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Abstract  37 

Season is a major determinant of infectious disease rates, including arboviruses spread by mosquitoes, 38 

such as dengue, chikungunya, and Zika. Seasonal patterns of disease are driven by a combination of 39 

climatic or environmental factors, such as temperature or rainfall, and human behavioral time trends, 40 

such as school year schedules, holidays, and weekday-weekend patterns. These factors affect both 41 

disease rates and healthcare-seeking behavior. Seasonality of dengue fever has been studied in the 42 

context of climatic factors, but short- and long-term time trends are less well-understood. With 2009—43 

2016 medical record data from patients diagnosed with dengue fever at two hospitals in rural Ecuador, 44 

we used Poisson generalized linear modeling to determine short- and long-term seasonal patterns of 45 

dengue fever, as well as the effect of day of the week and public holidays. In a subset analysis, we 46 

determined the impact of school schedules on school-aged children. With a separate model, we 47 
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examined the effect of climate on diagnosis patterns. In the first model, the most important predictors 48 

of dengue fever were annual sinusoidal fluctuations in disease, long-term trends, day of the week, and 49 

hospital. Seasonal trends showed single peaks in case diagnoses, during April. Compared to an average 50 

day, cases were more likely to be diagnosed on Tuesdays (risk ratio (RR): 1.26, 95% confidence interval 51 

(CI) 1.05—1.51) and Thursdays (RR: 1.25, 95% CI 1.02—1.53), and less likely to be diagnosed on 52 

Saturdays (RR: 0.81, 95% CI 0.65—1.01) and Sundays (RR: 0.74, 95% CI 0.58—0.95). Public holidays were 53 

not significant predictors of dengue fever diagnoses, except for an increase in diagnoses on the day after 54 

Christmas (RR: 2.77, 95% CI 1.46—5.24). School schedules did not impact dengue diagnoses in school-55 

aged children. In the climate model, important climate variables included the monthly total precipitation 56 

(RR: 2.14, 95% CI 1.26—3.64), an interaction between total precipitation and monthly absolute 57 

minimum temperature (RR: 0.93, 95% CI 0.88—0.98), an interaction between total precipitation and 58 

monthly precipitation days (RR: 0.90, 95% CI 0.82—0.99 ), and a three-way interaction between 59 

minimum temperature, total precipitation, and precipitation days (RR: 1.01, 95% CI 1.00—1.02). This is 60 

the first report of long-term dengue fever seasonality in Ecuador, one of few reports from rural patients, 61 

and one of very few studies utilizing daily disease reports. These results can inform local disease 62 

prevention efforts, public health planning, as well as global and regional models of dengue fever trends. 63 

 64 

Author summary 65 

Dengue fever exhibits a seasonal pattern in many parts of the world, much of which has been attributed 66 

to climate and weather. However, additional factors may contribute to dengue seasonality. With 2009—67 

2016 medical record data from rural Ecuador, we studied the short- and long-term seasonal patterns of 68 

dengue fever, as well as the effect of school schedules and public holidays. We also examined the effect 69 

of climate on dengue. We found that dengue diagnoses peak once per year during April, but that 70 

diagnoses are also affected by day of the week. Dengue was also impacted by regional climate and 71 
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complex interactions between local weather variables. This is the first report of long-term dengue fever 72 

seasonality in Ecuador, one of few reports from rural patients, and one of very few studies utilizing daily 73 

disease reports. This is the first report on the impacts of school schedules, holidays, and weekday-74 

weekend patterns on dengue diagnoses. These results suggest a potential impact of human behaviors 75 

on dengue exposure risk. More broadly, these results can inform local disease prevention efforts and 76 

public health planning, as well as global and regional models of dengue fever trends. 77 

 78 

Introduction 79 

Seasonality of infectious disease is a phenomenon commonly observed in the northern and southern 80 

hemispheres, with seasonality of influenza being the most well-known and well-studied infectious 81 

disease with a seasonal pattern [1-6]. Seasonality has also been observed with other infectious diseases, 82 

including malaria [7], dengue [8], tuberculosis [9, 10], acute respiratory infection [1, 11], and foodborne 83 

illness [12-15]. These relationships are often a combination of climatic and environmental factors and 84 

how these factors affect pathogen transmissibility [15, 16], vector abundance [8, 17-21], and human 85 

health, and drive human behaviors such as diet, crowding, travel patterns, and outdoor exposures [8, 86 

14, 15, 19, 20].  87 

Mosquito-borne viral infections include dengue fever, yellow fever, chikungunya, and Zika, among 88 

others [22]. These illnesses are common in tropical countries and are most often spread by mosquitoes 89 

in the Aedes genus. Dengue virus is the most common, and may present with fever, rash, and general 90 

pain; although an estimated 80% of dengue patients are asymptomatic [23], this infection can have 91 

serious health consequences, including death [24].  92 

The diagnosis of dengue and other acute febrile illnesses can be extremely difficult, depending on the 93 

stage of the illness and the resources available at the point of care. Dengue cannot always be 94 

distinguished from other febrile illnesses, though diagnostic testing, including rapid tests, ELISA, and 95 
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PCR-based assays are sometimes available and can aid with diagnosis [25], though the sensitivity and 96 

specificity of these tests are not perfect. Correct diagnosis of dengue additionally relies on the patient’s 97 

presenting signs and symptoms as well as the expertise of the clinician.  98 

Seasonality affects dengue diagnosis rates through several mechanisms. Seasons drive human behavior: 99 

people may be more or less likely to spend time crowded indoors or spread outdoors depending on the 100 

time of year, which affects exposure rates. This can be the result of weather conditions or a result of 101 

seasonal holidays, which affect school and work schedules, and drive public gatherings (such as parades) 102 

or private family gatherings. There is also reason to believe that seasonality affects host immunity: in 103 

tropical countries, both cell-mediated and humoral immune responses are decreased during the rainy 104 

season [26]. This could be driven by seasonal variation in gene expression [27], levels of immune-105 

modulators and blood cell composition [28], food availability, daylight exposure, and/or environmental 106 

exposures [26], though the causal direction of changes in the immune system, season, and seasonal 107 

disease is unclear. In addition, long-term disease trends are often a reflection of a buildup of disease-108 

specific immunity in a population: for outbreaks to occur, there must be a sufficient number of 109 

susceptible individuals in the population. If all persons in the community were infected in the previous 110 

years and are therefore immune to circulating strains of virus, no outbreak will occur and the season will 111 

have a relatively low intensity, and the low intensity will continue until additional susceptibles are 112 

available from birth, migration, or introduction of a new dengue serotype.  113 

Climate is a major component of seasonality and directly impacts the life history and behavior of the 114 

mosquito vector. Aedes aegypti, which is the principal vector of dengue in Ecuador, has been well-115 

characterized in its relationship to temperature, which has been shown to impact development rates, 116 

lifespan, fecundity, survival, biting rates, transmission probability, infection probability, abundance and 117 

incubation rates in both field and laboratory studies [29-36]. Field studies of rainfall have found 118 

associations between larval or adult abundance and precipitation [37-39]. Because temperature and 119 
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precipitation can affect mosquitoes throughout their life course, the temporal scale of climate-mosquito 120 

associations can vary, depending on the life stage of the mosquito. For example, lagged precipitation 121 

(one to two months prior) is linked to larval indices due to the impact of precipitation on larval breeding 122 

sites [37], while both lagged temperature (4 weeks) and unlagged [i.e. current] mean temperature have 123 

been associated with adult abundance [39, 40]. Adult abundance and biting patterns are critical to 124 

dengue risk; climate plays a major role in the activity levels of these vectors [33].  125 

The climate of Ecuador is highly diverse; though small in area, it contains 11 different Köppen-Geiger 126 

climate classifications, with the coast being generally classified as hot and semi-arid or tropical savanna 127 

climates, the central Andean range as oceanic or warm-summer Mediterranean climates, and the 128 

eastern rainforest as tropical rainforest climates [41]. Ecuador is also impacted by the El Niño/Southern 129 

Oscillation (ENSO) phenomenon in which the surface temperature of the Pacific ocean leads to periodic 130 

changes in regional weather patterns [42]. Specifically, an El Niño year will be warmer and wetter than 131 

average in Ecuador, and a La Niña year will be drier and cooler than average [42].  132 

Studies of disease seasonality in tropical regions are limited. For mosquito-borne disease, previous 133 

research has largely focused on climatic and environmental variables, which directly affect vector 134 

abundance. In Ecuador, this research has been limited to two studies of dengue cases in coastal regions; 135 

In one study, minimum weekly temperature and mean weekly precipitation were shown to be strongly 136 

linked to weekly number of dengue cases [19]. A second study in the same area found that minimum 137 

weekly temperature, precipitation, and El Niño events were positively associated with dengue risk [20]. 138 

These studies both occurred in a large city the southern coast of Ecuador; given the diversity of climates 139 

and communities in Ecuador and the need for relevant evidence to make policy decisions, it is important 140 

to determine if the causal relationships between seasonal factors, climates, and dengue cases are similar 141 

in other areas of Ecuador.  142 
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With the present study we determined the seasonality of dengue fever by decomposing seasonality into 143 

two components: temporal seasonality and climate-driven seasonality, using data from patients 144 

clinically diagnosed with dengue fever at two hospitals in rural Ecuador with a subtropical climate. 145 

Temporal trends included short- and long-term trends, and the effects of school sessions, public 146 

holidays, and weekdays on these diagnoses. Climate-driven trends included an examination of regional 147 

and local climate variable impacts on dengue fever diagnoses.   148 

Methods 149 

Study population & site 150 

Hospital Pedro Vicente Maldonado (HPVM) is a 17-bed rural hospital located in Pedro Vicente 151 

Maldonado (PVM), Pichincha, Ecuador (Fig 1). It primarily serves patients from Cantons Pedro Vicente 152 

Maldonado, Puerto Quito, San Miguel de los Bancos, and Santo Domingo. Pedro Vicente Maldonado is 153 

located at 0°05'12.3"N, 79°03'08.0"W, and northwest of Quito, at approximately 600 meters altitude, 154 

with a projected 2016 population of 6,944. Hospital Saludesa (HS) is a 60-bed metropolitan hospital 155 

located in Santo Domingo de los Tsáchilas (SD), Santo Domingo de los Tsáchilas, Ecuador (Fig 1). It serves 156 

patients from Santo Domingo de los Tsáchilas Province. Santo Domingo de los Tsáchilas is located at 157 

0°15'15"S, 79°10'19"W, and west of Quito, at approximately 550 meters altitude, with a population of 158 

305,632 (2010 Census). Both hospitals have 24-hour, 7-days-a-week emergency rooms, with regular 159 

consultation available on Mondays—Saturdays. During holidays, only the emergency room services are 160 

available. Both hospitals have clinical laboratory services available, including the NS1 dengue antigen 161 

rapid and dengue IgG antibody tests. These cities have a tropical rainforest climate; average monthly 162 

temperatures run from 71.8° Fahrenheit (22.1° Celsius) in November to 74.8° Fahrenheit (23.8° Celsius) 163 

in March. Average total monthly precipitation runs from 110 millimeters in July to 671 millimeters in 164 

April. Both sites have ongoing mosquito control programs. Cities are fumigated approximately once per 165 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 26, 2018. ; https://doi.org/10.1101/452318doi: bioRxiv preprint 

https://doi.org/10.1101/452318


month with repellant, and residents are provided with temephos (Abate®) treatment for water stored in 166 

large laundry tanks.   167 

 168 

Fig 1. Study Site Locations. This map depicts the locations of the two hospitals used in the study, 169 

Hospital Saludesa and Hospital Pedro Vicente Maldonado, as well as the climate station. Inset, coast of 170 

Ecuador, with a square marking the relative position of the larger map. PVM=Pedro Vicente Maldonado, 171 

INAMHI=Instituto Nacional de Meteorología e Hidrología. Basemap tiles by © OpenStreetMap 172 

contributors, under CC BY-SA (https://www.openstreetmap.org/copyright). Inset tiles from by © Stamen 173 

Design, under CC BY 3.0 (maps.stamen.com). Maps were modified by R.S. for this manuscript. 174 

 175 

Data Collection 176 

For this medical record review, we examined de-identified records with a primary diagnosis of 177 

arthropod-borne viral fevers and viral hemorrhagic fevers. These included International Statistical 178 

Classification of Diseases and Related Health Problems, 10th Revision (ICD-10) codes A90—A99. Records 179 

from Hospital Pedro Vicente Maldonado included consult dates from August 1, 2009 through July 31, 180 

2016. Records from Hospital Saludesa included consult dates from July 1, 2014 through July 31, 2016. 181 

The following variables were available for analysis: consult date, primary diagnosis, ICD-10 code, and 182 

patient demographics (age, sex, insurance status, weight, and height). Patients missing more than 50% 183 

of these variables were excluded. Information regarding school schedules and holiday dates in each year 184 

was obtained from the Ecuadorian Ministry of Education, the Ministry of Tourism and local residents 185 

[43-46]. School sessions and holidays analyzed in this study are in Table 1. Data for monthly climate 186 

variables measured at the La Concordia station (0°01'29.0"N, 79°22'49.0"W, Fig 1) were obtained from 187 

the National Institute of Meteorology and Hydrology in Ecuador [47, 48]. Oceanic Niño Indices (ONI), a 188 
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measure of ENSO effects, were obtained from the National Weather Service 189 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml). 190 

 191 

Table 1. School Sessions & Holidays.  192 

a
Date shown for 2015, official celebration date varies annually 193 

b
Each holiday period included the official public holiday date, and the preceding/following weekend days 194 

if the date fell on a Friday or a Monday. 195 

Event Typical Date(s) Total Days in Dataset
b
 

School Semester 
 

May 4
th

—October 2
nd

, October 

12
th

—December 23
rd

, January 

4
th

—February 26
th

 

1884 

New Year’s Eve, New Year’s Day December 31
st
 & January 1

st
  21 

Anniversary of Pedro Vicente Maldonado
a 

January 16
th

  25 

Carnival
a 

February 15
th

—18
th

  20 

Easter
a 

April 2
nd

  11 

Labor Day May 1
st
  9 

Anniversary of the Battle of Pichincha
a 

May 24
th

  12 

Independence Day
a 

August 10
th

  16 

Anniversary of the Battle of Guayaquil
a 

October 9
th

  19 

All Soul’s Day, Anniversary of the Battle of 

Cuenca
a 

November 2
nd

—5
th

  

20 

Christmas Eve, Christmas Day December 24
th

 & 25
th

  18 

One Day After Christmas December 26
th

  9 
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 196 

Ethics 197 

This research was certified as non-human subjects research by the Institutional Review Board of 198 

University of Wisconsin-Madison (#2017-0033).  199 

 200 

Statistical Analysis 201 

Four observations (5% of total) for monthly absolute minimum temperature were missing. Multiple 202 

imputation was used to estimate these values. Using all available monthly climate variables, monthly 203 

case counts, and time. Ten imputations were performed with a fully conditional specification algorithm; 204 

parameters were pooled and used to obtain estimates.  205 

Log-linked Poisson generalized linear models with generalized estimating equations (GEE) 206 

(autoregressive correlation structure) were used for all models. Models using GEE account for 207 

correlation in data, as is common in time series data. To account for temporal autocorrelation, cases 208 

were clustered by week of diagnosis. Model fit was assessed using quasi-likelihood under the 209 

independence model information criterion (QIC). Model 1 was used to evaluate the intra-annual and 210 

long-term seasonality of common diseases in a temporal seasonal model. Daily case counts were the 211 

outcome of interest and data from both hospitals were combined, with an indicator variable for hospital 212 

of origin. Long-term trends were estimated with a restricted cubic spline; number of knots was 213 

determined by best fit. For intra-annual effects, we compared sine and cosine waves with frequencies of 214 

once, twice, and/or three times in 365 days, using best fit to select the final fit. After selecting the best 215 

fit for the long-term and intra-annual effects, we added  day-of-week and holidays as indicator variables, 216 

with the hypothesis that day-of-week may impact care-seeking decisions, and that patients may be less 217 

likely to seek care on a holiday (due to family obligations or travel). Holidays included official 218 
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government-declared holidays and any weekends immediately before or after these holidays, as well as 219 

the day after Christmas.  220 

Because children may differ in their exposure to dengue risk factors when school is in session, the effect 221 

of school schedules were examined using a subset analysis (Model 2). We restricted this analysis to 222 

school-aged children (ages 4—18) who sought care at Hospital Pedro Vicente Maldonado (n=142). We 223 

used the best-fit long-term and intra-annual effects model from the first analysis, and included an 224 

indicator variable for days where school was in session (including weekends during the school year). 225 

To determine the impact of climate on disease seasonality, we built a log-linked Poisson generalized 226 

linear model (Model 3). Climate data were available as monthly averages, so daily case counts were 227 

aggregated to monthly counts. Temperature and precipitation variables were centered on their mean 228 

value; temperatures were scaled at 2° Celsius, number of days with precipitation were scaled at 5 days 229 

and total monthly precipitation was scaled at 10 millimeters. The effects of climate variables (all 230 

continuous or integer variables), including ONI, average monthly temperature, minimum monthly 231 

temperature, maximum monthly temperature, total monthly precipitation, and number of days per 232 

month with precipitation were evaluated. Because climate variables interact with each other in reality, 233 

we also examined interactions between the significant climate variables in the final model. 234 

Data analysis and visualization was performed using SAS version 9.2 (SAS Institute, Cary, NC) including  235 

the macros DASPLINE, DSHIDE, and weekno [49, 50], and R version 3.2.2 (R Foundation for Statistical 236 

Computing, Vienna, Austria) including packages haven, raster, dismo, ggmap, OpenStreetMap, sp, 237 

geepack, and MASS [51-59]. 238 

 239 

Results 240 

Characteristics of the data used in this study are in Table 2, with patient demographics available in 241 

Supplemental Table 1. No cases were excluded.  The diagnoses in the dataset included dengue fever 242 
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(A90), dengue hemorrhagic fever (A91), other mosquito-borne viral fevers (A92), and mosquito-borne 243 

viral encephalitis (A83). Dengue diagnoses comprised 98.7% of the patients in the study. On average, 244 

one case is diagnosed at Pedro Vicente Maldonado every 4.3 days, and one case is diagnosed at 245 

Saludesa every 25 days. Time series plots of aggregated monthly case data from both hospitals, and 246 

monthly climate data are in Figure 2.  247 

 248 

Table 2. Data Characteristics. 249 

Cases and Climate Factors 

Pedro Vicente 

Maldonado 

Saludesa 

Dengue Fever Cases 

n 580 34 

Daily Minimum 0 0 

Daily Mean 0.23 0.04 

Daily Maximum 4 3 

2009
a 

38 - 

2010 129 - 

2011 77 - 

2012 113 - 

2013 47 - 

2014 103 2 

2015 58 32 

2016
a 

15 0 

January 52 2 

February 50 5 
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 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

a
These are partial years 266 

in this dataset 267 

 268 

March 57 4 

April 45 4 

May 64 7 

June 48 2 

July 54 2 

August 44 1 

September 37 1 

October 42 1 

November 44 1 

December 43 4 

 Oceanic Niño Index 

Minimum -1.5 

Mean 0.30 

Maximum 2.3 

Absolute Minimum 

Temperature (degrees 

Celsius) 

Minimum 12.9 

Mean 20.0 

Maximum 22.1 

Total Precipitation 

(millimeters) 

Minimum 3.6 

Mean 278.1 

Maximum 989.9 

Monthly Number of 

Days with Precipitation 

Minimum 5 

Mean 20 

Maximum 31 
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Fig 2. Time Series Plots for Dataset. Monthly averages for Oceanic Niño Index (orange), minimum (blue), 269 

mean (black), and maximum (red) temperature, precipitation (green), and diagnoses (purple) are plotted 270 

over the time period of the study. 271 

 272 

The final model for temporal seasonality (Model 1) included a sine and cosine wave with an annual 273 

cycle, long-term trend effects, day-of-week effects, and indicator variables to designate holidays and 274 

hospitals. Fits metrics for the null model and each considered model are available in Supplemental Table 275 

2. Model 1 predictions for daily diagnoses are presented in Fig 3 and exhibit an annual peak of disease in 276 

early April each year. At the beginning of the time series (2009-2010) there was an average of one case 277 

every 3.2 days and at the end of the time series (2015-2016) there was an average of one case every 10 278 

days. Day-of-week effects are summarized in Fig 4. Compared to the average day, Tuesdays and 279 

Thursdays were more likely to have dengue fever diagnoses (Tuesday: relative risk (RR)=1.26, 95% 280 

confidence interval (CI) 1.05—1.51, p=0.013, Thursday: RR=1.25, 95% CI 1.02—1.53, p=0.030), while 281 

Saturdays and Sundays were less likely to have dengue fever diagnoses (Saturday: RR: 0.81, 95% CI 282 

0.65—1.01, p=0.062 Sunday: RR: 0.74, 95% CI 0.58—0.95, p=0.016). Compared to non-holidays, dengue 283 

fever cases were much more likely to be diagnosed the day after Christmas (RR: 2.77, 95% CI 1.46—5.24, 284 

p=0.002), after holding all other covariates constant. The subanalysis (Model 2) did not find an effect of 285 

school session on dengue diagnoses.  286 

 287 

Fig 3. Temporal Seasonality. The temporal seasonality (Model 1) predictions for daily diagnoses exhibit 288 

an annual seasonality peaking in April.  289 

 290 
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Fig 4. Day-of-Week Effects. The effect of the day of the week on dengue fever diagnoses is summarized 291 

in this graph, comparing each day to the overall average effect of weekday. A null estimate (RR=1.0) is 292 

included as a reference. Effect estimates are derived from Model 1. CI=confidence interval.  293 

 294 

Most climate variables exhibited small but significant effects on risk of dengue fever diagnoses. Greater 295 

total monthly precipitation (RR: 2.14, 95% CI 1.26—3.64, p=0.005) result in increases in dengue fever 296 

diagnoses. In addition, there were significant interactions between total monthly precipitation and 297 

monthly absolute minimum temperature (RR: 0.93, 95% CI 0.88—0.98, p=0.05), as well as total monthly 298 

precipitation and the days per month with precipitation (RR: 0.90, 95% CI 0.82—0.99, p=0.027). A three-299 

way interaction between monthly absolute minimum temperature, total monthly precipitation, and 300 

days per month with precipitation was also noted (RR: 1.01, 95% CI 1.00—1.02, p=0.023). Model 3 301 

predictions of interaction variable effects are in Fig 5, wherein observed values for monthly absolute 302 

minimum temperature, total monthly precipitation, and days per month with precipitation were used to 303 

predict the number of dengue cases per month within a reasonable range of precipitation and minimum 304 

temperature values. At an absolute minimum temperatures of 18—19° C, the predicted number of cases 305 

increased (5 to 15 cases per month) as total monthly precipitation increased (from 125 to 875 mm per 306 

month) and decreased as the number of days with precipitation increased (from 5 to 30 days per 307 

month), but as minimum temperatures warm, the direction of these relationships changes. When the 308 

absolute minimum temperature is 20° C, additional days with precipitation or increases in monthly 309 

amounts of precipitation  have little effect on the number of diagnoses. For a monthly minimum 310 

temperature of 21—22° C, the effect of increased amounts of precipitation is weaker, but still positive, 311 

while the impact of number of days with precipitation at warmer temperatures leads to increases in the 312 

number of dengue diagnoses (from 2 to 10 cases per month).  313 

 314 
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Fig 5. Interactions Between Monthly Precipitation and Monthly Minimum Temperature Within 315 

individual plot panels, number of days with precipitation increase along the x-axis while monthly 316 

predicted number of dengue cases increase along the y-axis. Absolute minimum temperature levels 317 

increase along panel columns from left to right, and monthly amounts of precipitation increase along 318 

panel rows from bottom to top. Increases in the amount of precipitation leads to increases in the 319 

number of dengue diagnoses for all temperature conditions, but the relationship between temperature 320 

and number of days with precipitation exhibits an overall U-shaped pattern. As the minimum 321 

temperature warms, the relationship between number of days with precipitation and number of dengue 322 

diagnoses changes from negative to positive. At lower temperatures (18—19° C), additional days with 323 

precipitation lead to decreases in the predicted number of dengue cases. At 20° C, the relationship is 324 

flat, and at warmer temperatures (21—22° C), additional days with precipitation lead to increases in the 325 

number of dengue cases. Effect estimates were obtained from Model 3. T=monthly minimum 326 

temperature, mm=millimeters, C=Celsius.  327 

 328 

Discussion 329 

Understanding the seasonality of infectious diseases can be crucial to the public health efforts to control 330 

these diseases. Seasonality is a major determinant of vaccination scheduling, timing of educational 331 

campaigns, and allocation of resources. In this paper, we examine temporal (long-term trends, intra-332 

annual patterns, day-of-week and holiday effects) and climate components of seasonality.  333 

Our data exhibits annual peaks in dengue fever diagnoses, occurring in late March or early April. The 334 

model also included a long-term trend suggesting high-intensity dengue fever seasons followed by a 335 

low-intensity season or seasons the following two years (three-year peak). These inter-epidemic periods 336 

have been observed in long-term studies of dengue seasonality in coastal Ecuador as well as other 337 

countries. Coastal Ecuador exhibits significant annual and two-year peaks in dengue incidence [20]; 338 
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additional studies indicate that El Niño events, which occur in variable annual or multi-year patterns, 339 

may also influence dengue incidence patterns [19]. Our data exhibits peaks in 2012, and 2015; 2009 and 340 

2015 were moderate and very strong were El Niño years, respectively [60]. Research from Peru suggests 341 

annual and three-year peaks in dengue incidence [61], while Colombia experiences two- to five-year 342 

cycles [62], with some parts of Colombia lacking annual disease peaks [63]. The long-term pattern of this 343 

data exhibited a decrease in the average frequency of diagnoses (from one case every 3.2 days to one 344 

case every 10 days). This could be an actual decrease in disease diagnoses (perhaps due to 345 

improvements in mosquito-control practices during the study period) or may be the product of 346 

worsening economic conditions in Ecuador (which would affect the ability of patients to seek 347 

healthcare). In addition, a major earthquake in April 2016 disrupted many services in Ecuador, including 348 

transportation, utilities, and healthcare for several weeks, which may have disrupted the typical 349 

healthcare-seeking behavior of patients and the diagnostic capabilities of the hospitals during this time. 350 

In this dataset, dengue fever diagnoses were likely affected by healthcare-seeking behavior. The 351 

decision and timing of seeking care for health problems can be affected by short-term time trends 352 

including day-of-week and holiday patterns. This type of research is scarce in South America. In the US 353 

and the UK, research on day-of-week effects has found that patients are less likely to visit the hospital 354 

on a weekend and that weekend hospital visits tend to be non-elective [64, 65], suggesting that patients 355 

may put off healthcare for less serious health conditions. Our findings agree with previous research, 356 

with Saturdays and Sundays being the least likely days for dengue fever diagnosis. However, we 357 

additionally found an increase in diagnoses on Tuesdays and Thursdays. We speculate that there may be 358 

some underlying pattern to diagnostic capabilities (e.g. staffing patterns, shipment days for lab supplies, 359 

or a backlog of patient samples from the weekend). We also examined holidays, with the reasoning that 360 

patients would also delay healthcare until after holidays. Previous studies suggest that holiday effects 361 

may be complex: research from Colombia has shown increases in dengue during periods immediately 362 
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following holidays, from patients travelling to dengue-endemic areas during the holidays [66]. In our 363 

study, the individual holidays largely had no effect on dengue diagnoses, except for the day after 364 

Christmas (p=0.0015), when patients were more likely to be diagnosed with dengue fever. Since the 365 

incubation period for dengue is 4—10 days, this spike in diagnoses would support the hypothesis that 366 

who became ill over the holiday delayed their care, rather than acquired their illness during holiday 367 

travel. 368 

In our seasonality assessment, we found that dengue fever diagnoses during late March/early April. This 369 

is the first assessment of dengue fever seasonality in rural Ecuador. Reports from nearby Colombia 370 

regarding dengue fever seasonality have not found an annual seasonal pattern for dengue incidence [63, 371 

67], though these studies did not utilize sinusoidal variables, making it difficult to detect these patterns.  372 

Climatic factors such as temperature or precipitation can affect the survival and distribution of mosquito 373 

vectors and the transmissibility of pathogens from these vectors [16-18]. In previous research in 374 

Colombia, studies have found average temperature, changes in average temperature, average relative 375 

humidity, total precipitation, and El Niño events to be major predictors of dengue incidence [63, 68]. 376 

Research in Ecuador has been limited to studies of dengue cases in coastal regions. In one study, 377 

minimum weekly temperature and weekly average precipitation were shown to be strongly linked to 378 

weekly number of dengue cases [20]. Minimum weekly temperature, precipitation, and El Niño events 379 

were also positively associated with dengue risk [19]. Our data illustrate a complex relationship between 380 

climate factors and dengue fever diagnoses. Temperature is a major factor; dengue transmission is 381 

sensitive to extremes of temperature as Aedes aegypti propagate and transmit dengue best between 382 

18—32° C [63], but precipitation is also important. In isolation, total monthly precipitation and number 383 

of days with precipitation had opposite effects, suggesting that sufficient precipitation is necessary for 384 

dengue cases to occur, but that too many days with precipitation decrease risk. However, when we 385 

consider minimum monthly temperature, temperature modifies the effects of precipitation in a U-386 
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shaped pattern. All amounts of precipitation drive increases in dengue diagnoses but additional days 387 

with precipitation lead to decreases in dengue diagnoses while when temperatures are lowest, as in the 388 

months of July through November (mean minimum temperatures of 19.0—19.7° C). During these 389 

months precipitation amounts are all below 250 mm on average and durations are 11.7 to 15.7 days on 390 

average, resulting in a relatively low predicted number of dengue fever cases. At warmer temperatures, 391 

both number of days with and amount of precipitation have positive relationships with the number of 392 

dengue diagnoses. At the warmer part of the year – i.e. December through June (mean minimum 393 

temperatures of 19.8—21.2° C), precipitation quantity is higher (mean 271.6—635.4 mm per month) 394 

and occurs on more days (mean 21.6—28.3 days per month).  395 

Our results likely reflect the effect of precipitation on mosquitoes: female Aedes aegypti mosquitoes 396 

tend to lay eggs just above the water surface in containers or pools [69] until additional precipitation 397 

(i.e. flooding of the eggs) causes the eggs to hatch, but too much precipitation can wash eggs or larvae 398 

out of their containers [70], meaning some dry periods are necessary or even beneficial to Aedes aegypti 399 

abundance. Previous research has found that Aedes aegypti breeding site occupancy is increased at sites 400 

with longer dry periods [71]. Temperature levels affect evaporation rates and the durability of standing 401 

water (i.e. breeding and development sites); this may explain temperature’s modifying impact on the 402 

relationship between precipitation and dengue diagnoses.  403 

Human hosts may also change their travel outside the home during consistently rainy periods, which 404 

may alter their exposure to dengue-infected mosquitoes (depending on where they are most exposed). 405 

Research in Australia found that virus acquisition was spatiotemporally linked to the case’s residence in 406 

42% of dengue cases [72], though this proportion may differ in other geographic locations. Human 407 

movement and behavior is a major component of dengue fever risk [73]. Weather patterns affect 408 

human movements, with high movement variation on days with higher precipitation [74]. The patterns 409 
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between dengue fever risk and climate variables observed in our data are likely a combination of the 410 

effect of climate on mosquito vectors and human behaviors.  411 

Limitations 412 

This dataset represents dengue fever diagnoses in the community and is only a proxy for dengue fever 413 

incidence rates. There are likely to be many more cases dengue fever in the community: 80% of dengue 414 

cases are estimated to be asymptomatic, some symptomatic patients may never seek care, and some 415 

symptomatic patients may have sought care at hospitals other than those included in this study. This 416 

could be a potential source of selection bias. However, our study hospitals are the major source of care 417 

in their communities and we are assessing seasonality and climate variables; we have no reason to 418 

believe that the effect of seasonality and climate is any different among symptomatic versus 419 

asymptomatic patients nor for the small number of persons who sought care at other clinics. The effect 420 

of selection bias on these data is likely minimal. 421 

Dengue diagnosis can be difficult even for experienced clinicians, especially in a resource-limited setting 422 

such as Ecuador. Not all patients with a final dengue diagnosis were necessarily lab-confirmed; the use a 423 

laboratory confirmation likely varies by clinician, patient, and presenting symptoms, though the 424 

clinicians at the study hospitals are all experienced with dengue diagnosis. Because not all cases were 425 

laboratory-confirmed, it is possible that some non-dengue cases were diagnosed as dengue, particularly 426 

when chikungunya was introduced to Ecuador (late 2015) and no diagnostic tools were available for 427 

chikungunya. However, because chikungunya and dengue are spread by the same mosquito species, 428 

Aedes aegypti, and exhibit the same symptoms, we expect that the effects of seasonality and climate on 429 

to be the same for both chikungunya and dengue.  430 

Our dataset only covers a seven-year period making it difficult to conclude if our observations truly 431 

reflect long-term or multi-year disease trends in this community. Additional research for longer periods 432 
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of time will reveal if a two- or three-year long-term peaks or decreases in dengue fever diagnoses are 433 

present in this community. 434 

Available climate data was captured from a climatological station located 39 and 36 kilometers from 435 

Hospital Pedro Vicente and Hospital Saludesa, respectively. These data are only a proxy for actual 436 

climate conditions in our communities of interest. In addition, analyses with climate variables were 437 

limited to monthly summaries of these variables, making it difficult to ascertain if the relationships 438 

discovered in this research reflect the true relationship between climate variables and dengue fever 439 

diagnoses in these populations. Under the assumption that most patients would be bitten, experience 440 

symptoms, and seek care within the same month, the climate-diagnosis relationships presented in this 441 

study are a good estimate of dengue seasonality in these communities. In reality, there is considerable 442 

variation among the climate variables, mosquito exposure and dengue diagnoses in this community, 443 

which we were unable to capture in this study. Nor are we able to estimate the effects of climate 444 

variable interactions among ranges and combinations of variables that were unobserved in this location. 445 

Future research will address this gap with on-the-ground climate loggers and additional research in 446 

areas with different climate conditions.  447 
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