Abstract
The high concentration of arsenic in the paddy fields and, consequently, in the rice grains is a critical issue in many rice-growing areas. Breeding arsenic tolerant rice varieties that prevent As uptake and its accumulation in the grains is a major mitigation options. However, the genetic control of the trait is complex, involving large number of gene of limited individual effect, and raises the question of the most efficient breeding method. Using data from three years of experiment in a naturally arsenic-reach field, we analysed the performances of the two major breeding methods: conventional, quantitative trait loci based, selection targeting loci involved in arsenic tolerance, and the emerging, genomic selection, predicting genetic values without prior hypotheses on causal relationships between markers and target traits. We showed that once calibrated in a reference population the accuracy of genomic prediction of arsenic content in the grains of the breeding population was rather high, ensuring genetic gains per time unite close to phenotypic selection. Conversely, selection targeting quantitative loci proved to be less robust as, though in agreement with the literature on the genetic bases of arsenic tolerance, few target loci identified in the reference population could be validated in the breeding population.