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 2 

Abstract 14 

The high concentration of arsenic in the paddy fields and, consequently, in the rice grains is a critical 15 

issue in many rice-growing areas. Breeding arsenic tolerant rice varieties that prevent As uptake and 16 

its accumulation in the grains is a major mitigation options. However, the genetic control of the trait 17 

is complex, involving large number of gene of limited individual effect, and raises the question of the 18 

most efficient breeding method. Using data from three years of experiment in a naturally arsenic-19 

reach field, we analysed the performances of the two major breeding methods: conventional, 20 

quantitative trait loci based, selection targeting loci involved in arsenic tolerance, and the emerging, 21 

genomic selection, predicting genetic values without prior hypotheses on causal relationships 22 

between markers and target traits. We showed that once calibrated in a reference population the 23 

accuracy of genomic prediction of arsenic content in the grains of the breeding population was rather 24 

high, ensuring genetic gains per time unite close to phenotypic selection. Conversely, selection 25 

targeting quantitative loci proved to be less robust as, though in agreement with the literature on the 26 

genetic bases of arsenic tolerance, few target loci identified in the reference population could be 27 

validated in the breeding population.  28 

 29 

  30 
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Introduction 31 

A survey of total arsenic (As) in 901 samples of commercial polished (white) rice collected randomly 32 

from arsenic contaminated or non-contaminated areas in 10 countries showed 7-fold variation in 33 

median total arsenic content. The lowest median value (0.04 mg/kg) was measured in Egypt and the 34 

highest in the U.S.A. and France, 0.25 and 0.28 mg/kg, respectively [1]. Pollution of paddy fields and 35 

irrigation water by As has been reported in more than 70 countries in Asia, America and Europe [2, 36 

3]. The problem, which is often of geological origin, affects several hundred million peoples, 37 

especially in Asia [1, 3, 4]. Local and regional surveys revealed a tight correlation between As 38 

concentration in the soil, or in the irrigation water, and its concentration in the rice plant [2, 5]. At all 39 

sampling sites, As accumulation in the rice plant was the highest in the roots, followed by in the straw 40 

and cargo grain. Similar results have been observed in greenhouse experiments [6]. Pollution of the 41 

paddy field by As also affects crop growth and development (lower germination rate, reduced shoot 42 

and root growth and biomass production, etc.) and, consequently, crop yield [6].  43 

Alternate wetting and drying of the paddy field during the cropping season is the most effective way 44 

of achieving agronomic mitigation [7]. Application of silicon (Si) fertilizer can also reduce the 45 

concentration of As in the rice plant [8]. A second category of mitigation options relies on rice 46 

genetic improvement to reduce As uptake and/or its translocation from the vegetative organs to the 47 

grains.  48 

Mechanisms of rice plant response to soil As excess have been reported to be similar to those 49 

observed for other types of soil chemical toxicity [9]. However, the mechanisms related to the 50 

phytotoxic effects of As and the rice defense response to As remain poorly understood. In aerobic 51 

conditions, the predominant form of soil As is arsenate, As(OH)5 or As(V), and its uptake by plants 52 

involves phosphate transporters [10]. Overexposure to As(V) triggers reduced expression of genes 53 

coding for arsenate/phosphate transporters such as PHT1 [11]. At the same time, the arsenate taken 54 

up undergoes chemical reduction to a more highly toxic species, arsenite [As (III)] [12, 13]. The 55 

arsenite is then either excreted into the rhizosphere [14, 15], or transported to aboveground organs 56 

[16], and/or detoxified by complexation as phytochelatines and compartmentalized in the vacuoles 57 

[17]. In paddy fields, the predominant form of As is arsenite [18]. It enters root cells through 58 

aquaporin type membrane ports [19]. Transporters involved in the process include silicon 59 

transporters Lsi1 (influx) and Lsi2 (efflux) [19, 20] and several silicon-independent pathways [21, 60 

22].   61 
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Significant genetic diversity for As accumulation has been reported in A. thaliana and in rice. In A. 62 

thaliana, genome-wide association analysis (GWAS) detected the HAC1 gene (High arsenic content 63 

1) responsible for arsenate reductase activity in the root, facilitating arsenite efflux to the soil. In rice, 64 

significant genetic diversity for As accumulation has been reported under overexposure to As in both 65 

hydroponic cultivation and in field experiments [23-26]. Analysis of grain As content in 300 rice 66 

accessions grown in six sites distributed in Bangladesh, China and USA revealed from 3 to 34 fold 67 

variation in each site [25]. It also revealed that accessions belonging to the Aus genetic group had the 68 

highest As contents.  69 

Using recombinant inbred lines (RIL) from bi-parental crosses, several QTLs involved in As 70 

accumulation have been mapped [23, 26-29]. Likewise, the use of phenotypic data produced in [27] 71 

for GWAS has detected several significant associations for grain As content [30]. However, none of 72 

the significant associations mapped in the vicinity (distance of less than 200 kb) of the Os02g51110 73 

and Os03g01700 loci coding for Lsi1 and Lsi2 proteins, previously reported [19, 20] to play a central 74 

role in rice response to As overexposure. Likewise, very few significant associations colocalized with 75 

QTLs mapped in RIL populations [25]. Analysis of As-induced genome-wide modulation of 76 

transcriptomes of rice seedling roots revealed up-regulation of several hundred genes, confirming the 77 

complexity of the gene network involved in response to As overexposure [31-34]. Gene families with 78 

differential gene expression in As tolerant and As-susceptible genotypes include glutathione S-79 

transferases, cytochrome P450s, heat shock proteins, metal-binding proteins, and a large number of 80 

transporters and transcriptions factors such as MYBs [35]. MYB genes may be crucial in As(V) stress 81 

tolerance as they upregulate phenylpropanoid and flavonoid biosynthetic pathways. More recently, 82 

using a reverse genetics approach, [36] showed that OsHAC1;1 and OsHAC1;2 (two orthologs of A. 83 

thaliana HAC1) functioned as As(V) reductases and played a role in the control of As accumulation 84 

in rice. Likewise, [14] showed that OsHAC4 played a critical role in rice tolerance to arsenate and 85 

regulated arsenic accumulation in rice. Based on these findings, some authors recently advocated 86 

using gene-editing technology to improve rice As tolerance [7, 22].  87 

Here we report the results of our research into the potential of more conventional, marker assisted, 88 

breeding approaches to improve the ability of rice to restrict As accumulation in the grains. First, we 89 

used field phenotypic data (leaf and grain As content of rice plants grown on soil with rather high As 90 

concentration) and genotypic data from a reference diversity panel, to either map QTLs involved in 91 

As accumulation through GWAS or to train genomic prediction models. Second, using similar 92 

phenotypic and genotypic data from a panel of advanced lines from a breeding program, we analyzed 93 
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congruence between GWAS results in the two populations, and evaluated the predictive ability of 94 

genomic prediction across the two populations. Our results identified genomic prediction as the most 95 

promising approach to improve the ability of rice to restrict As uptake and its accumulation in the 96 

grains. 97 

 98 

Results 99 

Phenotypic diversity for arsenic content  100 

In 2014, soil analyses before crop establishment and after crop harvest revealed similar arsenic 101 

concentrations of about 10 mg kg-1 soil dry weight. During the same period, the monthly survey of 102 

the irrigation water revealed variable arsenic contents (0.014 to 0.034 mg l-1) with an average of 103 

0.021 mg l-1. Similar soil and water arsenic contents were observed in 2015 and 2016 (S2 Table). 104 

Variation in arsenic content in the reference population 105 

The three arsenic-related traits evaluated exhibited normal distribution (Figure 1). Partitioning of the 106 

observed phenotypic variations into different sources of variation via the mixed model analysis 107 

revealed a highly significant effect of accession for all traits considered (Table 1). In 2014, the model 108 

R² was greater than 0.70 for the three traits, indicating a good fit of the model. Similarly high R² were 109 

observed in 2015 (0.63 for Ratio, 0.80 for FL-As and CG-As). Broad-sense heritability tended to 110 

confirm this trend, with values ranging from 0.80 to 0.86 in 2014, and above 0.91 in 2015 (Table 1).   111 

In 2014, variation in FL-As among the 300 accessions of RP ranged from 1.34 to 15.61 and averaged 112 

5.88 mg kg-1 of dry weight. Variation in CG-As ranged from 0.147 to 0.656 mg kg-1 and averaged 113 

0.335. The determination coefficient between FL-As and CG-As was rather low but highly significant 114 

(R² = 0.20, p < 0.0001). This rather loose relationship between FL-As and CG-As corroborates the 115 

significant accession effect observed for the CG/FL-As ratio. 116 

In 2015, the range of variation in FL-As among the 50 accessions of RP with contrasted arsenic 117 

contents in 2014 was much larger (from 3.69 to 34.69; average of 16.83 mg kg-1), while the range of 118 

variation in CG-As was slightly narrower (0.169 to 0.493; average of 0.338 mg kg-1).  However, these 119 

differences in the range of variation did not change either the relative ranking of the 50 accessions 120 

observed in 2014, or the determining effect of FL-As on CG-As. Indeed, the Spearman coefficient of 121 

rank correlation between performances of the 50 RP accessions in 2014 and 2015 was r = 0.72 (p < 122 

0.0001) for FL-As, r = 0.68 (p < 0.0001) for CG-As, and r = 0.59 (p < 0.0001) for CG/FL-As.  123 
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Likewise, the determination coefficient between FL-As and CG-As of the 50 accessions in 2015 was 124 

higher (R² = 0.56, p < 0.0001) than the one observed in 2014 for the 300 accessions of RP.  125 

Variation in arsenic content in the validation population 126 

Variation in FL-As among the 95 accessions in the VP ranged from 3.24 to 37.76 and averaged 14.61 127 

mg kg-1. Variation in CG-As ranged from 0.208 to 0.729 mg kg-1 and averaged 0.341. The 128 

determination coefficient between the FL-As and CG-As was low but highly significant (R² = 0.20, p 129 

< 0.0001). The CG-As/FL-As ratio varied between 0.179 and 0.636 and averaged 0.336 (Figure 1).  130 

Genetic diversity and structure of the reference and validation populations  131 

Analysis of genetic diversity was performed for 228 RP accessions and 95 VP accessions for whom 132 

sufficient GBS data were available for association analysis and genomic prediction. 133 

The 22,370 SNP markers of the working dataset were unevenly distributed along the chromosomes 134 

(S1 Figure; S3 Table). Average marker density was one SNP every 17.1 kb. However, it ranged from 135 

one SNP every 10.7 kb in chromosome 11 to 26.7 kb in chromosome 9. The number of pairs of loci 136 

with a distance greater than 250 kb, 500 kb and 1 Mb was 175, 27 and one, respectively. 137 

The decay of LD over physical distance in the two populations is presented in Figure 2. For between-138 

marker distances of 0 to 25 kb, the average r² was 0.67 and 0.73 in RP and VP, respectively. In the 139 

RP, the r² value dropped to half its initial level at around 450 kb, reached 0.2 at 1.25 Mb, and below 140 

0.1 at 2.10 Mb. In the VP, r² reached the 0.2 threshold only at pairwise distances of around 1.70 Mb, 141 

and the 0.1 threshold at distances above 3 Mb. No major difference in LD decay was observed 142 

between chromosomes. Given these extents of average LDs, one would not expect marker density 143 

and distribution along the chromosome to be a major limiting factor for the detection of significant 144 

associations and for the predictive ability of genomic prediction. 145 

The two populations showed similar MAF patterns for the 22,370 common SNP loci. RP and VP had 146 

the same minor allele in 95.4% of the common loci. In both populations, the MAF distribution was 147 

slightly skewed toward low frequencies, the average MAF was close to 22.2%, and the proportion of 148 

loci with MAF < 10% was close to 75%. Likewise, the Spearman correlation between the MAF of 149 

the 21,343 loci with identical minor alleles in the two populations was r = 0.85 (p <0.01).  150 

Dissymmetry-based clustering of RP accessions led to two major clusters corresponding to the 151 

temperate japonica (65% of accessions) and tropical japonica (35% of accessions) sub-groups 152 

(Figure 3). The majority of the temperate japonica accessions are of European origin. The majority of 153 
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the tropical japonica accessions originate from the American continent. The inclusion of the VP lines 154 

in the analysis did not modify the clustering into two groups. Indeed, 69% of VP lines clustered with 155 

the temperate japonica group and the remaining 31% with the tropical japonica group (Figure 3; S1 156 

Table). 157 

Relationship between genotypic and phenotypic diversity  158 

Highly significant differences in As content were observed between the temperate japonica and the 159 

tropical japonica accessions of RP evaluated in 2014. The former subgroup had the highest arsenic 160 

contents (S4 Table; S2 Figure). Data from the 50 RP accessions evaluated in 2015 confirmed this 161 

trend. Interestingly, similar to the RP, significant differences in FL-As and CG-As were also observed 162 

between the temperate japonica and the tropical japonica components of VP, the former subgroup 163 

having the highest contents. This superposition of genotypic and phenotypic diversity may negatively 164 

influence QTL detection. 165 

Association analyses   166 

Association analysis in the reference population 167 

Results of association analysis of the three traits in the RP are presented in Figure 4 and S5 Table. 168 

The number of significant associations (p-value < 1e-05) was 41 for FL-As, 23 for CG-As and 82 for 169 

Ratio. These associations represented 6, 13 and 19 independent loci, i.e. a cluster of SNPs with a 170 

distance of less than 1.25 Mb between two consecutive significant SNPs, corresponding to the 171 

average LD of r² < 0.2. These loci were composed of 1-35 SNPs, not always adjacent, with p-values 172 

ranging between 1e-05 and 1e-07. None of the significant SNPs or independent loci for one trait were 173 

found to be significant for another trait. The MAF of the significant SNPs ranged from 2.5% to 174 

49.4% and averaged 36.1% for FL-As, 11.7% for CG-As and 27.5% for Ratio. The contribution of 175 

individual significant SNPs to the total variance of the trait considered (marker R2) was low and did 176 

not exceed 12%. Among the 41 SNPs significantly associated with Pl-As, 11 corresponding to three 177 

independent loci had marker R2 > 10%. The highest marker R2 observed among the 23 SNPs 178 

significantly associated with CG-As, was 8%. Among the 82 SNPs significantly associated with 179 

Ratio, nine corresponding to six independent loci had marker R2 > 10%. 180 

 181 
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Association analysis in the validation population 182 

Results of association analysis for the three traits in the VP are presented in Figure 4 and S5 Table. 183 

The number of significant associations was 15 for FL-As, 75 for CG-As and 8 for Ratio. These 184 

associations represented 8, 30 and 5 independent loci. These loci were composed of 1-22 not always 185 

adjacent SNPs, with p-values ranging between 1e-05 and 1e-09. Similar to RP, significant SNP loci 186 

for the three traits did not colocalize. The MAF of the significant SNP ranged from 2.6% to 46.8% 187 

and averaged 28.0% for FL-As, 9.0% for CG-As and 9.1% for Ratio. The significant SNPs 188 

contributed much more, on average, to trait total variance than the ones observed in the RP. The 189 

mean marker R2 was 18% for SNPs associated with FL-As, 24% for SNPs associated with CG-As 190 

and 16% for SNPs associated with Ratio.  191 

Congruence between the results of GWAS in RP and in VP  192 

Among the 146 SNPs significantly associated with one of the three traits in the RP, only eight were 193 

also significant in the VP. These SNPs corresponded to one independent locus associated with CG-194 

As. The application of a margin of tolerance of 1.7 Mb between a significant locus in RP and its 195 

counterpart in VP (corresponding to the average distances for LD of 0.2 in the VP) only slightly 196 

increased the number of colocalizations: four additional colocalizations for CG-As and one for Ratio. 197 

On the other hand, the number of such colocalizations increased markedly (9, 20 and 12 for FL-As, 198 

CG-As and Ratio, respectively) when the threshold of significance of association in the two 199 

populations was lowered to a p-value < 1e-04 (Figure 4). The latter features represented 69%, 40% 200 

and 52% of the independent significant loci detected in RP for FL-As, CG-As and Ratio, respectively.  201 

Genomic localization and co-localization with QTLs and gene reported in the literature 202 

Out of a total of 146 SNPs significantly associated with one of the three As related traits in the RP, 203 

41% were located in intergenic regions, 14% in introns, 27% in exons with synonymous coding 204 

effects, 10% in exons with non-synonymous coding effects, 6% in UTR-3 regions and 2% in stop-205 

gained sites (S6 Table). The proportions were similar for the 96 significant loci in the VP and for 206 

those observed among all the 22,370 SNPs used for GWAS. Genes underlying the significant loci 207 

included ATP binding cassette involved in arsenic detoxification (e.g. Os04g0620000), transporters 208 

(e.g. phosphate, ammonium, peptide, efflux transporters MATE) abiotic stress responsive genes (e.g. 209 

several F-box and DUF domain containing proteins, cytochrome P450) and transcription factors (e.g. 210 

MBY, zinc finger family protein, ERF).  211 
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A genome survey within an  interval of 400 kb (200 kb downstream and 200 kb upstream) 212 

surrounding each significant SNP in the RP and in the VP led to the identification of at least one gene 213 

with the product involved in plant response to abiotic stresses or reported in the literature as 214 

responsive to As stress (Figure 4 and S6 Table). The latter included OsLsi1, OsHAC1, OsHAC6, 215 

OsACR2-1 and representative of glutathione S-transferases, Cytochrome P450s, heat shock proteins, 216 

metal-binding proteins, phosphate acquisition proteins, transporter proteins and transcription factors. 217 

Likewise, a survey of the surrounding interval of 400 kb of the significant SNPs for QTL reported in 218 

the literature to be associated with As resulted in a large number of colocalizations (Figure 4 and S6 219 

Table) 220 

Genomic prediction 221 

Cross validation experiment in the reference population  222 

Application of seven cross validation experiments (corresponding to seven prediction methods) to 223 

each of the three phenotypic traits led to average prediction accuracies of 0.484 for FL-As, 0.574 for 224 

CG-As and 0.414 for Ratio (Table 2). Differences in predictive ability between the three traits were 225 

highly significant (P < 0.0001). Among the seven prediction methods, RKHS showed the highest 226 

average predictive ability (0.475) and BayesB and BayesC the lowest (0.435). However, a marked 227 

interaction was observed between prediction methods and traits (Table 2). 228 

In order to evaluate the effect of exclusion of highly redundant SNP (r² = 1), the cross validation 229 

experiment was also implemented with the full set of SNPs available (22,370), under GBLUP. 230 

Results showed negligible effects on predictive ability:  r = 0.449 versus 0.450 with the incidence 231 

matrix of 16,902 for FL-As, r = 0.535 versus 0.536 for CG-As, and r = 0.356 versus 0.357 for Ratio.  232 

Genomic prediction across populations  233 

Under the S1 scenario, using all the 228 accessions of the RP as the training set, the predictive ability 234 

of genomic estimate of breeding value (GEBV) of the 95 lines of VP was on average 0.426 for FL-235 

As, 0.476 for CG-As and 0.234 for Ratio (Figure 5 and  S7 Table). The three prediction methods 236 

implemented provided similar levels of average predictive ability. However, there was some 237 

interaction between prediction methods and phenotypic traits. Like for the cross validation 238 

experiments, the addition of the redundant SNPs in the incidence matrix did not noticeably modify 239 

the predictive ability (Figure 5).  240 
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The predictive ability of GEBV were much lower under S2, with averages of 0.266, 0.411 and -0.016 241 

for FL-As, CG-As and Ratio respectively (Figure 5). Under S3, the average predictive ability was 242 

slightly higher than under S1 for CG-As (0.491), and much lower than under S1 for FL-As (0.341) 243 

and for Ratio (0.073). 244 

 245 

 246 

Discussion 247 

The aim of this work was to explore (i) the phenotypic diversity of the rice japonica subspecies, 248 

adapted for cultivation in Mediterranean Europe, to restrict As accumulation in the grains, and (ii) the 249 

potential of the two major options for marker-assisted selection for the improvement of the trait, i.e. 250 

QTL-based selection and genomic estimate of breeding value (GEBV)-based selection.  251 

Phenotypic diversity for As accumulation was evaluated in field experiments with uncontrolled 252 

intensity of exposure to As. However, we observed a rather stable soil As concentration of about 10 253 

mg kg-1 across the crop cycles, and in the three consecutive years of field experiments. This 254 

concentration corresponded to the class of rather high As contents reported for paddy fields in 255 

countries including Bangladesh [37], China [4] and the USA [38]. The range of variation of CG-As 256 

(0.15 to 0.66 mg kg-1) among the accessions of RP was similar to the range observed by [34] in a 257 

panel of some 400 accessions representative of the diversity of all the O. sativa species 258 

(http://www.ricediversity.org/), evaluated in a multilocal trial in Bangladesh, China and the USA. 259 

The rather loose relationship between FL-As and CG-As we observed suggests there are differences 260 

between accessions in the ability to limit As transfer from the leaves to the grains. To our knowledge, 261 

the existence of such genetic diversity for the CG-As/FL-As ratio has not yet been reported in the 262 

literature. The number of rice accessions studied by [37] and [38], who investigated the relationship 263 

between rice shoot and grain As, was probably too low to reveal the genetic diversity we observed for 264 

CG-As/FL-As ratio. The rather high correlation between the performances of the 50 RP accessions 265 

evaluated twice, in two consecutive years, is evidence for the robustness of our findings concerning 266 

the extent of genetic diversity for FL-As and CG-As and on the relationship between the two traits. 267 

Interestingly, the extent of FL-As and CG-As in the VP was as large as that observed in the RP, 268 

despite its much smaller size, with only 95 accessions.  269 
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In order to explore the potential of marker-QTL association-based breeding for aptitude to restrict As 270 

accumulation in the grains, we performed association analysis in the RP to detect QTLs. A large 271 

number of QTLs was detected for each of the three traits considered. Some of these QTLs 272 

colocalized with already reported QTLs [26-29], candidate genes [21, 39], or cloned genes [20, 36]. 273 

However, only a few of the QTLs that we detected for the three traits colocalized with each other, 274 

some QTLs stretched over several Mb due to the large extent of LD, and none explained more than 275 

10% of total phenotypic variance.  276 

Several factors affect the success of GWAS in precisely mapping QTLs. These include the 277 

architecture and the heritability of the target trait, the size and the structure of the population, the 278 

number of loci affecting the traits that segregate in the population and their relationship with 279 

population structure, the statistical method, and the stringency of the threshold to declare association 280 

significance [40]. Apart from the choice of the statistical method and the significance threshold, the 281 

experimenter has often limited control over such factors. The exact MLM method we used is known 282 

to successfully correct for population structure and family relatedness [41]. Regarding the threshold 283 

of significance, several methods have been proposed to overcome the problem of multiple testing. 284 

These include monitoring of the number of false positives [42], permutation and boost-trap testing 285 

[43], comparing the results of 2-3 different GWAS methods [44], and sub-sampling [45]. However, 286 

the only evidence that a significant association detected in a GWAS is “real”, is its validation in an 287 

independent population [46], and such a replication requires a sufficiently large validation population 288 

to ensure detection power, and with similar features to the initial study of the above-mentioned 289 

factors that affect QTL detection [47]. 290 

GWAS with our VP detected a similarly large number of SNP and independent loci as with the RP, 291 

despite its smaller size (95 entries = 42% of RP size). However, only a few of the QTLs detected in 292 

the VP colocalized with the QTLs detected in the RP, despite considerable loosening of the interval 293 

surrounding each QTL, or lowering the significance threshold from 1e-05 to 1e-04. Yet, VP had 294 

similar features to RP for some of the factors that affect the GWAS results, such as population 295 

structure (composed of temperate and tropical japonica), the relationship between population 296 

structure and variability of the target trait (the temperate japonica having the highest As contents) and 297 

MAF distribution. Likewise, almost all the 95 advanced lines of VP were derived from crosses 298 

between members of RP.  299 

Given the above-mentioned superposition of the distributions of the phenotypic variability and the 300 

structuring of RP and VP into temperate and tropical japonica, our GWAS results might have been 301 
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subject to an abnormal rate of false negatives due to a confounding phenomenon [48]. To evaluate 302 

this risk, we performed separate association analyses with the 153 temperate and the 75 tropical 303 

japonica accessions of RP. These analyses detected, at best, 50% of the QTLs detected with the 304 

entire RP, without markedly increasing the P-value for each association (data not shown). The 305 

expected positive effects of diverting the confounding phenomenon proved to be smaller than the 306 

reduced detection power due to the reduced size of the population.  307 

The conclusions we draw from these results are that (i) a diversity panel with a large extent of LD has 308 

limited genetic resolution power, (ii) it is unlikely that a single GWAS makes it possible to establish 309 

robust and precise genotype–phenotype associations, especially for complex traits, and (iii) 310 

implementation of an independent replication experiment is a complex process with uncertain results.   311 

To explore the potential of genomic prediction options for breeding for the ability to restrict As 312 

accumulation in grains, we tested a large set of prediction methods using the cross-validation 313 

approach in the RP, and then performed prediction across populations with a smaller set of methods. 314 

The level of predictive ability for FL-As and CG-As in the cross validation experiments was similar 315 

to the levels reported in the literature for traits of equivalent heritability in rice [49] and other major 316 

crops [50, 51]. Predictions were less accurate for the Ratio trait, which, by design, accumulated the 317 

experimental noises associated with the evaluation of FL-As and CG-As. The cross validation 318 

experiments also confirmed the limited differences in predictive ability between prediction methods 319 

reported in rice [49, 52] and in other crops [53, 54]. The exclusion of the most redundant SNP 320 

markers, based on LD information, had a limited effect on predictive ability, confirming the fact that 321 

accounting for LD in the population matters more than the absolute marker density [55]. 322 

Across population genomic prediction with models trained with RP data led to slightly lower 323 

predictive ability than the predictive ability observed in the cross-validation experiments. Similar 324 

decreases in predictive ability have been reported in rice [49], sugar beet [56], barley [51] and 325 

strawberry [57], and were attributed to differences in LD and allele frequencies between the training 326 

and the validation sets. Differences in the extent and pattern of LD between the training sets 327 

represented by diversity panels and the validation sets composed of advanced lines are inevitable 328 

[58]. On the other hand, in our case, no significant differences in predictive ability were found 329 

between the GBLUP model that captures marker-based relationship between RP and VP, and RKHS 330 

and BayesB that captures LD between markers and QTLs. An attempt to reduce the discrepancy in 331 

allele frequency between RP and VP by discarding SNP loci with highly divergent MAF did not 332 

markedly change predictive ability (data not shown). Neither could conclusive improvement in 333 
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predictive ability be achieved by optimizing the composition of the training set using the CD-mean 334 

approach [59]. These findings suggest that further research aimed at improving the predictive ability 335 

of across population genomic predictions should explore the effects of the size of the training set (use 336 

a larger training set) and of the balance between marker density and the regularity of their 337 

distribution along the genome. Indeed, in the present work, marker density (one SNP every 17.1 kb) 338 

was rather high, given the extent of LD, but their distribution was not optimized given the GBS 339 

genotyping technology. 340 

The critical importance of reducing the presence of As in the rice grains in a large proportion of rice 341 

growing areas has recently resulted in steady efforts to understand the molecular mechanisms 342 

involved in plant response to overexposure to As [10, 22] and the genetic control of these 343 

mechanisms [15, 16, 19]. Although a few genes, reported as being “crucial”, have been cloned [36], 344 

transcriptome analyses [21, 39] and GWAS results [30] suggest that As tolerance is a complex trait 345 

involving a large number of loci with limited individual effect on the trait.  346 

The number of candidate loci makes marker-assisted pyramiding of the favourable alleles 347 

unpractical. Moreover, uncertainty concerning the exact genomic position of some of the loci makes 348 

the outcome of marker-assisted pyramiding unpredictable. Indeed, as discussed above, GWAS results 349 

raise robustness issues, and this also seems to be the case for transcriptome analyses [60]. 350 

The GEBV we obtained for flag leaf and cargo grain As contents were reasonably accurate in both 351 

intra-population (cross validation in the RP) and across-population (RP/VP) prediction experiments. 352 

Translation of those prediction accuracies into average phenotypic performances of VP lines selected 353 

based on their GEBV by model trained with the RP is even more encouraging. Indeed, the average 354 

FL-As and CG-As of the best 10 VP lines selected on the basis of phenotypic data were 41% and 65% 355 

of the average FL-As and CG-As  of all 95 lines of VP. The average FL-As and CG-As of the best 10 356 

VP lines selected on the base of GEBV were 55% and 85% of the average FL-As and CG-As the 357 

whole 95 lines of VP (S8 Table). In other words, for a selection rate of 10%, the difference in genetic 358 

gain between phenotypic selection and GEBV based selection was only 10% for FL-As and 5% for 359 

CG-As. Given these rather small differences in genetic gains, the choice between phenotypic and 360 

GEBV based selection will depend mainly on the comparative costs of genotyping and phenotyping 361 

for As content. If the costs are similar, the best choice would be GEBV-based selection because 362 

genotypic data are a multi-purpose asset that can also be used for genomic prediction of other traits 363 

than As content. The possibility of changing the genotyping method to obtain a smaller but more 364 

evenly distributed number of markers should also be considered in the decision making process. 365 
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Indeed, simulation works [61] and experimental data [42] have shown that, if markers are chosen 366 

based on LD distribution along the chromosomes, the number of markers can be reduced drastically 367 

without affecting predictive ability.  368 

To conclude, considering the limitations of QTL-based marker-assisted selection for As and the level 369 

of predictive ability of GEBV, genomic prediction proves to be the most promising option for 370 

breeding for the ability to restrict As accumulation in the rice grain. In a previous study [49], we 371 

showed that a rice diversity panel could provide accurate genomic predictions for complex traits in 372 

the progenies of biparental crosses involving members of the panel. In addition, associated with the 373 

rapid generation advancement technique, genomic selection can accelerate the genetic gain of the 374 

pedigree breeding scheme, the most common breeding scheme in rice. GS for As content can be 375 

incorporated in such a breeding program. The main additional cost would be the phenotyping of the 376 

diversity/reference panel for As content.  377 

  378 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/452276doi: bioRxiv preprint 

https://doi.org/10.1101/452276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

Methods 379 

Plant material 380 

The initial plant material comprised a diversity panel of 300 accessions and set of 100 advanced 381 

inbred lines (F5–F7), all belonging to the japonica subspecies of O. sativa, and adapted to cultivation 382 

in the irrigated rice ecosystem of temperate Mediterranean Europe. The diversity panel, hereafter 383 

referred to as the reference population (RP), was composed of 214 accessions representing the 384 

European Rice Core Collection (ERCC), established by merging the working collections of five 385 

European public rice breeding programs in France, Greece, Italy, Portugal and Spain [62], and 86 386 

accessions of direct interest for the Camargue-France breeding program (S1 Table). The 95 advanced 387 

breeding lines hereafter referred to as the validation population (VP), was composed of elite lines of 388 

the rice breeding program run by the Centre Français du Riz (CFR) and Cirad, in the Camargue 389 

region, France.     390 

Field trials and phenotyping 391 

Field trials were conducted at the CFR experimental station, Mas d’Adrien (43°42’13.77”N; 392 

4°33’44.71”E; 3 m asl.), under a standard irrigated rice cropping system. The RP was phenotyped in 393 

two consecutive years (2014 and 2015), the VP only in 2016. In 2014, all 300 accessions of RP were 394 

phenotyped under an augmented randomized complete block design repeated twice, each block being 395 

composed of 25 tested accessions and two check varieties (Albaron and Brio). In 2015, 50 accessions 396 

of RP, with contrasted As content performances, were phenotyped in complete randomized blocks 397 

with eight replicates. In both 2014 and 2015 trials, the size of the individual plot was one row of 15 398 

plants. In 2016, each of the 95 advanced lines of VP was represented by five full-sib lines and the 399 

size of the individual plot for each full-sib line was one row of 15 plants. 400 

In each field trial, the concentration of total arsenic in the flag leaf (FL-As) and in the cargo grain 401 

(CG-As) was measured and the CG-As/FL-As ratio calculated. In the 2014 and 2015 trials, three 402 

biological samples were prepared for each individual plot to measure FL-As. Each biological sample 403 

was composed of three flag leaves of three different plants. Each biological sample was oven-dried at 404 

75°C for 120 h, ground, mineralized, and total arsenic concentration was measured using the 405 

inductively coupled plasma mass spectrum (ICP-MA; Bruker Aurora ICP Mass Spectrometer). For 406 

each biological sample, total arsenic was measured in at least two technical samples and averaged to 407 

establish the sample phenotype. Data from the three biological samples were averaged to establish 408 
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the plot phenotype. A similar procedure was applied to CG-As measurement in which the biological 409 

samples were composed of three panicles. These panicles were threshed after oven drying, the 410 

resulting paddy grains were dehusked, and the cargo grain was ground before undergoing the 411 

mineralization procedure.  412 

In 2016, FL-As and CG-As were measured in one randomly chosen sib-line in each advanced line. 413 

Two biological samples were prepared from each chosen sib-line: one biological sample from an 414 

individual plant that was also used for DNA extraction and genotyping (see below), and a second 415 

sample from the bulk of at least three plants. 416 

In each field trial, the soil total As content was measured before sowing and after harvest. Likewise, 417 

in each field trial, total As content of irrigation water was monitored once a month during the rice 418 

cropping cycle. 419 

Genotypic data  420 

Genotypic data were produced by two distinct genotyping by sequencing (GBS) experiments, for 228 421 

accessions of RP and 95 lines of VP. In both cases, DNA libraries were prepared at the Regional 422 

Genotyping Technology Platform (http://www.gptr-lr-genotypage.com) hosted by Cirad, Montpellier 423 

France). Genomic DNA was extracted from the leaf tissues of a single plant from each accession 424 

using the MATAB method and then diluted to 100 ng/µl. Each DNA sample was digested separately 425 

with the restriction enzyme ApekI. DNA libraries were then single-end sequenced in a single-flow 426 

cell channel (i.e., 96-plex sequencing) using an Illumina HiSeq™2000 (Illumina, Inc.) at the 427 

Regional Genotyping Platform (http://get.genotoul.fr/) hosted by INRA, Toulouse, France. The fastq 428 

sequences were aligned to the rice reference genome (Os-Nipponbare-Reference-IRGSP-1.0 [63] 429 

with Bowtie2 (default parameters). Non-aligning sequences and sequences with multiple positions 430 

were discarded. Single nucleotide polymorphism (SNP) calling was performed using the Tassel GBS 431 

pipeline v5.2.29. The initial filters applied were the quality score (>20), the count of minor alleles 432 

(>1), and the bi-allelic status of SNPs. In the second step, loci with minor allele frequency (MAF) 433 

below 2.5% and with more than 20% missing data were discarded. The missing data were imputed 434 

using Beagle v4.0. The RP and VP genotyping experiment yielded 39,497 and 67,658 SNP loci, 435 

respectively, among which 22,370 were common to the two populations. This working dataset can be 436 

downloaded in HapMap format from 437 

http://tropgenedb.cirad.fr/tropgene/JSP/interface.jsp?module=RICE study Genotypes, study type ML 438 

panel_GBS_data. 439 
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Analysis of phenotypic data 440 

In 2014, RP plot phenotypic data of the 300 accessions were modeled for each trait as: 441 

���� � μ � �� � �� � ��� � 	
���� � 
����� � ���  

where ����  is the observed phenotype of accession i in replicate j and bloc k, μ is the overall mean, ��  442 

the accession effect, ��  the replicate effect, ���  the check effect considered as quantitative covariate, 443 

	
����  the block effect within the replicate, 
�����  the interaction between accessions and replicates, 444 

and ���  the residual.  445 

In 2015, RP plot phenotypic data of the 100 advanced lines were modeled for each trait as ��� � μ �446 

�� � �� � 
����� � ���   where ���  is the observed phenotype of accession i in bloc j, μ is the overall 447 

mean, ��  the accession effect, ��  the replicate effect, 
�����  the interaction between accession i and 448 

replicate  j, considered as random, and ���  the residual. For each dataset and each trait, least square 449 

means were estimated using the mixed model procedure of Minitab 18.1.0 statistical software 450 

(Minitab Inc. 2017).  451 

Broad-sense heritability was calculated for each trait as: 
� � ��
� /
��

� � ��
�/��, where ��

� and ��
� 452 

are the estimates of genetic and residual variances, respectively, derived from the expected mean 453 

squares of the analysis of variance and � is the number of replicates. The computed CG-As/FL-As 454 

ratio were subjected to the angular transformation 2Arcsin square root before analysis.  455 

Genotypic characterization of RP and VP  456 

The genetic structure of 228 accessions of RP and 95 advanced lines of VP was analyzed jointly 457 

using a distance-based method. First, a matrix of 3,620 SNPs was extracted from the working 458 

genotypic dataset of 22,370 SNPs common to RP and VP, by discarding loci that had imputed data 459 

and by imposing a minimum distance of 25 kb between two adjacent loci. Then, an unweighted 460 

neighbor-joining tree based on dissymmetry matrix was constructed using DarWin v6. 461 

The speed of decay of linkage disequilibrium (LD) in RP and VP was estimated by computing r² 462 

between pairs of markers on a chromosome basis using Tassel 5.2 software, and then averaging the 463 

results by distance classes using XLSTAT. 464 

Association analysis 465 
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Separate association analyses were performed with phenotypic and genotypic data from 228 466 

accessions of RP and from 95 advanced lines of VP. A single marker regression-based association 467 

analysis was performed for each phenotypic trait under a mixed linear model (MLM), in which 468 

marker and population structure (Q matrix) effects were considered as fixed and the kinship effect (K 469 

matrix) was considered as random. The MLM was run under the exact method option of Tassel 5.2 470 

software, where the additive genetic and residual variance components are re-estimated for each 471 

SNP. For each SNP tested, Tassel 5.2 computed a p-value, the log likelihood of the null and 472 

alternative models, and the fixed-effect weight of the SNP with its standard error. The threshold to 473 

declare the association of a SNP marker with a trait to be significant was set at a probability level of 474 

1e-05. Genes underlying the significant loci were analyzed using the MSU database 475 

(http://rice.plantbiology.msu.edu/) search and gene annotation. 476 

Genomic prediction 477 

Construction of the incidence matrix 478 

In order to reduce possible negative effects of redundancy of marker information on the predictive 479 

ability of genomic predictions and to reduce computing time, redundant SNPs were discarded as 480 

follows. First, using the genotypic dataset of the RP (N = 228 entries and P = 22,370 SNPs), for each 481 

SNP, pairwise LD with all other SNPs was calculated. Second, among each group of SNPs in 482 

complete LD (r² = 1), the first SNP along the chromosome was maintained and all the others were 483 

discarded. This procedure reduced the total number of SNP loci to 16,902.  Once the list of these 484 

SNPs was established, the incidence matrix of 16,902 SNP was constructed for the VP accordingly. 485 

Cross validation experiment in the RP. 486 

Seven statistical methods were tested: genomic best linear unbiased prediction (GBLUP), BayesA, 487 

BayesB and BayesC, Bayesian lasso and Bayesian ridge regression, and the reproducing kernel 488 

Hilbert spaces regressions (RKHS), using the BGLR statistical package [64]. The default parameters 489 

for prior specification were used and the number of iterations for the Markov chain Monte Carlo 490 

(MCMC) algorithm was set to 25,000 with a burn-in period of 5,000.  491 

The cross validation experiments used 171 (3/4) of the 228 accessions of the RP as the training set 492 

and the remaining 57 (1/4) accessions as the validation set. Each cross validation experiment was 493 

repeated 100 times using 100 independent partitioning of the RP into training set and validation set. 494 

For each independent partitioning, the correlation between the predicted and the observed phenotype 495 
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was calculated so as to obtain 100 correlations for each cross validation experiment. The predictive 496 

ability of each cross validation experiment was computed as the mean value of the 100 correlations.  497 

To analyze sources of variation in the predictive ability of genomic predictions, the correlation (r) of 498 

all prediction experiments was transformed into a Z statistic using the equation: � �  0.5 ����1 �499 

�� � ���1 � ��� and analyzed as a dependent variable in an analysis of variance. After estimation of 500 

confidence limits and means for Z, these were transformed back to r variables.  501 

Genomic prediction across populations  502 

The predictive ability of genomic prediction across populations was evaluated under three scenarios 503 

of composition of the training set. Under the first scenario (S1), all 228 accessions of the RP were 504 

used as the training set.  Under S2, the training set was composed of the 100 accessions of the RP 505 

with the lowest average pairwise Euclidian distances with the 95 lines of the VP. Under S3, 100 506 

accessions of the training set were selected among the 228 accessions of RP, using the CDmean 507 

method of optimization of the training set [59]. In this 3rd scenario, a dedicated training set was 508 

selected for each phenotypic trait to account for trait heritability. Three statistical methods GBLUP, 509 

BayesA and RKHS (that provided the highest predictive ability in the cross-validation experiments) 510 

were tested using the BGLR statistical package [64]. For each trait, the predictive ability of the 511 

prediction experiment was calculated as the correlation between the predicted and the observed 512 

phenotypes of the 95 lines.   513 

 514 

  515 
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Figure 1: Distribution of adjusted phenotypic values for flag leaf arsenic content (FL-As), Cargo 697 

grain arsenic content (CG-As), and the CG-As/FL-As ratio, in the reference (RP) and validation (VP) 698 

populations. 699 

Figure 2: Patterns of decay in linkage disequilibrium in the reference population (green) and in the 700 

validation population (blue). The curve represents the average r² among the 12 chromosomes; the 701 

bars represent the associated standard deviation. 702 

Figure 3: Unweighted neighbor-joining tree based on simple matching distances constructed from 703 

the genotype of 228 accessions of the reference population (RP) and 95 advanced lines of the 704 

validation population (VP), using 3,620 SNP markers. Green: VP; Red and blue: RP accessions 705 

belonging to tropical japonica and temperate japonica, respectively. 706 

Figure 4: Results of association analyses in the reference population (RP) and the validation 707 

population (VP) in the present study, and comparison with data from the literature. For the present 708 

study, data points represent SNPs significantly associated with arsenic concentration in the flag leaf 709 

(FL-As) in the cargo grain (CG-As), and the CG-As/FL-As ratio in RP and VP. Data from the 710 

literature include significant SNPs mapped by GWAS [30], QTLs for grain arsenic concentration [25, 711 

29] and candidate genes [21, 39]. 712 

Figure 5: Predictive ability of genomic prediction of the arsenic concentration in the flag leaf (FL-713 

As) in the cargo grain (CG-As), and for the CG-As/FL-As ratio of the validation population obtained 714 

with three statistical methods, BayesB, GBLUP and RKHS, under three scenarios of composition of 715 

the training set. 716 
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Table 1: Variance components of three phenotypic traits in the reference population (RP) evaluated 718 

in 2014 and in 50 selected accessions of RP evaluated in 2015 719 

Trial  Factors FL-As CG-As Ratio FL 

300 RP 

accessions  

2014 

Accession (A) 10.39 *** 0.012 *** 0.022 *** 167.79 *** 

Replicate (R) 6.68 NS 0.121 *** 0.055 NS 134.87 NS 

(A) x (R)  8.37 NS 0.005 *** 0.009 NS 38.83 NS 

Residual 4.13 
 

0.004 
 

0.011  27.05 
 

h² (SE) 0.831 
 

0.864 
 

0.803  0.920  

50 RP 

accessions 

2015 

Accession 425.30 *** 0.042 *** 0.050 *** 865.04 **** 

Replicate 286.18 *** 0.006 *** 0.071 *** 18.57 NS 

Residual 17.45 
 

0.002 
 

0.005  7.54 
 

h² (SE) 0.995 
 

0.994 
 

0.911  0.998  

FL-As: flag leaf arsenic content; CG-As: cargo grain arsenic content; Ratio: CG-As/FL-As; FL: time to flowering; h²: 720 

broad sense heritability; ***: significant at p≤0.001; NS: not significant. 721 

 722 

Table 2: Predictive ability (r) of seven methods of genomic prediction for three rice arsenic content 723 

traits in the reference population, based on cross validation experiments.  724 

Prediction 

method 

Phenotypic traits 

FL-As CG-As Ratio 
 

r sd r sd r sd 
Average 

r 

GBLUP 0.449 0.155 0.535 0.166 0.356 0.159 0.446 

BayesA 0.452 0.154 0.537 0.171 0.366 0.158 0.452 

BayesB 0.425 0.450 0.533 0.164 0.348 0.165 0.436 

BayesC 0.442 0.160 0.519 0.163 0.344 0.162 0.435 

BL 0.455 0.153 0.526 0.166 0.353 0.160 0.445 

BRR 0.455 0.153 0.536 0.167 0.356 0.162 0.449 

RKHS 0.408 0.941 0.549 0.086 0.468 0.125 0.475 

Average 0.441 0.309 0.533 0.154 0.370 0.156 0.448 

FL-As: flag leaf arsenic content; CG-As: cargo grain arsenic content; Ratio: CG-As/FL-As. r: average predictive ability; 725 

sd: standard deviation.  726 
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Supporting information 729 

S1 Table. Main characteristics of the 228 accessions of the reference population (RP) and 95 730 

advanced lines of the validation population.   731 

S2 Table. Soil and water arsenic contents in the experimental site over the three years of field 732 

experiments. 733 

S3 Table. Variability of marker density and frequency of minor alleles (MAF) along the 12 734 

chromosomes in the reference and the validation populations. 735 

S4 Table. Average arsenic contents of the two subgroups of O. sativa japonica present in the 736 

reference population (RP) and in the validation population (VP).  737 

S5 Table. Results of association analysis of the concentration of arsenic in the flag leaf (FL-As) in 738 

the cargo grain (CG-As), and for the CG-As/FL-As ratio, in the reference population (RP) and in the 739 

validation population (RV). 740 

S6 Table. Colocalization of SNP loci significantly associated with arsenic content traits in the 741 

present study with similar loci reported in the literature. 742 

S7 Table 7. Predictive ability of genomic estimate of breeding value of the 95 advanced lines of the 743 

validation population for arsenic contents, by three genomic prediction models trained with data from 744 

228 accessions of the reference population. 745 

S8 table 8. Translation of predictive ability of genomic prediction into genetic gain under different 746 

selection intensities. 747 

S1 Figure. Distribution of the 22,370 working set SNP markers along the 12 chromosomes in the 748 

reference and validation populations. 749 

S2 Figure. Distribution of adjusted phenotypic values for arsenic content of the flag leaf (FL-As) and 750 
arsenic content of the cargo grain (CG-As), in the reference and validation populations, according to 751 
membership of the accessions of temperate japonica and tropical japonica subgroups. 752 
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