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Abstract: 

The epithelial-mesenchymal transition (EMT) plays a central role in cancer metastasis and drug resistance 
– two persistent clinical challenges. Epithelial cells can undergo a partial or full EMT, attaining either a 
hybrid epithelial/mesenchymal (E/M) or mesenchymal phenotype, respectively. Recent studies have 
emphasized that hybrid E/M cells may be more aggressive than their mesenchymal counterparts. However, 
mechanisms driving hybrid E/M phenotypes remain largely elusive. Here, to better characterize the hybrid 
E/M phenotype(s) and tumor aggressiveness, we integrate two computational methods – (a) RACIPE – to 
identify the robust gene expression patterns emerging from the dynamics of a given gene regulatory 
network, and (b) EMT scoring metric - to calculate the probability that a given gene expression profile 
displays a hybrid E/M phenotype. We apply the EMT scoring metric to RACIPE-generated gene expression 
data generated from a core EMT regulatory network and classify the gene expression profiles into relevant 
categories (epithelial, hybrid E/M, mesenchymal). This categorization is broadly consistent with 
hierarchical clustering readouts of RACIPE-generated gene expression data. We show that the EMT scoring 
metric can be used to distinguish between samples composed of exclusively hybrid E/M cells and those 
containing mixtures of epithelial and mesenchymal subpopulations using the RACIPE-generated gene 
expression data.  

Keywords: epithelial-mesenchymal transition; EMT; random circuit perturbation; RACIPE; EMT scoring 
metric; hybrid epithelial/mesenchymal; hybrid E/M; phenotypic stability factor; PSF 
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Introduction 

The epithelial-mesenchymal transition (EMT) is a trans-differentiation developmental program by which 

epithelial (E) cells weaken their adhesive bonds with neighbors as well as apico-basal polarity, while 

concomitantly gaining mesenchymal (M) traits of migration and/or invasion [1,2]. Cancer cells undergoing 

EMT typically have enhanced metastatic abilities [2,3], elevated resistance against chemotherapy [4,5] and 

can evade the immune system [6], thus accelerating malignancy. In the developmental context of mammary 

morphogenesis and the physiological context of wound healing, cells rarely undergo a complete EMT. 

Instead, they exhibit a transient hybrid epithelial/mesenchymal (E/M) phenotype that shows a mixture of 

traits - epithelial traits of cell-cell adhesion, and mesenchymal traits of migration [3]. Thus, the hybrid E/M 

phenotype facilitates collective cell migration, instead of individual cell migration - a characteristic of cells 

having undergone a complete EMT. This concept has recently gained momentum in the context of cancer 

metastasis, wherein it has been observed that malignant cells can maintain a hybrid E/M phenotype and 

migrate collectively, eventually appearing in the blood as clusters of circulating tumor cells (CTCs) [7–10]. 

Moreover, these CTC clusters, often five to eight cells in size, contribute much more than their proportional 

share to metastases [11], thus behaving as ‘chief instigators’ of metastasis. Cells in these clusters often 

display a hybrid E/M phenotype [9,10,12], and can resist cell death in circulation by evading immune 

attacks and providing survival signals to one another through their cell-cell contacts [12]. Therefore, hybrid 

E/M cells may occupy the ‘metastatic sweet spot’ [13,14]. 

The hybrid E/M phenotype has been tacitly assumed to be ‘metastable’ or transient [15,16], but recent 

computational studies suggest that the hybrid E/M phenotype can be a stable cell phenotype, particularly in 

the presence of ‘phenotypic stability factors’ (PSFs) such as the transcription factors GRHL2, OVOL2, 

NUMB and ∆Np63α [10,17–22]. Resonating with predictions of these computational models, non-small 

cell lung cancer (NSCLC) cells H1975 have been shown to stably (i.e. over multiple passages) co-express 

epithelial and mesenchymal markers - E-cadherin and vimentin - at a single-cell level in vitro [19]. 

Consistent with predictions from mathematical models, knockdown of GRHL2, OVOL2 or NUMB in 

H1975 cells results in a complete EMT [18,19,22]. Overall, these studies have supported the relevance of 

a stable hybrid E/M phenotype and PSFs along with their implications for both mammary morphogenesis 

and cancer metastasis [12]. 

EMT is orchestrated by complex gene regulatory networks (GRNs) that involve microRNAs (miRs), 

transcription factors (TFs), alternative splicing mechanisms, and epigenetic modifications [23,24]. 

Particularly, members of the miR-200 and the miR-34 family can maintain or induce epithelial features, 

and TFs such as ZEB1/2, SNAI1/2 and FOXC2 can trigger the transition toward a mesenchymal phenotype. 
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Moreover, these regulators exhibit extensive crosstalk, forming multiple feedback loops [23]. Mathematical 

modeling approaches have been used to analyze the dynamics of EMT regulatory networks [17,25–31]. 

However, most of these studies consider interactions among only a small number of genes regulating EMT, 

because a quantitative simulation of the GRN dynamics is difficult owing to insufficient knowledge of 

kinetic parameter values, particularly when the network size is large.  

Recently, we developed a computational method, random circuit perturbation (RACIPE), to interrogate the 

robust dynamical features of GRNs without the need for precise parameter values [32,33]. RACIPE 

generates an unbiased ensemble of mathematical models based on the topological information (i.e. genes 

and interactions) of a GRN. Each model is characterized by a unique set of parameters that are randomly 

sampled within ranges of values that are biologically relevant, and then numerically solved. The stable state 

solutions of the ensemble models are collected and analyzed, through which the most significant gene 

expression patterns associated with a specific GRN are extracted. In this framework, variability among 

different sets of parameters generated by RACIPE captures both the heterogeneity among individual cells 

and the effects of different input signals to the GRN. Thus, the RACIPE-generated stable state solutions 

can, in principle, represent the gene expression patterns of diverse individual cell phenotypes in multiple 

contexts. Here, we apply RACIPE to EMT regulatory networks to generate in silico gene expression data 

of different EMT phenotypes.  

Separately, the lack of a rigorous quantitative definition of a hybrid E/M phenotype motivated us to develop 

a statistical learning method, the EMT scoring metric [34]. This approach assigns a probability of 

membership in the hybrid E/M category, given the gene expression data of a sample. It also assigns each 

sample a corresponding EMT score on a scale from 0 (fully epithelial) to 2 (fully mesenchymal) with an 

intermediate score of 1 representing maximally hybrid E/M signatures. This approach, when applied to the 

NCI-60 human tumor cell line gene expression dataset as the training set, identified claudin-7 (CLDN7) 

and the ratio of vimentin to E-cadherin (VIM/CDH1) as the best-fit pair of predictors to categorize the EMT 

phenotypes. The algorithm has been accurate in characterizing the EMT status of multiple cancer cell lines 

and has elucidated a subtype-specific association between the EMT status and patient survival.  

Here, we use RACIPE to test the ability of our EMT scoring metric to quantify the EMT phenotypes. We 

first apply RACIPE on a proposed core EMT regulatory network, containing 26 genes and 100 regulatory 

links (Fig. 1a) and use the hierarchical clustering analysis (HCA) to classify the RACIPE-generated gene 

expression data into four main clusters corresponding to one epithelial, one mesenchymal, and two hybrid 

E/M (E/M I and II) phenotypes. We show that the EMT scoring metric can accurately recapitulate the EMT 

status of RACIPE-generated hybrid E/M samples. We next construct in silico mixtures of RACIPE-
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generated E, M and E/M II samples in various ratios. We present a proof-of-principle for distinguishing 

samples containing individual hybrid E/M cells from those containing mixtures of E and M cells by 

applying an extension of our EMT scoring metric. We demonstrate that the EMT metric approach can 

accurately identify the proportions of the different subpopulations for all the various combinations of 

mixtures studied here. This new method is enabled by having samples generated from RACIPE projected 

on to the EMT scoring metric space. Finally we validate the proposed method comparing its prediction to 

data from multiple non-small cell lung cancer (NSCLC) cell lines.  

 
Materials and Methods 

Generation of EMT gene expression data by RACIPE 

The EMT regulatory network (Fig. 1a) we consider here contains 26 gene products and 100 regulatory 

links, the majority of which are transcriptional in nature. There are also microRNA-mediated translational 

regulation. All links in the network considered here are modeled by shifted Hill functions [25]. RACIPE 

takes the topological information of the EMT regulatory network as the input and generates multiple 

mathematical models. 

 

The general rate equation representing the temporal dynamics for a single gene is of the form: 

 
𝑑𝐴 𝑑𝑡⁄ = 𝑔' ∗ ∏ 𝐻+,-.

+/0 ∗ ∏ 𝐻1,23
1/0 − 𝑘' ∗ 𝐴, 

 

where 𝐴 represents the expression level of gene A (the level of mRNA A),  𝑔' and 𝑘' represent the innate 

production and degradation rates of mRNA A,	∏ 𝐻+,-.
+/7  and ∏ 𝐻1,23

1/7  represent the inhibitory regulation 

and excitatory regulation of gene A by other genes, respectively; the number of inhibitory links is 𝑛 and the 

number of excitatory links is 𝑚.  𝐻,- and 𝐻,2 are negative and positive shifted Hill functions of the form: 

 

𝐻,-:𝐵, ℎ>,'7 , 𝜆>,', 𝑛>,'@ =
02AB,CD

B
EB,C
F G

02D B
EB,C
F G

	, 

and 

𝐻,2:𝐶, ℎI,'7 , 𝜆I,', 𝑛I,'@ =
02AJ,CD

J
EJ,C
F G

02D J
EJ,C
F G

	, 
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where 𝜆>,' < 1 is the fold-change representing the inhibition of gene A expression by the protein encoded 

by gene B, 𝜆I,' > 1 is the fold-change representing the activation of gene A by the protein encoded by 

gene C, 𝐵 represents the levels of mRNA B, and 𝐶 represents the levels of mRNA C. ℎ>,'7  and ℎI,'7  are 

thresholds in the shifted Hill function.  

 

The temporal dynamics of all 26 nodes of the EMT regulatory network are characterized by the above 

functional form. In the RACIPE framework, mathematical model refers to a specific choice of parameters, 

and many models are created. We typically use 10,000 to 100,000 models. For each model, the parameters 

are randomly sampled within biologically reasonable ranges. The sampled parameters satisfy the ‘half-

functional’ rule [32] so that each regulatory link has an equal chance (~50%) to be active or inactive. For 

generating each mathematical model, 200 initial conditions are used to numerically integrate the dynamical 

equations using Euler’s Method and we keep all simulations for which the system reaches steady state on 

the chosen integration interval. Depending on the specific parameters, a single model may give rise to one 

or more stable steady state solutions dependent upon the model’s initial conditions. The stable steady state 

solutions from all models are analyzed via the EMT scoring metric. 

 

EMT scoring metric 

In this approach, statistical models are created to resolve training samples into their a priori known 

categories. EMT scoring is performed by applying the best-fit model obtained from an iterative statistical 

procedure developed previously to relevant gene expression samples [34]. This best fit model was found to 

maximally resolve the NCI-60 cell line gene expression dataset (GSE5846) based on E, M, or hybrid E/M 

phenotype using ordinal multinomial logistic regression. The (log2-normalized) input predictors include the 

ratio of vimentin and E-cadherin (VIM/CDH1) and claudin 7 (CLDN7). Model output for a given sample, 

S, is given by 

 

𝑂(𝑆) = [𝑃T(𝑆), 𝑃U(𝑆), 𝑃V(𝑆)], where	𝑃T(𝑆) + 𝑃U(𝑆) +	𝑃V(𝑆) = 1. 

 

This ordered triplet is interpreted as the probability that sample S falls into either of the following three 

categories, epithelial (E), hybrid E/M (H) and mesenchymal (M), 𝑃T(𝑆), 𝑃U(𝑆), 𝑃V(𝑆). Ordinal regression 

places state H intermediary to E and M, and the EMT metric, 𝜇, assigns a numeric value on the interval [0, 

2] with the ordering 𝐸 < 𝐻 < 𝑀. In particular, 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452508doi: bioRxiv preprint 

https://doi.org/10.1101/452508


 6 

𝜇(𝑆) = `
𝑃U(𝑆),						𝑃T > 𝑃V;
2 − 𝑃U,					𝑃T < 𝑃V;
					1, 𝑃T = 𝑃V.

 

 

The metric represents epithelial samples in the range 0 ≤ 𝜇 < 0.5 , hybrid for 0.5 ≤ 𝜇 ≤ 1.5 , and 

mesenchymal for 1.5 < 𝜇 ≤ 2. 

 

Generating the mixtures of E, M and hybrid E/M II samples 

We generate mixtures of E and M samples with three replicates of five different ratios of E to M: [50%, 

50%], [20%, 80%], [80%, 20%], [40%, 60%] and [60%, 40%] (n=20,000 per ratio per replicate). For 

example, 104 E samples are randomly sampled from RACIPE-generated E samples and 104 M samples are 

randomly sampled from RACIPE-generated M samples and their mixture has a proportion of E and M - 

[50%, 50%].  The mean gene expression of the mixture is used to estimate the proportions of E and M by 

the EMT metric. In a similar way, mixtures of E and hybrid E/M II samples and those of M and hybrid E/M 

II samples with three replicates of five different proportions - [50%, 50%], [60%, 40%], [40%, 60%], [20%, 

80%] and [80%, 20%] - are generated respectively (n=15,000 per ratio per replicate). Mixtures of E, M and 

hybrid E/M II samples with three replicates of five different proportions - [25%, 25%, 50%], [30%, 30%, 

40%], [20%, 20%, 60%], [10%, 10%, 80%] and [40%, 40%, 20%] - are generated respectively (n=15,000 

per ratio per replicate).  

Predictions of the mixture proportions  

Samples are depicted by their location in the two-dimensional EMT predictor space. This space is spanned 

by VIM/CDH1 and CLDN7 expression levels partitioned into three regions based on which one of {PE(S), 

PH(S), PM(S)} is maximal. For example, when investigating mixtures of E and M populations, predictions 

of the average proportion of E and M cells are obtained by projecting the coordinates of a sample (xS, yS) 

to the curve adjoining the location of the mean E signature at (xE,yE), and mean M signature at (xM, yM) (x 

and y correspond to mean CLDN7 and (mean VIM)/(mean CDH1) levels, respectively). The proportion of 

E and M for sample (xS, yS) is estimated by finding the least-squares projection of the sample onto the curve 

spanned by the convex combination of E and M signatures. The mixture proportions of E and hybrid E/M 

II populations and the mixture proportions of M and hybrid EM II populations are predicted in an identical 

way. Mixtures of equal parts E and M with variable proportions of hybrid E/M II samples were analyzed 

in a similar manner, instead using convex signatures of E/M II and the midpoint on the convex curve 

adjoining E and M. 
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Cell culture and immunofluorescence 

NSCLC cells were cultured in RPMI 1640 medium containing 10% fetal bovine serum and 1% 

penicillin/streptomycin cocktail (Thermo Fisher Scientific, Waltham, MA). For immunofluorescence, cells 

were fixed in 4% paraformaldehyde, permeabilized in 0.2% Triton X-100, and then stained with anti-CDH1 

(1:100; Abcam) and anti-vimentin (1:100; Cell Signaling Technology). The primary antibodies were then 

detected with Alexa conjugated secondary antibodies (Life technologies). Nuclei were visualized by co-

staining with DAPI. 

 

 

Results 

Construction of the regulatory network of EMT 

Based on an extensive literature search, we construct a core gene regulatory network of EMT including 

nine microRNAs (miR-141, miR-200a,b,c, miR-34a, miR-101, miR-30c, miR-9, miR-205), ten EMT-

inducing transcription factors (EMT-TFs) (ZEB1, ZEB2, FOXC2, SNAI1, SNAI2, TWIST1, TWIST2, 

GSC, KLF8, TCF3), one EMT-inducing signal (TGF-β), three PSFs (OVOL2, GRHL2 and ∆Np63α), 

CLDN7 and the canonical epithelial and mesenchymal markers CDH1 and VIM respectively. The network 

of EMT presented here is an extended version of the one used in our previous study [32]. Specifically, three 

proposed PSFs, OVOL2, GRHL2 and ∆Np63α, together with CLDN7 are included due to their identified 

roles in epithelial-mesenchymal plasticity (See SI Section 1 and Table S1 for more information).  

 

RACIPE identifies the gene expression patterns of multiple EMT phenotypes 

We apply RACIPE to the core gene regulatory network above (Fig. 1a) and collect the gene expression 

data from 10,000 different sets of parameters (10,000 distinct RACIPE models). Hierarchical clustering 

analysis, used to analyze the gene expression patterns of RACIPE-generated data, reveals four large clusters 

(Fig. 1b). The first cluster is characterized by high expression of epithelial-associated genes or microRNAs, 

such as miR-200, miR-34, CLDN7 and CDH1, and low expression of mesenchymal-associated genes, such 

as ZEB1, FOXC2, SNAIL and VIM, thus identified as an epithelial signature. The second cluster shows 

low expression of epithelial-associated genes or microRNAs and high expression of mesenchymal-

associated genes and therefore represents a mesenchymal signature. The remaining two clusters have co-

expression of epithelial-associated and mesenchymal-associated genes to varying extents, and so these two 

clusters are characterized as hybrid E/M I and II signatures. Notably, the PSFs GRHL2, OVOL2 and 

∆Np63α are expressed at high levels in hybrid E/M I samples, but not in hybrid E/M II samples. In contrast, 

miR-101 and GSC are expressed at high levels in hybrid II samples while not in hybrid E/M I samples. The 
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distinct gene expression profiles of hybrid E/M I and hybrid E/M II shown here emphasize the heterogeneity 

of one or more hybrid E/M phenotype(s) that cells may attain during EMT [35–37].  

 

 

Figure 1. RACIPE identified robust gene expression patterns of EMT.  (a) A proposed core EMT 
regulatory network. The EMT regulatory network contains 9 microRNAs (red hexagons) and 17 non-
microRNAs (circles). Solid arrows represent excitatory regulation, mostly due to transcriptional activators. 
Solid bar-headed arrows represent inhibitory regulation, mostly due to transcriptional inhibitors. Dotted 
bar-headed arrows represent microRNA-mediated regulations. (b) Hierarchical clustering analysis of the 
RACIPE-generated gene expression data from 10,000 RACIPE models.  Each row represents one sample, 
i.e., one RACIPE-generated stable steady state, and each column represents one gene. The names of genes 
corresponding to each column from left to right are listed.   

The EMT scoring metric captures the hybrid E/M I and II signatures generated by RACIPE  

The heterogeneity of RACIPE-generated aggregate output may be appreciated by projection of these 

samples onto the two-dimensional EMT metric predictor space (Fig. 2a). This space is divided into three 

colored areas: blue (mesenchymal), dark green (hybrid E/M), and red (epithelial). Samples belong to a 

particular category with high probability if they localize far from the boundary between two regions. We 

observe high variability within each phenotypic cluster when projecting RACIPE-generated data on this 
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predictor space, which is unsurprising given that solutions are generated from an ensemble of randomized 

parameters. Thus, we focus our attention to the average (mean) values of individual genes for all the samples 

in a given category, referred to as the mean signatures. The mean signatures of hybrid E/M I and E/M II 

samples are appropriately binned via the EMT metric – the probability that hybrid E/M I is categorized as 

hybrid E/M is 0.76 with intermediate EMT score of 𝜇 = 0.76.	and the probability of hybrid categorization 

for hybrid E/M II is 0.88 with intermediate EMT score of 𝜇 = 1.12.  The probability of hybrid 

categorization may be visually appreciated in Fig. 2b, wherein samples with larger probabilities of 

belonging to hybrid E/M localize inside the green region further from the interface between other groups. 

Our findings highlight the consistency between RACIPE-generated gene expression samples for hybrid 

E/M phenotypes and their expected location on the EMT spectrum as generated by our predictive metric. 

The mean signature of mesenchymal samples is also captured by the EMT metric with a 0.71 probability 

of being binned as mesenchymal, and a high EMT score of 𝜇 = 1.71. (Fig. 2b). However, the mean 

signature of epithelial samples has a slightly higher probability of being binned as hybrid E/M (𝑃U = 0.59) 

as compared to epithelial (𝑃T = 0.41) with an EMT score of 𝜇 = 0.59. This deviation is likely to be due to 

the underlying high variance of gene expression data generated by RACIPE. Nonetheless, the EMT metric 

has shown a consistent characterization results of the RACIPE-generated samples for the hybrid E/M I, II 

and M categories. We also find that the mean hybrid E/M I signature is close to that of epithelial samples, 

while the mean hybrid E/M II signature localizes closer to that of mesenchymal samples in the predictor 

space (Fig. 2b), which is consistent with the clustering results observed in Fig. 1b. Interestingly, the hybrid 

E/M II samples have similar mean VIM/CDH1 levels as that of epithelial samples and similar mean CLDN7 

levels as that of mesenchymal samples, thus sharing features of both epithelial and mesenchymal signatures 

(Fig. 2b). This observation is reminiscent of a recent study showing that overexpression of miR-200 in 

mesenchymal subpopulation of HMLE cells induced only a partial EMT - the mesenchymal score of these 

cells did not change upon miR-200 overexpression, but the epithelial score increased [38].  
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Figure 2. Characterization of the RACIPE-generated samples by the EMT metric. (a) Population level 
projection of RACIPE generated data onto EMT metric predictor space. VIM, CDH1, and CLDN7 
expression values for each sample generated from RACIPE are used to plot various populations categorized 
by RACIPE (red region of EMT metric predictor space corresponding to E, dark green corresponding to 
hybrid E/M I and hybrid E/M II, and blue corresponding to M; salmon identifying RACIPE-generated E 
samples, light green identifying hybrid E/M I samples, magenta identifying hybrid E/M II samples and sky 
blue identifying M samples). (b) Predicted mean expression signature for each RACIPE population cluster.  
Each colored diamond represents the mean expression of RACIPE-predicted hybrid E/M I (light green), 
hybrid E/M II (magenta), E (salmon), and M (sky blue) samples, plotted alongside the NCI-60 training 
dataset (yellow). Black error bars represent standard deviations along each predictor dimension. 

Using the EMT scoring metric to distinguish between samples comprised of individual hybrid E/M 

cells and samples that are mixtures of E and M cells 

After establishing this initial success in predicting the population phenotype, we evaluated  the ability of 

the EMT scoring metric to distinguish between populations consisting mostly of individual hybrid E/M 

cells versus samples that are mixtures of E and M cells. Unmixed samples of epithelial (EMT score 0 ≤

𝜇 < 0.5) or unmixed mesenchymal (EMT score 1.5 < 𝜇 ≤ 2) cells are easily characterized by the EMT 

metric, which localizes their positions on the EMT predictor space to the red and blue regions, respectively 

(Fig. 3). Categorizing a hybrid E/M (EMT score 0.5 ≤ 𝜇 ≤ 1.5) sample is less straightforward as there are 

multiple possibilities that explain such a prediction.  The sample may: a) contain individual hybrid E/M 

cells, b) contain a mixture of epithelial and pure mesenchymal cells, or c) some combination of epithelial, 

mesenchymal, and hybrid E/M cells. As shown in Fig. 4, mixtures of RACIPE-generated epithelial and 

(a) (b)
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mesenchymal samples may be well-approximated by a convex combination curve in the two-dimensional 

predictor space, hereafter referred to as a ‘mixture curve’, connecting the positions of mean signatures of 

pure epithelial and pure mesenchymal RACIPE-generated samples. Interestingly, the position of mean 

RACIPE-generated hybrid E/M signatures, particularly E/M II samples, concentrates further away from the 

mixture curve. Moreover, the higher percentage of the individual hybrid E/M II cells in the sample, the 

further the position of the sample from the mixture curve in the predictor space (Fig. 3). These results 

indicate that the EMT scoring metric may be used to predict the proportions of different subpopulations of 

samples that are mixtures of different EMT phenotypes. 

 

 

 

 

Figure 3. Use of the EMT metric to characterize the mixtures of E, M and hybrid E/M samples where 
the proportion of E is equal to that of M in each mixture. Predicted mixture proportions contained in 
each mixture {E, M, E/M II} are reported in the figure legends for each sample and predicted based on their 
projection to the convex mixture curve adjoining E/M II and the midpoint of E and M. 
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The EMT scoring metric can accurately resolve mixtures of pairs of EMT phenotypes 

As the EMT metric has shown its power in distinguishing between individual hybrid E/M cells and mixtures 

of E and M cells, we evaluated the ability of the EMT scoring metric to resolve the proportions of two 

different EMT phenotypes mixed in varying ratios. Using RACIPE, we generated three pairs of in silico 

mixtures – a) mixtures of E and M samples, referred to as {E, M}, b) mixtures of E and hybrid E/M II 

samples, referred to as {E, E/M II} and c) mixtures of M and hybrid E/M II samples, referred to as {M, EM 

II} with five different ratios (see Materials and Methods for details). We used hybrid E/M II for generating 

mixtures because the mean expression signature of hybrid E/M II exhibits similar CLDN7 expression as 

that of a M phenotype and similar VIM/CDH1 level as that of an E phenotype, and is thus more likely to 

be a canonical representative ‘hybrid’ E/M phenotype. For every fixed ratio of a given pair of phenotypes, 

three independent replicates were generated, and they showed highly reproducible behavior (Fig. 4). The 

EMT metric-estimated proportions of E and M in {E, M} are [49%, 51%], [40%, 60%], [59%, 41%], [20%, 

80%], [79%, 21%] with respective mean absolute errors of [0.44%, 0.45%, 0.55%, 0.86%, 1.37%] across 

replicates. These estimates are very close to the true proportions of E and M that are [50%, 50%], [40%, 

60%], [60%, 40%], [20%, 80%], [80%, 20%], respectively (Fig. 4a, d).  Similarly, the EMT metric-

estimated proportions of E and hybrid E/M II in {E, E/M II} are converge to their true values of [50%, 

50%], [60%, 40%], [40%, 60%], [20%, 80%], [80%, 20%] with respective mean errors of [0.26%, 0.25%, 

0.23%, 0.04%, 0.11%] (Fig. 3b, d). Finally, the EMT metric-estimated proportions of M and hybrid E/M II 

in {M, E/M II} are [50%, 40%], [60%, 40%], [40%, 60%], [20%, 80%], [80%, 20%] across replicates with 

respective mean errors of [0.26%, 0.08%, 0.18%, 0.11%, 0.51%], again converging to their true values (Fig. 

3c, d). Together, these results indicate that the EMT metric can effectively deconvolve mixtures of multiple 

EMT phenotypes, and thereby accurately estimate their proportions in a given mixture containing two 

different EMT phenotypes.  
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Figure 4. Use of the EMT scoring metric to characterize the mixtures of two different EMT 
phenotypes. Predicted mixture proportions contained in each mixture {E, M} (a), {E, E/M II} (b) and {M, 
E/M II} (c) are reported in the figure legends for each sample and predicted based on their projection to the 
curve of convex combinations for each non-mixed sample pair. In all cases, all three replicates for one 
mixture are tightly distributed and therefore have significant overlap. (d) The mean absolute error of 
predicted mixture proportions. The true mixture proportions of {E, M} are [50%, 50%] (Mix1) [40%, 60%] 
(Mix2) [60%, 40%] (Mix3) [20%, 80%] (Mix4) and [80%, 20%] (Mix5). The true mixture proportions of 
{E, E/M II} and {M, E/M II} are [50%, 50%] (Mix1) [60%, 40%] (Mix2) [40%, 60%] (Mix3) [20%, 80%] 
(Mix4) and [80%, 20%] (Mix5). 

Motivated by the initial observation that the mean RACIPE-generated epithelial signature was binned as 

hybrid E/M, we further analyzed whether a mixture model constructed on samples binned as epithelial by 

the EMT metric would lead to significantly different results. We performed sample purification and isolated 

the purified epithelial samples that exhibit high expression of multiple E markers including CDH1, GRHL2, 

OVOL2, ∆Np63α and CLDN7. All of these players are known to be key regulators of epithelial phenotype 

[39–42]. Similarly, we performed sample purification to isolate the purified mesenchymal samples that 

have high expression of multiple M markers, including VIM, ZEB1, ZEB2, TGF-β and FOXC2. These 

(a)

(d)(c)

(b)

Mean 
Absolute 

Error
Mix1 Mix2 Mix3 Mix4 Mix5

{E, M} 0.0044 0.0045 0.0055 0.0086 0.0137

{E, E/M II} 0.0026 0.0025 0.0023 0.0004 0.0011

{M, EM II} 0.0026 0.0008 0.0018 0.0011 0.0051

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452508doi: bioRxiv preprint 

https://doi.org/10.1101/452508


 14 

markers are experimentally known as key inducers of the mesenchymal phenotype [26,43]. This step is the 

in silico analogue to flow cytometric sorting of E (and M) samples for a more robust characterization of 

these two cell states, as captured by the increased accuracy of EMT metric in categorizing these samples 

(Tables S2, S3). The purified epithelial and mesenchymal samples are accurately predicted via EMT metric 

(𝑃T = 0.82, 𝜇 = 0.18	and 𝑃V = 0.88, 𝜇 = 1.88, respectively), and visually fall well within their respective 

domains of predictor space (Fig. S1, See SI sections 2-3 for more details). Mixtures containing purified 

E and M samples for five different ratios were synthesized and analyzed by the EMT metric. Similar to the 

case with ‘unpurified’ samples (i.e. using all E samples), the EMT metric accurately predicts the proportions 

of  the mixtures of ‘purified’ E and M samples (Fig. S2). In short, the sample purification analysis here was 

only to offer alternative reference points for E and M signatures which might be more representative of real 

biological samples.  

 

The EMT scoring metric can accurately resolve mixtures of hybrid E/M, E and M phenotypes when 

E and M phenotypes have the same proportions 

As the first step to evaluate the ability of the EMT metric in resolving mixtures of E, hybrid E/M and M 

phenotypes, we use the RACIPE-generated E, hybrid E/M II and M gene expression data to synthesize 

mixtures of all three phenotypes, referred to as {E, M, E/M II}. We keep the proportions of E and M samples 

the same and vary the proportions of the hybrid E/M II samples when preparing {E, M, E/M II}. Mixtures 

with five different ratios were randomly selected in triplicate and were highly reproducible and resolvable 

(Fig. 4).  The EMT metric-estimated proportions of E, M and E/M II in {E, M, EM II} are [25.5%, 25.5%, 

49%], [30%, 30%, 40%], [20%, 20%, 60%], [10%, 10%, 80%], [40%, 40%, 20%] with respective mean 

errors of [0.32%, 0.2%, 0.19%, 0.37%, 0.22%] across replicates which are very close to the true proportions 

of E, M and E/M II: [25%, 25%, 50%], [30%, 30%, 40%], [20%, 20%, 60%], [10%, 10%, 80%], [40%, 

40%, 20%], respectively (Fig. 3).  These results lead to the hypothesis that samples dominated by the hybrid 

E/M II phenotype tend to localize far from the ‘mixture curve’, while samples locating close to the ‘mixture 

curve’ are possible mixtures of E and M cells. 

 

Using the EMT scoring metric to characterize the EMT proportions of NSCLC cell lines 

To test the hypothesis that samples dominated by the hybrid E/M phenotype localize far from the ‘mixture 

curve’, we performed experiments in multiple NSCLC cell lines that have been categorized as epithelial, 

mesenchymal, or hybrid E/M based on bulk proteomic measurements (GSE63882) [36]. The EMT scoring 

metric characterizes H1568 cell line as largely epithelial, H1792 cell line as largely mesenchymal, and the 

H920, H1944, H2228 and HCC2279 cell lines as hybrid E/M (Fig. 5a). Among the hybrid E/M cell lines, 

H920 and H2228 locate far from the ‘mixture curve’ in the EMT metric predictor space, thus being 
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predicted to contain a large proportion of the hybrid E/M cells, while H1944 and HCC2279 cell lines lie 

on/close to the curve, which means that they are possible mixtures of E and M cells. 

 

To validate this prediction, we conduct single-cell immunofluorescence experiments to analyze the 

presence of canonical epithelial and mesenchymal markers - E-cadherin and vimentin - in these cell lines. 

H1568 cells largely stain for E-cadherin, with only a few cells staining for vimentin, thus depicting a 

predominantly epithelial phenotype. Conversely, H1792 cells express only vimentin, and very low E-

cadherin, exhibiting a predominantly mesenchymal phenotype (Fig. 5b). Most cells in H920 and H2228 

tend to co-express E-cadherin and vimentin and some cells express only E-cadherin, thus demonstrating a 

mixture of hybrid E/M and epithelial cells, with a hybrid E/M phenotype being the dominant subpopulation 

(Fig. 5b). The H1944 cell line contains cells expressing either only E-cadherin or only vimentin thus being 

a mixture of E and M cells. This is consistent with the above EMT score finding. On the other hand, most 

individual cells in HCC2279 cell line co-express E-cadherin and vimentin, thus being hybrid E/M cells. 

Results of H1944 and HCC2279 suggest that a cell line lying on/close to the mixture curve might be a 

mixture of E and M but also might be a single-cell hybrid that just happens to lie on that line. Put together, 

this in vitro characterization of these six NSCLC cell lines offer a first proof-of-principle validation of our 

predictions about their EMT-ness, estimated by their relative distance to the ‘mixture curve’ in the predictor 

space of the EMT scoring metric.  

 

 

 
 

Figure 5. Characterizing the EMT phenotypes. (a) EMT expression signatures for H920, H1568, H1792, 
H1944, H2228, and HCC2279 are projected into EMT predictor space relative to the mixture curve between 
RACIPE-generated E and M samples. (b) Expression of E-cadherin (red) and vimentin (green) examined 
by immunofluorescence staining. Scale bar 100 μm.  

H1568

H1944

H1792

HCC2279H2228

H920(b)(a)
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Discussion 

The existence and characterization of one or more hybrid epithelial/mesenchymal (E/M) phenotypes 

accessible during the epithelial-mesenchymal transition has generated recent attention due to their 

association with high metastatic potential and cancer stemness [35,44–46]. Increasing evidence suggests 

that cancer cells may acquire a spectrum of hybrid E/M phenotypes, characterized by varying extents of 

epithelial and mesenchymal traits [35]. Thus, a rigorous characterization of the EMT status of tumors, 

especially the probability that a given sample is hybrid E/M-like, may contain significant prognostic value 

and may hold avenues for better targeted therapeutic developments [47]. 

 

Recent years have seen a surge in various computational and experimental approaches to quantitatively 

characterize various aspects of EMT, including characterization of hybrid E/M phenotypes [17–21,25,26, 

27–29,35,36,44,45]. Here, we test our EMT scoring metric by applying it to the in silico gene expression 

data  generated by RACIPE. We show that the hybrid E/M II phenotype is effectively distinguished from 

mixtures of E and M samples, based on their different localizations in the predictor space generated by the 

EMT scoring metric. As compared to another EMT scoring method that requires data of the entire 

transcriptome [48], our approach presented here can quantify a sample's ‘EMT-ness’ using a very small set 

of predictors with reasonable categorization results. 

Our results presented here may suffer from multiple limitations. First, the EMT regulatory network 

constructed here, although based on extensive literature search, is in no way complete. For the purpose of 

computational cost, we focused on a conserved network implicated in EMT in multiple contexts. However, 

there may be crucial connections that we have inadvertently missed. Second, we simulated both 

transcriptional factors and microRNA-dependent mechanisms via the shifted Hill function formulation, 

while their detailed dynamics may be quite different [25]. That means we must determine the EMT status 

of RACIPE models only by the “expression” data as opposed to using protein concentration and/or actual 

cell shape and behaviors. It is worth noting that EMT is a multi-dimensional process including changes in 

not only gene expression, but also in many biophysical properties such as cell polarity [49]. Thus, future 

studies should identify biophysical features that, when combined with gene expression patterns, might 

provide further refinement in resolving hybrid E/M phenotypes. Third, the training dataset used for EMT 

scoring metric are bulk-cell gene expression profiles of 59 cancer cell lines, and 37 out of the 59 are 

mesenchymal [50]. Further detailed experimental characterization of the EMT phenotype at a single-cell 

level [51] can help expand the training dataset and perhaps increase the sensitivity, specificity and accuracy 

in quantifying the EMT spectrum. Despite these weaknesses, we feel that we have succeeded in showing 
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broad consistency between the RACIPE and the EMT scoring metric and also generated a test for the 

existence of single cell hybrids. 

 

The ability to fully distinguish between mixtures of E and M cells and purely hybrid E/M samples remains 

a relevant challenge as both of these share a common hybrid gene expression pattern on the population 

level. By projecting the mixtures and purely hybrid E/M cells into the predictor space of the EMT metric, 

we find that the mixtures of epithelial and mesenchymal tend to cluster along the convex curve adjoining 

purely epithelial and purely mesenchymal while samples containing purely hybrid E/M cells are not 

necessarily restricted to the mixture curve between unmixed epithelial and mesenchymal samples, as shown 

in Figs. 3 and 4. Based on this observation, we speculate that hybrid E/M cells and mixtures of epithelial 

and mesenchymal cells may often be distinguishable. Gene expression data of more cell lines with a well-

characterized EMT status, i.e. purely epithelial, mesenchymal, hybrid E/M or mixtures of well-known 

proportions of these phenotypes, can be used to test this hypothesis. 
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