCs of phytoplankton, here we analyse the correlations between TPC parameters

across species. For this, we take a phylogenetic comparative approach which allows us to132

partition the covariance between six TPC parameters of phytoplankton into a phylogenet-

ically heritable component, a fixed effects component, and a residual component. To this

end, we estimate the amount of heritable covariance by building a phylogeny of the species in135

our dataset and combining it with multi-response regression models. To reduce confounding

effects of the local environment on TPC parameter covariances, we control for the habitat

of species/strains as well as the latitude of their isolation locations through the fixed effects138

component of our models. For marine species in particular, we also simulate the trajectories
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of drifting marine phytoplankton to get realistic estimates of the temperatures that they

experience through drifting.141

Data

We compiled a global database on growth rate performance of phytoplankton species by

combining the previously published datasets of López-Urrutia et al. (2006), Rose and Caron144

(2007), Bissinger et al. (2008), and Thomas et al. (2012). Growth rates across temperatures

were typically measured under light- and nutrient-saturated conditions in these studies.

Species names were standardised by querying the Encyclopedia of Life (Parr et al., 2014)147

via the Global Names Resolver (Global Names Architecture, 2017), followed by manual

inspection. This ensured that synonymous species names were represented under a common

name. From 795 original species/strain names, this process yielded 380 unique taxa from150

nine phyla. Where multiple strains of the same species (or isolates from different locations)

were available, we did not perform any averaging of growth rate measurements, but analyzed

each isolate separately. This allowed us to capture both the inter- and intraspecific variation,153

where possible. The isolation locations of species/strains in the dataset ranged in latitude

from 78◦S to 80◦N (Fig. S2 in the Supporting Information (SI)).

For cell volume data, those available from original studies were combined with median156

volume measurements reported by Kremer et al. (2014) and with measurements from Kre-

mer et al. (2017). This process resulted in a dataset with cell volumes for 132 species of

phytoplankton, spanning seven orders of magnitude.159

Estimation of TPC parameter values

To quantify all key features of the shape of each growth rate TPC, we used a modified

formulation (with Tpk as an explicit parameter; SI section S3.1) of the four-parameter variant162

of the Sharpe-Schoolfield model (Schoolfield et al. 1981; Fig. 1):
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Here, the growth rate, B (s−1), at a given temperature T (K) is expressed as a function

of four parameters (B0, E, ED and Tpk; see Fig. 1 for their description and units), and165

the Boltzmann constant, k (8.617·10−5 eV · K−1). The key assumption of this model is

that growth rate is controlled by a single rate-limiting enzyme which is deactivated at high

temperatures, and which operates at a decreased rate at low temperatures because of low168

available kinetic energy. While this assumption is shared by many TPC models, its validity

remains under debate (Clarke 2017; DeLong et al. 2017). For example, growth rate may be

determined by the effects of temperature on both the activity and the stability (free energy)171

of one or multiple catalyzing enzymes (DeLong et al., 2017). Other factors besides enzyme

thermodynamics might also be important, such as the transport of reaction products in the

cell (Ritchie, 2018). Nevertheless, the Sharpe-Schoolfield model remains widely used because174

it adequately captures the relationship between metabolic traits and temperature (e.g., see

Padfield et al. 2016; Salis et al. 2016; Bestion et al. 2018; Francis et al. 2019).

Furthermore, because the Sharpe-Schoolfield model has an exponential term in its numer-177

ator (Eq. (1)), B(T ) values estimated with the model will necessarily be positive. Therefore,

any negative or zero growth rate measurements had to be removed from the dataset before

fitting the model to data. As we show in section S3.2 of the SI, using a model that can180

accommodate non-positive growth rates instead of the Sharpe-Schoolfield model would not

qualitatively change the results of our study. Thereafter, we fitted the Sharpe-Schoolfield

model separately to each species/strain in the dataset, using the Levenberg-Marquardt non-183

linear least squares minimization algorithm (SI section S3.3). After obtaining estimates of

the four main model parameters, we used them to calculate the values of two more parame-

ters: Bpk and Wop (K) (Fig. 1). We note that we focus on Wop and not the full niche width186
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of the TPC as i) most species typically experience temperatures well below Tpk (Martin and

Huey, 2008; Thomas et al., 2012; Pawar et al., 2016), and ii) experimentally-determined

TPCs typically do not cover a sufficient temperature range to estimate the full niche width189

(Dell et al., 2011; Pawar et al., 2016).

For a correct comparison of B0 estimates, Tref needs to be set lower than the minimum Tpk

in the dataset. Otherwise, for certain TPCs, B0 is estimated at the fall of the curve instead of192

the rise, and the comparison becomes meaningless. As there were a few fits with Tpk values

close to 0◦C, we set Tref to 0◦C (i.e., 273.15 K). However, to ensure that a performance

comparison at 0◦C does not bias the results of this study—given that some species may not195

tolerate that low a temperature—, we also fitted the Sharpe-Schoolfield model using a Tref

of 10◦C (i.e., 283.15 K). In that case, we excluded fits with Tpk < 10◦C. All subsequent

analyses were performed using both datasets (i.e., those obtained with a Tref of 0◦C and198

10◦C), to identify potential areas of disagreement. Finally, as the estimate of B0 from the

Sharpe-Schoolfield model is an approximate measure of the TPC value at Tref (B(Tref)) and

can sometimes strongly deviate from it, depending—among others—on the choice of Tref201

(Kontopoulos et al., 2018), we calculated B(Tref) manually after obtaining estimates of the

four main model parameters (we henceforth refer to B(Tref) as B0).

Quality filtering of the fits resulted in a TPC dataset of 270 curves using a Tref of 0◦C204

and of 259 curves using a Tref of 10◦C (SI Figs. S4 and S5).

Reconstruction of the phytoplankton phylogeny

We reconstructed the phylogeny of the species in our TPC dataset using nucleotide sequences207

of the small subunit rRNA gene (see Table S21 in the SI). One sequence was collected per

species where possible, resulting in a dataset of 138 nucleotide sequences. Given that in-

creased taxon sampling has been shown to improve the quality of phylogenetic trees (Nabhan210

and Sarkar, 2012; Wiens and Tiu, 2012), we also collated a second dataset of 323 sequences

by expanding the previous dataset with further sequences of phytoplankton, macroalgae,
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and land plants. The two sets of nucleotide sequences were aligned with MAFFT (v7.123b;213

Katoh and Standley 2013), using the L-INS-i algorithm. We then used the entire align-

ments to build phylogenetic trees without masking any columns, as this has been shown to

occasionally result in worse topologies when only a single gene is used (Tan et al., 2015).216

Tree topologies were inferred with RAxML (v. 8.2.4; Stamatakis 2014), PhyML (v.

20151210; Guindon et al. 2010), and ExaBayes (v. 1.4.1; Aberer et al. 2014), under the

General Time-Reversible model (Tavaré, 1986) with Γ-distributed rate variation among sites219

(four discrete rate categories; Gu et al. 1995). For RAxML, in particular, we inferred 300

distinct topologies using the slow hill-climbing algorithm (which performs a more thorough

exploration of likelihood space than the default algorithm; option “-f o”), and selected the222

tree topology with the highest log-likelihood. For PhyML we used the default options, with

the exception of the topology search which was set to include both the Nearest Neighbor In-

terchange (NNI) and the Subtree Pruning and Regrafting (SPR) procedures. For ExaBayes,225

we executed four independent runs with four Metropolis-coupled chains per run for 55 million

generations. Samples from the posterior distribution were obtained every 500 generations,

after discarding the first 25% of samples as burn-in. We confirmed that the four ExaBayes228

runs had converged through a range of tests (see sections S4.1 and S4.2 in the SI), and

obtained a tree topology by computing the extended majority-rule consensus tree. The best

tree topology—among those produced by RAxML, PhyML, and ExaBayes—was selected on231

the basis of proximity to the Open Tree of Life (Hinchliff et al., 2015), and log-likelihood (SI

section S4.3).

We then estimated relative ages for all nodes of the best topology, using the uncorrelated234

Γ-distributed rates model (Drummond et al., 2006), as implemented in DPPDiv (Heath

et al., 2012; Flouri and Stamatakis, 2012). To this end, we executed five independent runs

for 750,000 generations, sampling from the posterior distribution every 100 generations. As237

before, we discarded the first 25% of samples as burn-in, and performed diagnostic tests to

ensure that the posterior distributions of the four runs had converged and that the parameters

12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/452250doi: bioRxiv preprint 

https://doi.org/10.1101/452250
http://creativecommons.org/licenses/by/4.0/


were adequately sampled (SI section S4.4). To obtain the final relative time-calibrated tree,240

we sampled every 300th tree from each run (after the burnin phase) for a total of 9,375 trees,

and calculated the median age estimate for each node using the TreeAnnotator program

(Rambaut and Drummond, 2017).243

Modelling the local thermal environments of marine phytoplankton

As mentioned previously, although marine phytoplankton are passively moved by ocean

currents across large distances, little attention has been given to the potential effects of this246

on their thermal physiology. In particular, Doblin and van Sebille (2016) showed that the

temperature range that marine microbes likely experience is usually much wider if oceanic

drifting is properly accounted for. Therefore, to accurately quantify the thermal regimes249

of marine phytoplankton, we simulated Lagrangian (drifting) trajectories with the Python

package OceanParcels (Lange and van Sebille, 2017). More precisely, we used hydrodynamic

data from the OFES model (ocean model for the Earth Simulator; Masumoto et al. 2004)252

to estimate 3,770 backwards-in-time replicate trajectories for each marine location in the

dataset over 500 days (using a one-day timestep), at a depth of 2.5, 50, or 100 meters (where

possible). These depth values were chosen after considering global estimates of oceanic255

euphotic depth (Morel et al., 2007), i.e. the depth below which net primary production by

marine autotrophs becomes negative (Falkowski and Raven, 2013).

We then calculated the following environmental variables: i) the median temperature258

experienced, ii) the median latitude visited, iii) the interquartile range of temperatures,

and iv) the interquartile range of latitudes. The median captures the central tendency of the

temperatures or latitudes that phytoplankton experienced, whereas the interquartile range is261

a measure of deviation from the central tendency. Measuring all four variables is important,

as each of them may have a different effect on the shape of the TPC. The values of the

variables were first calculated for each trajectory over the full duration of 500 days, but264

also over the first 350, 250, 150, and 50 days. They were then averaged across all replicate
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trajectories per location, depth, and duration, weighted by the length of the trajectory, as

some trajectories could be estimated for fewer than 500 days. These variables are hereafter267

referred to as T̃d, t (median temperature), L̃d, t (median latitude), IQR(Td, t) (interquartile

range of temperatures), and IQR(Ld, t) (interquartile range of latitudes), where d and t stand

for the depth and duration of the trajectory respectively.270

We also obtained temperature data of the isolation locations of marine phytoplankton, in

order to compare their explanatory power with that of the Lagrangian trajectory variables.

To this end, we used the NOAA Optimum Interpolation Sea Surface Temperature dataset,273

which comprises daily measurements of sea surface temperature at a global scale and at a

resolution of 1/4◦ (Banzon et al., 2016). Currently, two variants of this dataset are avail-

able: i) “AVHRR-Only” which is primarily based on the Advanced Very High Resolution276

Radiometer, and ii) “AVHRR+AMSR” which also uses data from the Advanced Microwave

Scanning Radiometer on the Earth Observing System. The latter variant is considered more

accurate, but, for technical reasons, is only available from 2002 until 2011, whereas the for-279

mer variant is available from 1981 until the present day. In our case, we obtained a daily

sea surface temperature dataset between the 1st of September 1981 and the 25th of June

2017, using AVHRR-Only, or AVHRR+AMSR when that was available. From this dataset,282

we calculated the median temperature of each marine location (T̃orig), and the interquartile

range of temperatures (IQR(Torig)).

Inference of TPC parameter co-evolution and associations with en-285

vironmental variables

I. Across the entire dataset

To infer the interspecific correlation structure among the parameters of the TPC and si-288

multaneously detect associations with the local environment of the species in our study, we

fitted phylogenetic Markov Chain Monte Carlo generalised linear mixed models using the R
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package MCMCglmm (v. 2.24; Hadfield 2010). This package can be used to fit phylogenetic291

regression models, enabling the partitioning of phenotypic trait variance into a phylogeneti-

cally heritable component, a fixed effects component of explanatory variables, and a residual

variance component (i.e., variance that should be mostly due to environmental effects that294

are not already controlled for). For the purposes of this study, we constructed multi-response

regression models (i.e., models with multiple response variables instead of one), in which the

response comprised all six TPC parameters. In other words, instead of trying to predict a297

single response variable, the models would predict all six TPC parameters, while simultane-

ously inferring their variance/covariance matrix. Each element of this matrix was estimated

as a free parameter from the data, so that any correlations between pairs of TPC parameters300

could be detected.

To ensure that the distribution of each response variable was as close to normality as

possible, we applied a different transformation to each TPC parameter: 4
√
B0, ln(E), T 2

pk,303

ln(Bpk), ln(ED), ln(Wop). It was necessary to perform those transformations as each response

variable in an MCMCglmm needs to conform to one of the implemented distributions in the

package (e.g., Gaussian, Poisson, multinomial), with the Gaussian distribution being the306

most appropriate here. Besides this, most macroevolutionary models assume that the evo-

lutionary change in trait values follows a Gaussian distribution. Thus, statistical transfor-

mations of trait values are often used to satisfy this assumption. In any case, applying these309

transformations does not affect our results qualitatively even though thermal parameter cor-

relations are estimated in transformed (not linear) scale. To incorporate the uncertainty for

each transformed thermal parameter estimate, we used the delta method (e.g., see Oehlert312

1992) implemented in the R package msm (v. 1.6.4; Jackson 2011) to obtain appropriate

estimates of the variance of the standard error for 4
√
B0, ln(E), T 2

pk, ln(Bpk), and ln(ED). As

we manually calculated ln(Wop) a posteriori without an analytical solution, we performed315

bootstrapping to obtain error estimates for it.

For the majority of the TPCs in our dataset, there was at least one parameter whose value
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could not be estimated with certainty due to lack of adequate experimental measurements (SI318

section S3.3). MCMCglmm can accommodate such missing values in the response by treating

them as “Missing At Random” (MAR; see Hadfield 2010, de Villemereuil and Nakagawa 2014,

and Tierney and Cook 2018). The MAR assumption is valid as long as i) missing values in321

a response variable can be estimated (with some uncertainty) from other components of the

model (i.e., other covarying response variables or the phylogeny), and ii) data missingness

is not driven by a variable that is not included in the model. When these two conditions324

are true, the inferred estimates of missing values are unbiased (see Nakagawa and Freckleton

2008; Garamszegi and Møller 2011). Applying this method allowed us to include TPC

parameter estimates from curves that were only partly well sampled (e.g., only the rise of327

the curve), increasing the statistical power of the analysis and reducing the possibility of

estimation biases (e.g., in the covariances among TPC parameters).

The fixed effects component of each candidate model contained at the very minimum a330

distinct intercept for each response variable. Starting with this, we fitted models with i)

no other predictors (the intercepts-only model), ii) the latitude of the isolation location of

each species, iii) the habitat of each species (marine vs freshwater), or iv) both latitude and333

habitat. For models that included latitude as a predictor, we specified either the absolute

latitude of the location or a second order polynomial (because mean environmental temper-

ature and its fluctuations are approximately unimodal functions of latitude from the equator336

to mid-latitudes). In any case, we estimated the association of each fixed effect (latitude

and/or habitat) with each response variable separately (by inferring distinct coefficients for,

e.g., ln(E):|latitude|, ln(Bpk):|latitude|). It is worth noting that we did not include the tem-339

perature of the environment as a fixed effect in these particular models, as there was no

reliable temperature dataset with high enough resolution for both marine and freshwater

locations. To avoid any potential biases introduced by a combination of two temperature342

datasets (one for the marine locations and one for the freshwater ones), we instead used

latitude as a proxy for temperature variation.
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Species identity was specified as a random effect on the intercepts. To integrate phyloge-345

netic information into the model, we first pruned the phylogeny to the subset of species for

which data were available (SI Fig. S15). We next calculated the inverse of the phylogenetic

covariance matrix from the phylogenetic tree, including ancestral nodes as this allows for348

more computationally efficient calculations (Hadfield and Nakagawa, 2010; de Villemereuil

and Nakagawa, 2014).

The default prior was used for the fixed effects, whereas for the random effect and the351

residual variance components, we used a relatively uninformative inverse-Γ prior with shape

and scale equal to 0.001 (the lower this number the less informative is the prior). For

each model, two chains were run for 100 million generations, sampling from the posterior354

distribution every 1000 generations after discarding the first 10 million generations as burn-

in. Convergence between each pair of chains was verified by calculating the potential scale

reduction factor (Gelman and Rubin, 1992; Brooks and Gelman, 1998) for all estimated pa-357

rameters (i.e., fixed effects, elements of the phylogenetically heritable and residual matrices),

and ensuring that it was always lower than 1.1. We also confirmed that the effective sample

size of all model parameters—after merging samples from the two chains—was greater than360

200, so that the mean could be adequately estimated.

Model selection was done on the basis of the Deviance Information Criterion (DIC;

Spiegelhalter et al. 2002), averaged across each pair of chains. We excluded models if a363

fixed effect had a 95% Highest Posterior Density (HPD) interval that included zero for every

single response variable (e.g., if all of 4
√
B0:habitat, ln(E):habitat, T 2

pk:habitat etc. had 95%

HPD intervals that included zero). In frequentist statistics terms, this is roughly equivalent366

to excluding models whose predictors were not significant for any response variable.

Phenotypic correlations between pairs of TPC parameters (rphe) were broken down into

their phylogenetically heritable (rher) and residual components (rres) by dividing the covari-369

ance estimate between two parameters by the geometric mean of their variances. These were

inferred from the best-fitting model in terms of DIC.
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Finally, we measured the phylogenetic heritability (i.e., the ratio of heritable variance to372

the sum of heritable and residual variance) of each TPC parameter. As the phylogeny is

integrated with the MCMCglmm, the resulting estimates are equivalent to Pagel’s λ (Pagel,

1999; Hadfield and Nakagawa, 2010), and reflect the strength of the phylogenetic signal,375

i.e., the extent to which closely related species are more similar to each other than to any

species chosen at random (Pagel, 1999; Kamilar and Cooper, 2013; Symonds and Blomberg,

2014). Strong phylogenetic signal would indicate that variation in the TPC parameter can378

be explained by its gradual evolution across the phylogeny. On the other hand, a lack of

phylogenetic signal would reflect either trait stasis (with any variation among species be-

ing noise-like) or very rapid evolution (that is independent of the phylogeny). Intermediate381

values of phylogenetic signal would imply either that the TPC parameter is under con-

strained evolution (e.g., due to stabilizing selection), or that its evolutionary rate changes

through time (e.g., an evolutionary rate acceleration could lead to the convergence of the384

niches of distantly related species). We obtained phylogenetic heritability estimates from

the intercepts-only model as the addition of fixed effects would reduce the residual variance

and bias the heritability estimates towards higher values.387

II. For the marine subset of the data

To test whether the correlation structure of thermal parameters across the entire phytoplank-

ton dataset differs from that of marine species only, we also performed the above analysis390

for only the marine species in the dataset. The main difference in the specification of the

MCMCglmms for marine species was that we used fixed effects that captured both the lati-

tude and the temperature characteristics of the local environment of phytoplankton (see the393

“Modelling the local thermal environments of marine phytoplankton” section above): i) no

fixed effects (intercepts-only model), ii) Lorig, iii) T̃orig, iv) IQR(Torig), v) T̃orig + IQR(Torig),

vi) T̃d, t, vii) IQR(Td, t), viii) T̃d, t + IQR(Td, t), ix) L̃d, t, x) IQR(Ld, t), xi) L̃d, t + IQR(Ld, t).396

All latitude variables other than IQR(Ld, t) were specified—in different models—both as a
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second order polynomial and with absolute values. A second order polynomial was also tested

for IQR(Td, t) variables to investigate the existence of a quadratic relationship of IQR(Td, t)399

with thermal parameters.

As there was a very large number of MCMCglmms to execute (158 pairs of chains), we

first ran each of them for 60 million generations. We then checked whether the two chains per402

model had converged as previously described, and reran the subset that had not converged

for 120 million generations. At that point, all pairs of chains converged on statistically

indistinguishable posterior distributions. As above, samples from the first 10% generations405

of each model were discarded as burn-in.

Size-scaling of B0 and Bpk

As explained in the introduction, MTE predicts that temperature-normalised rmax should408

be constrained by body mass across taxonomic groups (Brown et al., 2004). However, at

finer taxonomic resolutions (e.g., within species), this relationship may take the opposite

direction, i.e., selection for high rmax may lead to declines in body size as has been observed411

widely (the “temperature-size rule”; Atkinson 1996; Winder et al. 2009; Yvon-Durocher et al.

2011; Peter and Sommer 2013; Sommer et al. 2017). For example, warming may confer a

competitive advantage to smaller phytoplankton due to their higher rmax (Reuman et al.,414

2014). Therefore, as a final step for understanding how TPCs evolve, we tested whether

and how growth rate scales with body size. Under the strict hotter-is-better hypothesis,

such scaling would be expected only for growth rates near each species’ Tpk, whereas if the417

weak hotter-is-better hypothesis holds, size scaling could also—but not necessarily—occur at

low temperatures. Understanding if the latter holds requires first the calculation of growth

rate values for all TPCs at a common normalisation temperature (Tref), followed by their420

examination for any size scaling patterns. Therefore, to test both hypotheses of body size-

scaling, we fitted MCMCglmms with cell volume as a fixed effect and a single response of

either i) B0 (at a Tref of 0◦C), ii) B0 (at a Tref of 10◦C), or iii) Bpk. Species identity was423
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treated as a random effect on the intercept, the slope, or both. Each model was fitted

with and without the phylogenetic variance/covariance matrix to compare the predictions

obtained by ignoring the phylogeny or accounting for it. Two chains were run per model426

for a length of 3 million generations, and convergence was established as in the previous

section after removing samples from the first 300,000 generations. DIC was used to identify

the most appropriate model for each response variable. To evaluate the quality of the best-429

fitting model, we first calculated the amounts of variance explained by fixed (σ2
fixed) and

random effects (σ2
random), and the residual variance (σ2

resid). From these, we calculated the

marginal (R2
m) and conditional (R2

c) coefficients of determination, as described by Nakagawa432

and Schielzeth (2013):

R2
m =

σ2
fixed

σ2
fixed + σ2

random + σ2
resid

, (2)

R2
c =

σ2
fixed + σ2

random

σ2
fixed + σ2

random + σ2
resid

. (3)

Results

Interspecific correlations and phylogenetic signal435

The best-fitting phylogenetic regression model on the basis of DIC had only latitude as a

fixed effect (SI Fig. S16). Models with habitat as a predictor were excluded from the DIC

comparison, as the 95% Highest Posterior Density interval of every single habitat coefficient438

included zero. This likely reflects that any effects of habitat type on TPC parameters are

already captured by the phylogenetic correction, especially given that phytoplankton habitat

is phylogenetically structured (SI Fig. S15). In contrast, the 95% HPD intervals of the441

coefficients of latitude for Tpk (for both Tref values) and E (for a Tref of 0◦C only) did not

include zero (SI Fig. S17). A minor difference between the analyses with a Tref of 0◦C and

20

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/452250doi: bioRxiv preprint 

https://doi.org/10.1101/452250
http://creativecommons.org/licenses/by/4.0/


10◦C was that in the former case, the model with a second order polynomial in latitude was444

selected, whereas in the latter case, absolute latitude performed better. The shapes of the

two fitted curves (SI Fig. S17) suggest that the effect of latitude on the TPC is particularly

strong for colder-adapted species, leading to a deviation from a strictly linear association.447

From the analysis of the resulting interspecific variance/covariance matrices (SI Tables

S4, S5, S8, and S9), we identified only two correlations among TPC parameters: i) between

Bpk and Tpk (Fig. 3A), and ii) between E and Wop (SI Fig. S18). The former corre-450

lation appears to be driven entirely by the phylogenetically heritable (rher) component of

the coldest-adapted species in the dataset (i.e., the three data points with Tpk < 10◦C in

Fig. 3A), and becomes nonexistent when these are excluded. Such a weak correlation is453

consistent with the weak hotter-is-better hypothesis (Fig. 2). Also, as E and Wop are both

measures of thermal sensitivity in the range of temperatures where organisms typically oper-

ate, a negative correlation between them was expected under all TPC evolution hypotheses.456

In contrast, a negative correlation between Bpk and Wop, which would be expected by the

specialist - generalist tradeoff hypothesis, was not supported by the data (Fig. 3B). Fi-

nally, we detected varying amounts of phylogenetic signal in all TPC parameters, with Tpk459

showing the strongest (perfect phylogenetic) signal (Fig. 4). This was in contrast to the as-

sumptions of the strict hotter-is-better and the perfect biochemical adaptation hypotheses,

which posit that E and Bpk respectively should vary very little across species and not in a462

phylogenetically heritable manner (Fig. 2).

Running MCMCglmms for the marine species only yielded mostly similar conclusions

(SI section S5.2). The only correlation that could be detected was between E and Wop465

(SI Fig. S22). The best-fitting model had a fixed effect of T̃50m, 250d (for Tref = 0◦C) or

IQR(T50m, 50d) (for Tref = 10◦C). More precisely, the analysis of all marine species revealed

a negative relationship between ln(Bpk) and the median temperature of trajectories at a468

depth of 50 meters and for a duration of 250 days (T̃50m, 250d; SI Fig. S20). If, instead, only

marine species with Tpk > 10◦C are included, ln(E) is the parameter that associates with
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Figure 3. The relationship of Bpk with Tpk (A) and Wop (B). rphe, rher, and rres stand

for phenotypic correlation, phylogenetically heritable correlation and residual correlation re-

spectively. The three correlation coefficients were simultaneously inferred after correcting for

phylogeny and for environmental effects (latitude). For panel A, in particular, correlations

were estimated across the entire dataset, and after excluding data points with Tpk < 10◦C.

The reported estimates are for the correlation of ln(Bpk) with T 2
pk and ln(Wop) respectively,

but the horizontal axes are shown in linear scale for simplicity. Values in parentheses corre-

spond to the 95% HPD interval of each correlation coefficient.
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Figure 4. Phylogenetic heritability estimates across the TPC. Circles indicate the mean of

the posterior distribution, whereas horizontal bars show the 95% HPD interval. Note that

each TPC parameter was transformed towards approximate normality in order to satisfy the

requirement of the MCMCglmm method.

the environment, increasing with the interquartile range of temperatures of trajectories at471

a depth of 50 meters and for a duration of 50 days (IQR(T50m, 50d); SI Fig. S21). For both

Tref values, the best-fitting Lagrangian models had consistently lower DIC values (at least

30 DIC units difference; see SI Tables S10 and S15) than their non-Lagrangian equivalents.474

Size-scaling of growth rate

Cell volume-growth rate scaling as predicted by the MTE and expected by the two (strict

and weak) hotter-is-better hypotheses, was detected only in the maximum height of the curve477

(R2
m = 0.14 and R2

c = 0.72; Fig. 5C-D) and not at the performance at a temperature of 0◦C

or 10◦C (R2
m = 0.00 and R2

c = 0.73; Fig. 5A-B). In particular, across the entire dataset,

Bpk was found to scale with cell volume raised to an exponent of -0.09 (95% HPD interval480

= (-0.15, -0.05); Fig. 5C). The best-fitting models always had a random effect of species

identity on the intercept and not the slope (SI Table S20).
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Figure 5. The relationships of cell volume with B0 (panels A and B) and Bpk (panels C

and D) with Tref set to 0◦C or 10◦C, according to the best-fitting model in each case (see SI

Table S20). Coefficients shown in bold had 95% HPD intervals that did not include zero.

The sample sizes of B0 and Bpk estimates shown here are higher than those reported in SI

Figs. S4 and S5, as we included estimates from species with unknown isolation locations.

Note that we used different statistical transformations for B0 and Bpk so that their estimates

would be nearly normally distributed.
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Discussion483

In this study we investigated the influence of thermodynamic constraints on the shape of the

thermal performance curve of phytoplankton (Fig. 2). To this end, we performed a thorough

analysis of correlations among six TPC parameters. Controlling for the phylogeny of species486

and their local environment allowed us to better tease apart the relationships among thermal

parameters and quantify the influence of phylogeny on each TPC parameter.

We detected a positive correlation between Bpk and Tpk (Fig. 3A), which was however489

very weak and only held if TPCs with very low Tpk values were included. This pattern is

inconsistent with the strict hotter-is-better hypothesis (Fig. 2). Therefore, we can conclude

that phytoplankton TPCs do not support the strong thermodynamic constraints extreme492

of the spectrum of hypotheses. The only other correlation that we detected was between

E and Wop (SI Fig. S18), which is expected because niche width within the operational

temperature range varies inversely with thermal sensitivity (E). When focusing only on495

marine phytoplankton, we detected neither a correlation between Bpk and Tpk, nor any

correlation uniquely present in marine species. However, this may reflect the lower statistical

power of the analysis of marine species due to the smaller sample size. In any case, as a498

correlation between Bpk and Wop was not detected in either the analysis of the entire dataset

(Fig. 3B) or in the analysis of correlations from marine species, the generalist-specialist

tradeoff hypothesis can also be rejected.501

To further narrow down the location of phytoplankton TPCs on the spectrum of hypothe-

ses (Fig. 2), we examined the estimates of phylogenetic signal of all six TPC parameters,

which were simultaneously inferred from our multi-response regression models. We used504

the estimates to test both the strict hotter-is-better hypothesis and the perfect biochemical

adaptation hypothesis, which predict a complete lack of phylogenetic signal in E and Bpk

respectively. This analysis also yielded a basic understanding of how the remaining TPC507

parameters (e.g., Tpk) evolve. Overall, the mean phylogenetic signal estimate of E was the

lowest of all TPC parameters, but its 95% HPD interval was well above zero (Fig. 4). This
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result further supports the rejection of the strict hotter-is-better hypothesis. Moreover, it510

indicates that E is not nearly constant across species—contrary to what the MTE initially

assumed (see SI Fig. S1A and Gillooly et al. 2001; Clarke and Fraser 2004; Clarke 2004;

Gillooly et al. 2006; Clarke 2006)—, and provides some insight into the inter- and intraspe-513

cific variation in E reported by previous studies (e.g., Dell et al. 2011; Nilsson-Örtman et al.

2013; Pawar et al. 2016).

At the right end of the hypotheses spectrum, we were also able to reject the perfect bio-516

chemical adaptation hypothesis because Bpk also exhibited phylogenetic signal. It is worth

noting that the phylogenetic signal in Bpk does not merely reflect that the local environment

is phylogenetically heritable (with closely related species occurring in geographically close519

environments), as the correlation between phylogenetic distance and geographical distance

was almost zero (SI section S5.1). In any case, variation in Bpk was not found to be latitudi-

nally structured across the entire dataset (contrary to E and Tpk; SI Fig. S17), albeit marine522

species that experienced low temperatures had slightly higher Bpk values (SI Fig. S20A).

An elevation of Bpk (or B0) in organisms living at cold environments could arise from the

process of metabolic cold adaptation, which has sometimes been detected in other species525

groups (see Wohlschlag 1960; Clarke 1993; Seibel et al. 2007; White et al. 2012; Clarke 2017;

DeLong et al. 2018).

Lastly, we examined the effect of body size on growth rate. We found a weak nega-528

tive scaling of Bpk (maximum height of the TPC) with cell volume, whereas trait values

normalised to 0◦C or 10◦C did not exhibit any size scaling (Fig. 5). This suggests an en-

ergetic tradeoff between cell volume and Bpk in phytoplankton, similar to the prediction531

of the supply-demand body size optimization model of DeLong (2012). That is, the main-

tenance of a large cell volume should incur a high energetic cost, reducing the amount of

energy that can be directed to cell growth, and vice versa. The weak negative size scaling of534

Bpk is consistent with our only remaining hypothesis: the weak hotter-is-better hypothesis.

Indeed, given the weak correlations of i) Bpk with Tpk, and ii) Bpk with cell volume, an
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increase in Tpk would lead to a weak increase in Bpk and, indirectly, to a weak decrease in537

cell volume. Therefore, a decrease in cell size with warming—which has often been observed

(Winder et al., 2009; Yvon-Durocher et al., 2011; Peter and Sommer, 2013; Sommer et al.,

2017)—could be constrained by an indirect correlation between Tpk and cell volume.540

Our results about the weak relationship between Bpk and Tpk, and the scaling of the

former with cell volume are consistent with the conclusions of Kremer et al. (2017). They

found evidence for the effects of temperature, taxonomic group, and cell size on the maximum543

growth rate of phytoplankton, effectively suggesting adaptation of Bpk across lineages. This

further means that the classical Eppley curve (Eppley, 1972; Bissinger et al., 2008) does not

necessarily indicate as strong a global (thermodynamic) constraint on maximum performance546

across species as has been previously thought. In this context, we also note that ideally cell

size should be directly accounted for in analyses of TPC evolution. This was partially done

in our study (i.e., by examining the relationship of cell volume with B0 and Bpk), as we could549

not obtain cell volume measurements for all species in our dataset.

Given all these results, we conclude that the TPCs of phytoplankton evolve in the gen-

eral absence of hard thermodynamic constraints, similarly to the expectations of a very weak552

hotter-is-better hypothesis (Fig. 3A). A possible mechanistic interpretation of the observed

patterns is that, at very low temperatures, the limiting factor is low available kinetic energy,

which constrains the rate of biochemical reactions. At higher temperatures, on the other555

hand, maximum trait performance appears temperature-independent, suggesting the pres-

ence of biophysical or other constraints. For example, given that Bpk scales negatively with

cell volume, a lower limit in cell volume (e.g., due to the need for maintaining non-scalable558

cellular components such as membranes; Raven 1998) will also set an upper limit to the

maximum possible growth rate.

To the best of our knowledge, a thorough analysis of the correlation structure among561

parameters that control the entire range of the TPC has never been conducted. At most,

previous studies have investigated the existence of correlations between two or three selected
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TPC parameters (e.g., between Tpk and Bpk; see Frazier et al. 2006 and Sørensen et al. 2018).564

This can be problematic for two reasons. First, by only focusing on parameters that control

the peak of the TPC, such studies ignore potential correlations with parameters in other areas

of the curve (e.g., E). Second, even if a statistical correlation can be observed between two567

thermal parameters, it could be driven by the covariance of the two parameters with other,

overlooked TPC parameters. Indeed, many studies on TPCs do not explicitly account for

phylogenetic relationships among species at all (but see Sal et al. 2015 for a phylogenetically-570

controlled study on the size-scaling of phytoplankton growth rate). Our results highlight the

fact that ignoring potential phylogenetic effects can make it harder to differentiate between

alternative hypotheses on the evolution of TPCs, and may leave studies vulnerable to biases573

introduced by phylogenetic nonindependence (e.g., an observed relationship between two

TPC parameters could arise solely from uneven phylogenetic sampling).

Perhaps the most striking result of this study is that we detected a very limited number576

of correlations or tradeoffs across the entire TPC. One potential explanation for this could

be that different phytoplankton lineages have evolved distinct strategies to maximise their

fitness. Such strategies may involve thermal parameter correlations that are lineage-specific579

and hence hard to detect. A similar analysis performed separately for each phytoplankton

phylum could potentially address this question. However, obtaining accurate estimates of

lineage-specific variance/covariance matrices of TPC parameters would require bigger ther-582

mal performance datasets than those that—to our knowledge—are currently available. It

would also be interesting to investigate whether the phylogenetic signal of TPC parameters

and the correlations among them vary across traits (e.g., photosynthesis rate, respiration585

rate) or phylogenetic groups (e.g., bacteria, plants). Such analyses could provide useful in-

sights into the nature of possible constraints and their degree of influence on the shape of

the thermal performance curve across different branches of the tree of life.588

Another direction that could be further pursued involves investigating the effects of the

marine environment on phytoplankton TPCs, and, in particular, how TPCs adapt to tem-

28

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/452250doi: bioRxiv preprint 

https://doi.org/10.1101/452250
http://creativecommons.org/licenses/by/4.0/


perature fluctuations due to oceanic drifting (see e.g., Schaum et al. 2018). It is worth591

emphasising that, in our study, models that accounted for oceanic drifting of marine phyto-

plankton (models with Lagrangian variables) systematically performed better (in terms of

DIC) than models that only incorporated the latitude or the sea surface temperature of the594

isolation locations of the strains. While we detected some associations between environmen-

tal variables and TPC parameters, the low sample size and the coarse modelling of drifting

prevent us from drawing very strong conclusions. More precisely, some of the limitations of597

our approach were that simulations were done at only three depths, and did not account for

the vertical movement of phytoplankton or the concentration of nutrients. A more in-depth

analysis on these matters could be the focus of future studies.600

Finally, there is mounting evidence that the shape of TPCs is also affected by a range

of other factors such as nutrient availability (Thomas et al., 2017; Bestion et al., 2018),

oxygen supply (Gangloff and Telemeco, 2018), and predation risk (Dell et al., 2014; Luhring603

et al., 2018). Thus, to improve our understanding of how species adapt to different thermal

environments, future studies could investigate the adaptive potential of organismal responses

not only to temperature, but to the interaction of multiple factors. Such an approach606

could uncover important adaptive constraints which may not be detectable by studying the

responses of biological traits to each factor in isolation.
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Hoffmann, A. A., and C. M. Sgrò. 2011. Climate change and evolutionary adaptation. Nature

470:479–485.723

Huey, R. B., and P. E. Hertz. 1984. Is a jack-of-all-temperatures a master of none? Evolution

38:441–444.

Jackson, C. H. 2011. Multi-State Models for Panel Data: The msm Package for R. J. Stat.726

Softw. 38:1–29. URL http://www.jstatsoft.org/v38/i08/.

Kamilar, J. M., and N. Cooper. 2013. Phylogenetic signal in primate behaviour, ecology and

life history. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 368:20120341.729

34

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2019. ; https://doi.org/10.1101/452250doi: bioRxiv preprint 

http://www.jstatsoft.org/v33/i02/
http://www.jstatsoft.org/v33/i02/
http://www.jstatsoft.org/v33/i02/
http://www.jstatsoft.org/v38/i08/
https://doi.org/10.1101/452250
http://creativecommons.org/licenses/by/4.0/


Katoh, K., and D. M. Standley. 2013. MAFFT multiple sequence alignment software version

7: improvements in performance and usability. Mol. Biol. Evol. 30:772–780.

Kingsolver, J. G., and R. B. Huey. 2008. Size, temperature, and fitness: three rules. Evol.732

Ecol. Res. 10:251–268.

Knies, J. L., J. G. Kingsolver, and C. L. Burch. 2009. Hotter is better and broader: thermal

sensitivity of fitness in a population of bacteriophages. Am. Nat. 173:419–430.735
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