
  1 

 2 

 3 

Seasonal patterns of dengue fever in rural Ecuador: 2009—2016 4 

Seasonality of dengue fever in Ecuador 5 

  6 

 7 

Rachel Sippy
1,2,#a

, Diego Herrera
3
, David Gaus

3
, Ronald E. Gangnon

1,4
, Jonathan A. Patz

1,5
, and Jorge E. 8 

Osorio
6* 

9 

 
10 

 
11 

 
12 

1
Department of Population Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 13 

United States of America 14 

 15 

2
Department of Family Medicine & Community Health, University of Wisconsin-Madison, Madison, 16 

Wisconsin, United States of America 17 

 18 

3
Salud y Desarrollo Andino, Pedro Vicente Maldonado, Pichincha, Ecuador 19 

 20 

4
Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, 21 

Wisconsin, United States of America 22 

 23 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 2, 2019. ; https://doi.org/10.1101/452318doi: bioRxiv preprint 

https://doi.org/10.1101/452318


5
Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, 24 

United States of America 25 

 26 

6
Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United 27 

States of America 28 

 29 

#a
Current Address: Department of Medical Geography, University of Florida, Gainesville, Florida, United 30 

States of America 31 

 32 

 33 

* Corresponding author 34 

Email: jorge.osorio@wisc.edu 35 

 36 

Abstract  37 

Season is a major determinant of infectious disease rates, including arboviruses spread by mosquitoes, 38 

such as dengue, chikungunya, and Zika. Seasonal patterns of disease are driven by a combination of 39 

climatic or environmental factors, such as temperature or rainfall, and human behavioral time trends, 40 

such as school year schedules, holidays, and weekday-weekend patterns. These factors affect both 41 

disease rates and healthcare-seeking behavior. Seasonality of dengue fever has been studied in the 42 

context of climatic factors, but short- and long-term time trends are less well-understood. With 2009—43 

2016 medical record data from patients diagnosed with dengue fever at two hospitals in rural Ecuador, 44 

we used Poisson generalized linear modeling to determine short- and long-term seasonal patterns of 45 

dengue fever, as well as the effect of day of the week and public holidays. In a subset analysis, we 46 

determined the impact of school schedules on school-aged children. With a separate model, we 47 
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examined the effect of climate on diagnosis patterns. In the first model, the most important predictors 48 

of dengue fever were annual sinusoidal fluctuations in disease, long-term trends (as represented by a 49 

spline for the full study duration), day of the week, and hospital. Seasonal trends showed single peaks in 50 

case diagnoses, during mid-March. Compared to the average of all days, cases were more likely to be 51 

diagnosed on Tuesdays (risk ratio (RR): 1.26, 95% confidence interval (CI) 1.05—1.51) and Thursdays (RR: 52 

1.25, 95% CI 1.02—1.53), and less likely to be diagnosed on Saturdays (RR: 0.81, 95% CI 0.65—1.01) and 53 

Sundays (RR: 0.74, 95% CI 0.58—0.95). Public holidays were not significant predictors of dengue fever 54 

diagnoses, except for an increase in diagnoses on the day after Christmas (RR: 2.77, 95% CI 1.46—5.24). 55 

School schedules did not impact dengue diagnoses in school-aged children. In the climate model, 56 

important climate variables included the monthly total precipitation, an interaction between total 57 

precipitation and monthly absolute minimum temperature, an interaction between total precipitation 58 

and monthly precipitation days, and a three-way interaction between minimum temperature, total 59 

precipitation, and precipitation days. This is the first report of long-term dengue fever seasonality in 60 

Ecuador, one of few reports from rural patients, and one of very few studies utilizing daily disease 61 

reports. These results can inform local disease prevention efforts, public health planning, as well as 62 

global and regional models of dengue fever trends. 63 

 64 

Author summary 65 

Dengue fever exhibits a seasonal pattern in many parts of the world, much of which has been attributed 66 

to climate and weather. However, additional factors may contribute to dengue seasonality. With 2009—67 

2016 medical record data from rural Ecuador, we studied the short- and long-term seasonal patterns of 68 

dengue fever, as well as the effect of school schedules and public holidays. We also examined the effect 69 

of climate on dengue. We found that dengue diagnoses peak once per year in mid-March, but that 70 

diagnoses are also affected by day of the week. Dengue was also impacted by regional climate and 71 
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complex interactions between local weather variables. This is the first report of long-term dengue fever 72 

seasonality in Ecuador, one of few reports from rural patients, and one of very few studies utilizing daily 73 

disease reports. This is the first report on the impacts of school schedules, holidays, and weekday-74 

weekend patterns on dengue diagnoses. These results suggest a potential impact of human behaviors 75 

on dengue exposure risk. More broadly, these results can inform local disease prevention efforts and 76 

public health planning, as well as global and regional models of dengue fever trends. 77 

 78 

Introduction 79 

Seasonality of infectious disease is a phenomenon commonly observed in the northern and southern 80 

hemispheres, with seasonality of influenza being the most well-known and well-studied infectious 81 

disease with a seasonal pattern [1-6]. Seasonality has also been observed with other infectious diseases, 82 

including malaria [7], dengue [8], tuberculosis [9, 10], acute respiratory infection [1, 11], and foodborne 83 

illness [12-15]. These relationships are often a combination of climatic and environmental factors and 84 

how these factors affect pathogen transmissibility [15, 16], vector abundance [8, 17-21], and human 85 

health, and drive human behaviors such as diet, crowding, travel patterns, and outdoor exposures [8, 86 

14, 15, 19, 20].  87 

Mosquito-borne viral infections include dengue fever, yellow fever, chikungunya, and Zika, among 88 

others [22]. These illnesses are common in tropical countries and are most often spread by mosquitoes 89 

in the Aedes genus. Dengue virus is the most common, and may present with fever, rash, and general 90 

pain; although an estimated 80% of dengue patients are asymptomatic [23], this infection can have 91 

serious health consequences, including death [24].  92 

The diagnosis of dengue and other acute febrile illnesses can be extremely difficult, depending on the 93 

stage of the illness and the resources available at the point of care. Dengue cannot always be 94 

distinguished from other febrile illnesses, though diagnostic testing, including rapid tests, ELISA, and 95 
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PCR-based assays are sometimes available and can aid with diagnosis [25], though the sensitivity and 96 

specificity of these tests are not perfect. Correct diagnosis of dengue additionally relies on the patient’s 97 

presenting signs and symptoms as well as the expertise of the clinician.  98 

Seasonality affects dengue diagnosis rates through several mechanisms. Seasons drive human behavior: 99 

people may be more or less likely to spend time crowded indoors or spread outdoors depending on the 100 

time of year, which affects exposure rates. This can be the result of weather conditions or a result of 101 

seasonal holidays, which affect school and work schedules, and drive public gatherings (such as parades) 102 

or private family gatherings. There is also reason to believe that seasonality affects host immunity: in 103 

tropical countries, both cell-mediated and humoral immune responses are decreased during the rainy 104 

season [26]. This could be driven by seasonal variation in gene expression [27], levels of immune-105 

modulators and blood cell composition [28], food availability, daylight exposure, and/or environmental 106 

exposures [26], though the causal direction of changes in the immune system, season, and seasonal 107 

disease is unclear. In addition, long-term or multi-annual disease trends are often a reflection of a 108 

buildup of disease-specific immunity in a population: for outbreaks to occur, there must be a sufficient 109 

number of susceptible individuals in the population. If all persons in the community were infected in the 110 

previous years and are therefore immune to circulating strains of virus, no outbreak occurs and the 111 

season will have a relatively low intensity, and the low intensity will continue until additional 112 

susceptibles are available from birth, migration, or introduction of a new dengue serotype.  113 

Climate is a major component of seasonality and directly impacts the life history and behavior of the 114 

mosquito vector. Aedes aegypti, which is the principal vector of dengue in Ecuador, has been well-115 

characterized in its relationship to temperature, which has been shown to impact development rates, 116 

lifespan, fecundity, survival, biting rates, transmission probability, infection probability, abundance and 117 

incubation rates in both field and laboratory studies [29-36]. Field studies of rainfall have found 118 

associations between larval or adult abundance and precipitation [37-39]. Because temperature and 119 
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precipitation can affect mosquitoes throughout their life course, the temporal scale of climate-mosquito 120 

associations can vary, depending on the life stage of the mosquito. For example, lagged precipitation 121 

(one to two months prior) is linked to larval indices due to the impact of precipitation on larval breeding 122 

sites [37], while both lagged temperature (4 weeks) and unlagged [i.e. current] mean temperature have 123 

been associated with adult abundance [39, 40]. Adult abundance and biting patterns are critical to 124 

dengue risk; climate plays a major role in the activity levels of these vectors [33].  125 

The climate of Ecuador is highly diverse; though small in area, it contains 11 different Köppen-Geiger 126 

climate classifications, with the coast being generally classified as hot and semi-arid or tropical savanna 127 

climates, the central Andean range as oceanic or warm-summer Mediterranean climates, and the 128 

eastern rainforest as tropical rainforest climates [41]. Ecuador is also impacted by the El Niño/Southern 129 

Oscillation (ENSO) phenomenon in which the surface temperature of the Pacific ocean leads to periodic 130 

changes in regional weather patterns [42]. Specifically, an El Niño year will be warmer and wetter than 131 

average in Ecuador, and a La Niña year will be drier and cooler than average [42].  132 

Studies of disease seasonality in tropical regions are limited. For mosquito-borne disease, previous 133 

research has largely focused on climatic and environmental variables, which directly affect vector 134 

abundance. In Ecuador, this research has been limited to two studies of dengue cases in coastal regions; 135 

In one study, minimum weekly temperature and mean weekly precipitation were shown to be strongly 136 

linked to weekly number of dengue cases [19]. A second study in the same area found that minimum 137 

weekly temperature, precipitation, and El Niño events were positively associated with dengue risk [20]. 138 

These studies both occurred in a large city the southern coast of Ecuador; given the diversity of climates 139 

and communities in Ecuador and the need for relevant evidence to make policy decisions, it is important 140 

to determine if the causal relationships between seasonal factors, climates, and dengue cases are similar 141 

in other areas of Ecuador.  142 
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With the present study we determined the seasonality of dengue fever by decomposing seasonality into 143 

two components: non-climate seasonality and climate-driven seasonality, using data from patients 144 

clinically diagnosed with dengue fever at two hospitals in rural Ecuador with a subtropical climate. Non-145 

climate trends included short- and long-term trends, and the effects of school sessions, public holidays, 146 

and weekdays on these diagnoses. Climate-driven trends included an examination of regional and local 147 

climate variable impacts on dengue fever diagnoses.   148 

Methods 149 

Study population & site 150 

Hospital Pedro Vicente Maldonado (HPVM) is a 17-bed rural hospital located in Pedro Vicente 151 

Maldonado (PVM), Pichincha, Ecuador (Fig 1). It primarily serves patients from Cantons Pedro Vicente 152 

Maldonado, Puerto Quito, San Miguel de los Bancos, and Santo Domingo. Pedro Vicente Maldonado is 153 

located at 0°05'12.3"N, 79°03'08.0"W, and northwest of Quito, at approximately 600 meters altitude, 154 

with a projected 2016 population of 6,944. Hospital Saludesa (HS) is a 60-bed metropolitan hospital 155 

located in Santo Domingo de los Tsáchilas (SD), Santo Domingo de los Tsáchilas, Ecuador (Fig 1). It serves 156 

patients from Santo Domingo de los Tsáchilas Province. Santo Domingo de los Tsáchilas is located at 157 

0°15'15"S, 79°10'19"W, and west of Quito, at approximately 550 meters altitude, with a population of 158 

305,632 (2010 Census). Both hospitals have 24-hour, 7-days-a-week emergency rooms, with regular 159 

consultation available on Mondays—Saturdays. During holidays, only the emergency room services are 160 

available. Both hospitals have clinical laboratory services available, including the NS1 dengue antigen 161 

rapid and dengue IgG antibody rapid tests (Human, Wiesbaden, Germany); the NS1 dengue antigen 162 

rapid test is the diagnostic of choice. These cities have a tropical rainforest climate; average monthly 163 

temperatures run from 71.8° Fahrenheit (22.1° Celsius) in November to 74.8° Fahrenheit (23.8° Celsius) 164 

in March. Average total monthly precipitation runs from 110 millimeters (mm) in July to 671 mm in 165 

April. Both sites have ongoing mosquito control programs. Cities are fumigated approximately once per 166 
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month with repellent, and residents are provided with temephos (Abate®) treatment for water stored in 167 

large laundry tanks.   168 

 169 

Fig 1. Study Site Locations. This map depicts the locations of the two hospitals used in the study, 170 

Hospital Saludesa and Hospital Pedro Vicente Maldonado, as well as the climate station. Inset, coast of 171 

Ecuador, with a square marking the relative position of the larger map. PVM=Pedro Vicente Maldonado, 172 

INAMHI=Instituto Nacional de Meteorología e Hidrología. Basemap tiles by © OpenStreetMap 173 

contributors, under CC BY-SA (https://www.openstreetmap.org/copyright). Inset tiles from by © Stamen 174 

Design, under CC BY 3.0 (maps.stamen.com). Maps were modified by R.S. for this manuscript. 175 

 176 

Data Collection 177 

For this medical record review, we examined de-identified records with a primary diagnosis of 178 

arthropod-borne viral fevers and viral hemorrhagic fevers. These included International Statistical 179 

Classification of Diseases and Related Health Problems, 10th Revision (ICD-10) codes A90—A99. Records 180 

from Hospital Pedro Vicente Maldonado included consult dates from August 1, 2009 through July 31, 181 

2016. Records from Hospital Saludesa included consult dates from July 1, 2014 through July 31, 2016. 182 

The following variables were available for analysis: consult date, primary diagnosis, ICD-10 code, and 183 

patient demographics (age, sex, insurance status, county-level address, weight, and height). We set 184 

criteria to exclude patients missing more than 50% of these variables. Information regarding school 185 

schedules and holiday dates in each year was obtained from the Ecuadorian Ministry of Education, the 186 

Ministry of Tourism and local residents [43-46]. School sessions and holidays analyzed in this study are in 187 

Table 1. Data for monthly climate variables measured at the La Concordia station (0°01'29.0"N, 188 

79°22'49.0"W, Fig 1) were obtained from the National Institute of Meteorology and Hydrology in 189 

Ecuador [47, 48]. Oceanic Niño Indices (ONI), a measure of ENSO effects, were obtained from the 190 
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National Weather Service 191 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml). 192 

 193 

Table 1. School Sessions & Holidays.  194 

a
Date shown for 2015, official celebration date varies annually 195 

b
Each holiday period included the official public holiday date, and the preceding/following weekend days 196 

if the date fell on a Friday or a Monday. 197 

Event Typical Date(s) Total Days in Dataset
b
 

School Semester 
 

May 4
th

—October 2
nd

, October 

12
th

—December 23
rd

, January 

4
th

—February 26
th

 

1884 

New Year’s Eve, New Year’s Day December 31
st
 & January 1

st
  21 

Anniversary of Pedro Vicente Maldonado
a 

January 16
th

  25 

Carnival
a 

February 15
th

—18
th

  20 

Easter
a 

April 2
nd

  11 

Labor Day May 1
st
  9 

Anniversary of the Battle of Pichincha
a 

May 24
th

  12 

Independence Day
a 

August 10
th

  16 

Anniversary of the Battle of Guayaquil
a 

October 9
th

  19 

All Soul’s Day, Anniversary of the Battle of 

Cuenca
a 

November 2
nd

—5
th

  

20 

Christmas Eve, Christmas Day December 24
th

 & 25
th

  18 

One Day After Christmas December 26
th

  9 
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 198 

Ethics 199 

This research was certified as non-human subjects research by the Institutional Review Board of 200 

University of Wisconsin-Madison (#2017-0033).  201 

 202 

Statistical Analysis 203 

Four observations (5% of total) for monthly absolute minimum temperature were missing. Multiple 204 

imputation was used to estimate these values using all available monthly climate variables, monthly 205 

case counts, and time. Ten imputations were performed with a fully conditional specification algorithm; 206 

parameters were pooled and used to obtain estimates.  207 

Log-linked Poisson generalized linear models with generalized estimating equations (GEE) 208 

(autoregressive correlation structure) were used for all models. Models using GEE account for 209 

correlation in data, as is common in time series data. To account for temporal autocorrelation, cases 210 

were clustered by week of diagnosis. Model fit was assessed using quasi-likelihood under the 211 

independence model information criterion (QIC). Model 1 was used to evaluate the intra-annual and 212 

long-term seasonality of disease in a non-climate seasonal model; these seasonal components were 213 

included because there is evidence for intra-annual patterns in dengue diagnoses elsewhere in Ecuador 214 

[20] and our dataset had large year-to-year variations in diagnoses. Daily case counts were the outcome 215 

of interest and data from both hospitals were combined, with an indicator variable for hospital of origin. 216 

Long-term trends were estimated with a restricted cubic spline; number of knots was determined by 217 

best fit. For intra-annual effects, we compared sine and cosine waves with frequencies of once, twice, 218 

and/or three times in 365 days, using best fit to select the final fit. After selecting the best fit for the 219 

long-term and intra-annual effects, we added day-of-week and holidays as indicator variables, with the 220 

hypothesis that day-of-week may impact care-seeking decisions, and that patients may be less likely to 221 
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seek care on a holiday (due to family obligations or travel). Holidays included official government-222 

declared holidays and any weekends immediately before or after these holidays, as well as the day after 223 

Christmas.  224 

Because children may differ in their exposure to dengue risk factors when school is in session, the effect 225 

of school schedules were examined using a subset analysis (Model 2). We restricted this analysis to 226 

school-aged children (ages 4—18) who sought care at Hospital Pedro Vicente Maldonado (n=142). We 227 

used the best-fit long-term and intra-annual effects model from the first analysis and included an 228 

indicator variable for days where school was in session (including weekends during the school year). 229 

To determine the impact of climate on disease seasonality, we built a log-linked Poisson generalized 230 

linear model (Model 3). Climate data were available as monthly averages, so daily case counts were 231 

aggregated to monthly counts. Temperature and precipitation variables were centered on their mean 232 

value; temperatures were scaled at 2° Celsius, number of days with precipitation were scaled at 5 days 233 

and total monthly precipitation was scaled at 10 mm. The effects of climate variables (all continuous or 234 

integer variables), including ONI, average monthly temperature, minimum monthly temperature, 235 

maximum monthly temperature, total monthly precipitation, and number of days per month with 236 

precipitation were evaluated. Because climate variables interact with each other in reality, we also 237 

examined interactions between the significant climate variables in the final model. 238 

Data analysis and visualization was performed using SAS version 9.2 (SAS Institute, Cary, NC) including  239 

the macros DASPLINE, DSHIDE, and weekno [49, 50], and R version 3.2.2 (R Foundation for Statistical 240 

Computing, Vienna, Austria) including packages haven, raster, dismo, ggmap, OpenStreetMap, sp, 241 

geepack, and MASS [51-59]. 242 

 243 
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Results 244 

Characteristics of the data used in this study are in Table 2, with patient demographics available in 245 

Supplemental Table 1. No cases met the exclusion criteria; all cases were included in analysis. The 246 

diagnoses in the dataset included dengue fever (A90), dengue hemorrhagic fever (A91), other mosquito-247 

borne viral fevers (A92), and mosquito-borne viral encephalitis (A83). Dengue diagnoses comprised 248 

98.7% of the patients in the study. On average, one case is diagnosed at Pedro Vicente Maldonado every 249 

4.3 days, and one case is diagnosed at Saludesa every 25 days. Time series plots of aggregated monthly 250 

case data from both hospitals, and monthly climate data are in Figure 2.  251 

 252 

Table 2. Data Characteristics. 253 

Cases and Climate Factors 

Pedro Vicente 

Maldonado 

Saludesa 

Dengue Fever Cases 

n 580 34 

Daily Minimum 0 0 

Daily Mean 0.23 0.04 

Daily Maximum 4 3 

2009
a 

38 - 

2010 129 - 

2011 77 - 

2012 113 - 

2013 47 - 

2014 103 2 

2015 58 32 
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2016
a 

15 0 

January 52 2 

February 50 5 

March 57 4 

April 45 4 

May 64 7 

June 48 2 

July 54 2 

August 44 1 

September 37 1 

October 42 1 

November 44 1 

December 43 4 

 Oceanic Niño Index 

Minimum -1.5 

Mean 0.30 

Maximum 2.3 

Absolute Minimum 

Temperature (degrees 

Celsius) 

Minimum 12.9 

Mean 20.0 

Maximum 22.1 

Total Precipitation 

(millimeters) 

Minimum 3.6 

Mean 278.1 

Maximum 989.9 

Monthly Number of Minimum 5 
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 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

a
These are partial years in this dataset 272 

Days with Precipitation Mean 20 

Maximum 31 
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 273 

Fig 2. Time Series Plots for Dataset. Monthly averages for Oceanic Niño Index (orange), minimum (blue), 274 

mean (black), and maximum (red) temperature, precipitation (green), and diagnoses (purple) are plotted 275 

over the time period of the study. 276 

 277 

The final model for non-climate seasonality (Model 1, parameters in Supplemental Table 2) included a 278 

sine and cosine wave with an annual cycle, long-term patterns, day-of-week effects, and indicator 279 

variables to designate holidays and hospitals. Fits metrics for the null model and each considered model 280 

are available in Supplemental Table 3. Model 1 predictions for daily diagnoses are presented in Fig 3 and 281 

exhibit an annual peak of disease in mid-March each year on average. Day-of-week effects are 282 

summarized in Fig 4. Compared to the average of all days, Tuesdays and Thursdays were more likely to 283 

have dengue fever diagnoses (Tuesday: relative risk (RR)=1.26, 95% confidence interval (CI) 1.05—1.51, 284 

p=0.012, Thursday: RR=1.25, 95% CI 1.02—1.52, p=0.033), while Saturdays and Sundays were less likely 285 

to have dengue fever diagnoses (Saturday: RR: 0.81, 95% CI 0.64—1.01, p=0.062 Sunday: RR: 0.74, 95% 286 

CI 0.58—0.95, p=0.016). Compared to non-holidays, dengue fever cases were much more likely to be 287 

diagnosed the day after Christmas (RR: 2.80, 95% CI 1.46—5.30, p=0.002), after holding all other 288 

covariates constant. The subanalysis (Model 2) did not find an effect of school session on dengue 289 

diagnoses.  290 

 291 

Fig 3. Non-climate Seasonality. The non-climate seasonality (Model 1) predictions for daily diagnoses 292 

exhibit an annual seasonality peaking in mid-March. Case predictions are in black, with confidence 293 

intervals in grey. The top panel depicts predictions for Hospital Pedro Vicente Maldonado and the 294 

bottom panel depicts predictions for Hospital Saludesa. 295 

 296 
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Fig 4. Day-of-Week Effects. The effect of the day of the week on dengue fever diagnoses is summarized 297 

in this graph, comparing each day to the overall average effect of weekday. A null estimate (RR=1.0) is 298 

included as a reference. Effect estimates are derived from Model 1. CI=confidence interval.  299 

 300 

Most climate variables exhibited small but significant effects on risk of dengue fever diagnoses. Fit 301 

metrics for the null model and each considered climate model are available in Supplemental Table 4. 302 

Greater total monthly precipitation (RR: 2.14, 95% CI 1.26—3.64, p=0.005) results in increases in dengue 303 

fever diagnoses, i.e. for every 10mm increase in monthly precipitation, there is an approximately two-304 

fold increase in dengue fever diagnoses on average. In addition, there were significant interactions 305 

between total monthly precipitation, number of days with precipitation, and monthly absolute 306 

minimum temperature. Model 3 predictions of interaction variable effects are in Fig 5, wherein 307 

observed values for monthly absolute minimum temperature, total monthly precipitation, and days per 308 

month with precipitation were used to predict the number of dengue cases per month within a 309 

reasonable range of precipitation and minimum temperature values. At an absolute minimum 310 

temperature of 18—19° C, the predicted number of cases increased (5 to 15 cases per month) as total 311 

monthly precipitation increased (from 125 to 875 mm per month) and decreased as the number of days 312 

with precipitation increased (from 5 to 30 days per month), but as minimum temperatures warm, the 313 

direction of these relationships changes. When the absolute minimum temperature is 20° C, additional 314 

days with precipitation or increases in monthly amounts of precipitation have little effect on the number 315 

of diagnoses. For a monthly minimum temperature of 21—22° C, the effect of increased amounts of 316 

precipitation is weaker, but still positive, while the impact of number of days with precipitation at 317 

warmer temperatures leads to increases in the number of dengue diagnoses (from 2 to 10 cases per 318 

month).  319 

 320 
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Fig 5. Interactions Between Monthly Precipitation and Monthly Minimum Temperature Within 321 

individual plot panels, number of days with precipitation increase along the x-axis while monthly 322 

predicted number of dengue cases increase along the y-axis. Absolute minimum temperature levels 323 

increase along panel columns from left to right, and monthly amounts of precipitation increase along 324 

panel rows from bottom to top. Increases in the amount of precipitation leads to increases in the 325 

number of dengue diagnoses for all temperature conditions, but the relationship between temperature 326 

and number of days with precipitation exhibits an overall U-shaped pattern. As the minimum 327 

temperature warms, the relationship between number of days with precipitation and number of dengue 328 

diagnoses changes from negative to positive. At lower temperatures (18—19° C), additional days with 329 

precipitation lead to decreases in the predicted number of dengue cases. At 20° C, the relationship is 330 

flat, and at warmer temperatures (21—22° C), additional days with precipitation lead to increases in the 331 

number of dengue cases. Effect estimates were obtained from Model 3. T=monthly minimum 332 

temperature, mm=millimeters, C=Celsius.  333 

 334 

Discussion 335 

Understanding the seasonality of infectious diseases can be crucial to the public health efforts to control 336 

these diseases. Seasonality is a major determinant of vaccination scheduling, timing of educational 337 

campaigns, and allocation of resources. In this paper, we examine non-climate (long-term trends, intra-338 

annual patterns, day-of-week and holiday effects) and climate components of seasonality.  339 

Our data exhibits annual peaks in dengue fever diagnoses, occurring in mid- March. Long-term studies of 340 

dengue seasonality in coastal Ecuador and other countries also exhibit annual peaks as well as inter-341 

epidemic periods (high-intensity dengue fever seasons followed by a low-intensity season or seasons the 342 

following two years). Coastal Ecuador exhibits significant annual and two-year peaks in dengue 343 

incidence [20]; additional studies indicate that El Niño events, which occur in variable annual or multi-344 
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year patterns, may also influence dengue incidence patterns [19]. Our data exhibits peaks in 2012, and 345 

2015; 2009 and 2015 were moderate and very strong were El Niño years, respectively [60]. Research 346 

from Peru suggests annual and three-year peaks in dengue incidence [61], while Colombia experiences 347 

two- to five-year cycles [62], with some parts of Colombia lacking annual disease peaks [63].  348 

In this dataset, dengue fever diagnoses were likely affected by healthcare-seeking behavior. The 349 

decision and timing of seeking care for health problems can be affected by short-term time trends 350 

including day-of-week and holiday patterns. This type of research is scarce in South America. In the US 351 

and the UK, research on day-of-week effects has found that patients are less likely to visit the hospital 352 

on a weekend and that weekend hospital visits tend to be non-elective [64, 65], suggesting that patients 353 

may put off healthcare for less serious health conditions. Our findings agree with previous research, 354 

with Saturdays and Sundays being the least likely days for dengue fever diagnosis. However, we 355 

additionally found an increase in diagnoses on Tuesdays and Thursdays. We speculate that there may be 356 

some underlying pattern to diagnostic capabilities (e.g. staffing patterns, shipment days for lab supplies, 357 

or a backlog of patient samples from the weekend). We also examined holidays, with the reasoning that 358 

patients would also delay healthcare until after holidays. Previous studies suggest that holiday effects 359 

may be complex: research from Colombia has shown increases in dengue during periods immediately 360 

following holidays, from patients travelling to dengue-endemic areas during the holidays [66]. In our 361 

study, the individual holidays largely had no effect on dengue diagnoses, except for the day after 362 

Christmas (p=0.0015), when patients were more likely to be diagnosed with dengue fever. Since the 363 

incubation period for dengue is 4—10 days, and since most patients are local, we feel this spike in 364 

diagnoses is from those who became ill over the holiday and delayed their care, rather than acquired 365 

their illness during holiday travel. However, other than decreased diagnoses on Saturdays, day-to-day 366 

patterns of infectious disease healthcare-seeking at these hospitals did not have the same fluctuations 367 
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as the dengue patients (data not shown), meaning these patterns may be the result of statistical noise 368 

and not general health-care seeking behaviors in the community. 369 

In our seasonality assessment, we found that dengue fever diagnoses peaks during mid-March on 370 

average. This is the first assessment of dengue fever seasonality in rural Ecuador. Reports from nearby 371 

Colombia regarding dengue fever seasonality have not found an annual seasonal pattern for dengue 372 

incidence [63, 67], though these studies did not utilize sinusoidal variables, making it difficult to detect 373 

these patterns.  374 

Climatic factors such as temperature or precipitation can affect the survival and distribution of mosquito 375 

vectors and the transmissibility of pathogens from these vectors [16-18]. In previous research in 376 

Colombia, studies have found average temperature, changes in average temperature, average relative 377 

humidity, total precipitation, and El Niño events to be major predictors of dengue incidence [63, 68]. 378 

Research in Ecuador has been limited to studies of dengue cases in coastal regions. In one study, 379 

minimum weekly temperature and weekly average precipitation were shown to be strongly linked to 380 

weekly number of dengue cases [20]. Minimum weekly temperature, precipitation, and El Niño events 381 

were also positively associated with dengue risk [19]. Our data illustrate a complex relationship between 382 

climate factors and dengue fever diagnoses. Temperature is a major factor; dengue transmission is 383 

sensitive to extremes of temperature as Aedes aegypti propagate and transmit dengue best between 384 

18—32° C [63], but precipitation is also important. In isolation, total monthly precipitation and number 385 

of days with precipitation had opposite effects, suggesting that sufficient precipitation is necessary for 386 

dengue cases to occur, but that too many days with precipitation decrease risk. However, when we 387 

consider minimum monthly temperature, temperature modifies the effects of precipitation in a U-388 

shaped pattern. All amounts of precipitation drive increases in dengue diagnoses but additional days 389 

with precipitation lead to decreases in dengue diagnoses while when temperatures are lowest, as in the 390 

months of July through November (mean minimum temperatures of 19.0—19.7° C). During these 391 
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months precipitation amounts are all below 250 mm on average and durations are 11.7 to 15.7 days on 392 

average, resulting in a relatively low predicted number of dengue fever cases. At warmer temperatures, 393 

both number of days with and amount of precipitation have positive relationships with the number of 394 

dengue diagnoses. At the warmer part of the year – i.e. December through June (mean minimum 395 

temperatures of 19.8—21.2° C), precipitation quantity is higher (mean 271.6—635.4 mm per month) 396 

and occurs on more days (mean 21.6—28.3 days per month).  397 

Our results likely reflect the effect of precipitation on mosquitoes: female Aedes aegypti mosquitoes 398 

tend to lay eggs just above the water surface in containers [69] until additional precipitation (i.e. 399 

flooding of the eggs) causes the eggs to hatch, but too much precipitation can wash eggs or larvae out of 400 

their containers [70], meaning some dry periods are necessary or even beneficial to Aedes aegypti 401 

abundance. Previous research has found that Aedes aegypti breeding site occupancy is increased at sites 402 

with longer dry periods [71]. Temperature levels affect evaporation rates and the durability of standing 403 

water (i.e. breeding and development sites); this may explain temperature’s modifying impact on the 404 

relationship between precipitation and dengue diagnoses.  405 

Human hosts may also change their travel outside the home during consistently rainy periods, which 406 

may alter their exposure to dengue-infected mosquitoes (depending on where they are most exposed). 407 

Research in Australia found that virus acquisition was spatiotemporally linked to the case’s residence in 408 

42% of dengue cases [72], though this proportion may differ in other geographic locations. Human 409 

movement and behavior is a major component of dengue fever risk [73]. Weather patterns affect 410 

human movements, with high movement variation on days with higher precipitation [74]. The patterns 411 

between dengue fever risk and climate variables observed in our data are likely a combination of the 412 

effect of climate on mosquito vectors and human behaviors.  413 

Notably, the best-fit climate seasonality model included both long-term and annual sinusoidal variables, 414 

in addition to climate variables. If dengue seasonality were entirely driven by climate, we would expect 415 
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that a model adjusting for the effects of climate to be sufficient with no long-term nor annual sinusoidal 416 

variables (i.e. all variation in the diagnosis rate would be explained by the climate variables). The 417 

importance of the long-term and annual sinusoidal variables in our climate model suggests that we are 418 

not completely adjusting for the effect of climate or that non-climate phenomena impact the seasonality 419 

of dengue diagnoses. Our ability to disentangle climate and non-climate seasonality is complicated by 420 

the introduction of chikungunya into a naïve population in 2015. These cases were treated as dengue 421 

diagnoses in our models, but it is impossible to know how many during this period were true dengue 422 

cases. Because chikungunya and dengue are spread by the same mosquito species, Aedes aegypti, we 423 

expect that many of the effects of climate will be the same for both chikungunya and dengue. The 424 

effects of chikungunya emergence on overall seasonality are important to consider. This introduction 425 

occurred outside of the typical dengue season (November) and had a high number of cases, meaning 426 

that the average annual peak of dengue is slightly earlier in our model than the true average annual 427 

peak of dengue in this population.  428 

Limitations 429 

This dataset combines the patients from two hospitals. The patients at each hospital differ in their 430 

gender composition and insurance status. Both gender and insurance status likely affect healthcare-431 

seeking behavior, meaning that the hospital populations may have different non-climate seasonal 432 

patterns of dengue diagnoses and some uncontrolled confounding may affect our results. However, we 433 

do control for the source hospital in our analysis which would control for some of these differences, and 434 

since the majority of cases (94.5%) are from one hospital, we do not expect this issue to substantially 435 

affect our results.  436 

This dataset represents dengue fever diagnoses in the community and is only a proxy for dengue fever 437 

incidence rates. There are likely to be many more cases dengue fever in the community: 80% of dengue 438 

cases are estimated to be asymptomatic, some symptomatic patients may never seek care, and some 439 
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symptomatic patients may have sought care at hospitals other than those included in this study. This 440 

could be a potential source of selection bias. However, our study hospitals are the major source of care 441 

in their communities and we are assessing seasonality and climate variables; we have no reason to 442 

believe that the effect of seasonality and climate is any different among symptomatic versus 443 

asymptomatic patients nor for the small number of persons who sought care at other clinics. The effect 444 

of selection bias on these data is likely minimal. 445 

Dengue diagnosis can be difficult even for experienced clinicians, especially in a resource-limited setting 446 

such as Ecuador. Not all patients with a final dengue diagnosis were necessarily lab-confirmed; the use a 447 

laboratory confirmation likely varies by clinician, patient, and presenting symptoms, though the 448 

clinicians at the study hospitals are all experienced with dengue diagnosis. Based on observed hospital 449 

practices, we believe many of the cases in our dataset had positive dengue rapid tests, but that some 450 

were clinically diagnosed. Because not all cases were laboratory-confirmed, it is possible that some non-451 

dengue cases were diagnosed as dengue, particularly when chikungunya was introduced to Ecuador 452 

(late 2015) and no diagnostic tools were available for chikungunya.  453 

Our dataset only covers a seven-year period making it difficult to conclude if our observations truly 454 

reflect long-term or multi-year disease trends in this community. Additional research for longer periods 455 

of time will reveal if three-year peaks or changes in dengue fever diagnose rates are present in this 456 

community. The diagnosis of dengue could have been impacted by additional phenomena over the 457 

study period. Changes in mosquito control practices could affect actual disease rates or worsening 458 

economic conditions in Ecuador (due to a decrease in oil prices) would adversely affect the ability of 459 

patients to seek healthcare. In addition, a major earthquake in April 2016 disrupted many services in 460 

Ecuador, including transportation, utilities, and healthcare for several weeks, which may have disrupted 461 

the typical healthcare-seeking behavior of patients and the diagnostic capabilities of the hospitals during 462 

this time. 463 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 2, 2019. ; https://doi.org/10.1101/452318doi: bioRxiv preprint 

https://doi.org/10.1101/452318


Available climate data was captured from a climatological station located 39 and 36 kilometers from 464 

Hospital Pedro Vicente and Hospital Saludesa, respectively. These data are only a proxy for actual 465 

climate conditions in our communities of interest. In addition, analyses with climate variables were 466 

limited to monthly summaries of these variables, making it difficult to ascertain if the relationships 467 

discovered in this research reflect the true relationship between climate variables and dengue fever 468 

diagnoses in these populations. Under the assumption that most patients would be bitten, experience 469 

symptoms, and seek care within the same month, the climate-diagnosis relationships presented in this 470 

study are a good estimate of dengue seasonality in these communities. In reality, there is considerable 471 

variation among the climate variables, mosquito exposure and dengue diagnoses in this community, 472 

which we were unable to capture in this study. Nor are we able to estimate the effects of climate 473 

variable interactions among ranges and combinations of variables that were unobserved in this location. 474 

In addition, the effect estimates for the climate variable interactions were often based on a small 475 

sample size, leading to wide confidence intervals for these estimates. Indeed, this veracity of this 476 

interaction will need to be confirmed with additional research.  Future research will also address the 477 

limited range and unobserved climate combinations in this dataset by testing this interaction with data 478 

from areas with different climate conditions.  479 
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Supplemental Figure: Splines and Sine/Cosine Effects in Model 1 695 

The dashed line is the combined effect of the sine and cosine effects in the model, representing the 696 

annual fluctuation of dengue. The dotted line is the effect of the 7-knot spline, representing the long-697 

term or inter-annual fluctuation of dengue. The solid line is the combination of these two effects in 698 

Model 1. 699 
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