
Title: A comprehensive analysis of the usability and archival stability of omics computational

tools and resources

Serghei Mangul​1,2$#​, Thiago Mosqueiro​2$​, Dat Duong​1​, Keith Mitchell​1 ​,Varuni Sarwal​3​, Brian Hill​1​,

Jaqueline Brito​4​, Russell Jared Littman​1​, Benjamin Statz​1​, Angela Ka-Mei Lam ​1​, Gargi Dayama​7​,

Laura Grieneisen​7​, Lana S. Martin​2​, Jonathan Flint​5​, Eleazar Eskin​1,6​, Ran Blekhman ​7,8

1 ​Department of Computer Science, University of California Los Angeles, 580 Portola Plaza, Los Angeles, CA 90095,

USA

2 ​Institute for Quantitative and Computational Biosciences, University of California Los Angeles, 611 Charles E.

Young Drive East, Los Angeles, CA 90095, USA

3 ​Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India

4​ Institute of Mathematics and Computer Science, University of São Paulo, São Paulo, Brazil

5 ​Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of

California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA

6 ​Department of Human Genetics, University of California Los Angeles, 695 Charles E. Young Drive South, Los

Angeles, CA 90095, USA

7 ​Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St SE, Minneapolis,

MN 55455, USA

8 ​Department of Ecology, Evolution, and Behavior, University of Minnesota, 100 Ecology Building, 1987 Upper

Buford Cir, Falcon Heights, MN 55108, USA

$ - These authors contributed equally to the paper

- Corresponding author

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

Developing new software tools for analysis of large-scale, biological data is a key component of

advancing computational, data-enabled research. Scientific reproduction of published findings

requires running computational tools on data generated by such studies, yet little attention is

presently allocated to the usability and archival stability of computer code encapsulated as

computational software tools. Scientific journals require data and code sharing, but none

currently require authors to guarantee software usability and long-term archival stability of

newly published tools. We developed an accurate estimation of the accessibility of

computational biology software tools by performing an empirical analysis of usability and

archival stability of 24,490 omics software resources published from 2000 to 2017. We found

that 26% of all omics software resources are currently not accessible through URLs published in

the paper. Among the tools selected for our comprehensive and systematic usability test, ​49%

were deemed “difficult to install​,” and 28% of the tools failed to be installed due to problems in

the implementation. Moreover, for papers introducing new software, we found that the

number of citations significantly increased when authors provided an easy installation process

for published software. We propose for incorporation into journal policy several practical

solutions for increasing the widespread usability and archival stability of published

bioinformatics software.

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction

During the past decade, the rapid advancement of genomics and sequencing

technologies has generated an enormous amount and diversity of new algorithms in

computational biology ​1,2​. I​n the last 15 years​, the amount of available genomic sequencing data

has doubled every few months. In order to analyze this unprecedented volume of genomic data

5​, many life-science and biomedical researchers are leveraging computational tools to solve

complex biological problems and subsequently lay the essential groundwork for the

development of novel clinical translations ​6​. The exponential growth of genomic data has

therefore reshaped the landscape of contemporary biology, making computational tools a key

driver of scientific research ​3,4​.

Novel challenges and standards arise as computational and data-enabled research

become increasingly popular in biology. One such challenge is computational

reproducibility—the ability to replicate published findings by running the same computational

tool on the data generated by the published study ​7–9​. In order to scientifically reproduce

published findings, a researcher must be able to run the computational tool with original

settings and parameters on data generated by such studies. While several journals have

introduced enforcements for the sharing of data and code, there currently are no effective

requirements to promote usability and long-term archival stability of software tools. Limited

software usability and archival stability of computational tools can ultimately impair our ability

to reproduce published results.

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/gwlh+Bjk2
https://paperpile.com/c/n1Yl0Y/SUle
https://paperpile.com/c/n1Yl0Y/8soH
https://paperpile.com/c/n1Yl0Y/TWGi+7NP8
https://paperpile.com/c/n1Yl0Y/tSDD+13dS+22f9
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

The synergy between computational and wet-lab researchers and the reproduction of

published results are especially productive when software developers distribute their tools as

packages that are easy to use and install ​10​. Ideally, computational tools for genomic analysis

would not require of the user extensive knowledge in computer science for installation and

usage. Given the emergence of new tools released each year, comparatively inadequate

presentation and distribution of an otherwise advantageous software package could limit its

scientific utility ​11​. The computational biology community is now building a consensus on the

importance of encouraging software development that is both computationally efficient and

easy to use ​10,12–14​. Primary principles behind successful computational biology software include

quality and reusability of the source code, a factor that helps avoid reimplementing previously

developed solutions to recurrent problems ​11,12​.

Widespread support for software usability promises to have a major impact on the

scientific community ​15​, and practical solutions have been proposed to guide the development

of scientific software ​12,14,16​, ​17​, ​18​, ​19​, ​10​, ​13​. Such solutions represent a crucial first response to the

growing ‘software crisis’ of inefficiency and redundancy, a dilemma driven by the limited

usability yet the prolific online availability of many computational biology tools published each

year. While the scale of the ‘software crisis’ in computational biology has yet to be estimated,

the bioinformatics community warns that poorly maintained or improperly implemented tools

will ultimately hinder progress in big data-driven fields, such as genomics and systems biology

4,5,20​.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/liHM
https://paperpile.com/c/n1Yl0Y/aOCM
https://paperpile.com/c/n1Yl0Y/liHM+2AH9+ckV4+IDvH
https://paperpile.com/c/n1Yl0Y/2AH9+aOCM
https://paperpile.com/c/n1Yl0Y/HjJW
https://paperpile.com/c/n1Yl0Y/wGbj+2AH9+IDvH
https://paperpile.com/c/n1Yl0Y/b7sv
https://paperpile.com/c/n1Yl0Y/PH34
https://paperpile.com/c/n1Yl0Y/3hyv
https://paperpile.com/c/n1Yl0Y/liHM
https://paperpile.com/c/n1Yl0Y/ckV4
https://paperpile.com/c/n1Yl0Y/7NP8+SUle+vlFh
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Challenges to effective software development and distribution in academia

 Successfully implementing and distributing software for scientific analysis involves

numerous unique challenges that have been previously outlined by other scholars ​10,12–14​. In

particular, fundamental differences between software development workflows in academia and

in industry challenge the usability and archival stability of novel tools developed by academics.

Academic developers produce and test the majority of new computational biology tools, yet, in

comparison to industry employees, the academic worker has access to fewer resources for

producing usable, archivally stable packages.

First, software developers in industrial settings receive considerably more resources for

developing user-friendly tools than their counterparts in academic settings ​23​. The public or

private software is developed by large teams of software engineers that include specialized

user experience (UX) developers. In academic settings, software is developed by smaller groups

of researchers who may lack formal training in software engineering, particularly UX and

cross-platform design. Many computational tools lack a user-friendly interface to facilitate the

installation or execution process ​11​. Developing an easy-to-use installation interface is further

complicated when the software relies on third-party tools that need to be installed in advance,

called ‘dependencies.’ Installing dependencies is an especially complicated process for

researchers with limited computational knowledge. Even a stable online presence cannot

guarantee widespread usability of such software tools; life science and medical researchers

cannot explore all potential options for analyzing genomic or other types of biological “big

data” with a software that lacks an easy-to-use installation interface. Well-defined UX

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/liHM+2AH9+ckV4+IDvH
https://paperpile.com/c/n1Yl0Y/OjS7
https://paperpile.com/c/n1Yl0Y/aOCM
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

standards for software development could help software developers in computational biology

promote widespread implementation and use of their newly developed computational tools.

Second, companies efficiently distribute industry-produced software using dedicated

company units or contractors—services that universities and scientific funding agencies do not

typically provide for academic-developed software. The computational biology community has

adopted by default a pragmatic, short-term framework for disseminating software

development ​24​. In academia, the dissemination model of new software consists of publishing a

paper describing the software tool in a peer-reviewed journal. So-called “methods papers” are

dedicated to explaining the rationale behind the novel computational tool and demonstrating

with sample datasets the efficacy of the tool. Supplemental materials such as detailed

instructions, tutorials, dependencies, and source code are made available on the internet and

included in the published paper as a URL. The quality, format, and long-term availability of

supplemental materials varies among software developers and is subject to less scrutiny in the

peer-review process compared to the published paper itself. This approach limits the usability

of software tools and ultimately hinders the community’s ability to evaluate the tools in

benchmarking studies ​25​.

Third, industry-developed software is supported by teams of software engineers

dedicated to developing and implementing updates for as long as the software is considered

valuable to the community. Many software developers in academia do not have access to

mechanisms that could ensure continuous maintenance and long-term archival stability of

published tools. Journals require publicly accessible URLs when publishing a computational tool,

but there is presently no standard approach for ensuring long-term archiving of web content.

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/3B3C
https://paperpile.com/c/n1Yl0Y/rX4C
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

For example, many published tools in computational biology are hosted on academic web

pages that become inactive with time, sometimes only months after initial publication. These

software packages are typically developed by small groups of graduate students or postdoctoral

scholars who, considering the temporary nature of such positions, cannot maintain such

websites and software for longer periods of time.

Fourth, computational biology software developers in academia receive more incentive

and support to develop new tools than to maintain existing tools. Once published, the

structures of funding, hiring, and promotion in academia offer the developer little incentive for

continuous, long-term development and maintenance of existing software tools and databases

21​. Software developers can lose funding for even the most widely-used tools. Loss of external

funding may halt and even discontinue software development, potentially impacting the

research productivity of studies that depend on these tools ​22​. Halted software development

also hinders the ability to reproduce results from published studies that use discontinued tools.

Archival stability of published computational tools and resources

The World Wide Web provides a platform of unprecedented scope for data and

software accessibility, yet long-term preservation of online resources remains a largely

unresolved problem ​26​. Published software tools are made accessible through the Uniform

Resource Locator (URL), which is typically provided in the abstract or main text of the paper and

is often assumed to be a practically permanent locator. However, a URL may become inactive

due to removal or reconfiguration of web content. This phenomenon is described by various

terms, including ‘death of URL’ ​27 or ‘lost Internet Reference’ ​28​. At the onset, the World Wide

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/kURj
https://paperpile.com/c/n1Yl0Y/fA9f
https://paperpile.com/c/n1Yl0Y/WNuH
https://paperpile.com/c/n1Yl0Y/jcW0
https://paperpile.com/c/n1Yl0Y/VNl3
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Web promised the virtually infinite availability of digital resources; in practice, many digital

resources are lost.

Multiple studies have identified across various biomedical journals the deterioration of

long-term archival stability of published software tools ​20,27–31​. In order to begin assessing the

current software crisis in computational biology, we comprehensively evaluated the archival

stability of computational biology tools used in 51,236 biomedical papers published across 10

relevant peer-reviewed journals over a span of 17 years, from 2000 to 2017. Out of the 51,236

examined papers, 13.6% contained at least one URL in their abstracts, and the other 38.3%

contained URLs in the body of the paper. To ensure that the identified URL corresponds to an

active software tool or database, we inspected 10 neighboring words for specific keywords

commonly used, including "pipeline", "code", "software", "available", "publicly", and others

(See Methods Section). Complete details on our methodology for extracting the URLs, including

all parameters and thresholds, are provided in the Supplementary Methods.

We used a web mining approach to test 26,631 published URLs that our survey

identified. Of all identified URLs, 4.2% were unreachable because of connection timeouts, and

24.4% were ‘broken’ (i.e., 404 HTTP status). The threshold for allotted time may bias results; we

manually verified URLs reported with the timeout error code (​Figure S1​​).

Next, we grouped the URLs by the year in which the computational biology tool was

referenced by the corresponding publication. As expected, the time since publication is a

driving factor for URL archival stability (Kruskal-Wallis, p-value <10​-16​). 31.9% of the software

before 2012 are unavailable; whereas only 13.6% of the recent software (after 2012) are

unavailable (​Figure 1a​​). After 2014, we observe a drop in the absolute number of archivally

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/jcW0+VNl3+ZqwP+7N1R+vlFh+JVyQ
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

unstable resources (​Figure 1b​​). Despite the strong decline in the percentage of archivally

unstable resources with time, there are still 200 archivally unstable resources published every

year. The data and scripts for reproducing the plots in ​Figure 1 ​​are available at

https://github.com/smangul1/good.software/wiki/​.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://github.com/smangul1/good.software/wiki/Reproducing-the-results
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1.​​ Archival stability of 24,490 published URLs across 10 systems and computational

biology journals over the span of 17 years. ​(a) ​​ Accessibility status of 7,010 URLs parsed from

the abstracts of published peer-reviewed papers. We categorized unreachable URLs into two

groups: unreachable due to connection timeout (‘Timeout’, orange color), and unreachable due

to error (i.e., 404 HTTP status) (‘Broken’, red color). We separately categorized accessible URLs

that use redirection (‘Redirected’, blue color) and accessible URLs that do not redirection

‘Accessible’ (green color). Percentages of each category (y-axis) are reported over a 12-year

span (x-axis). ​(b) ​​Distribution of 7,010 abstract URLs (extracted from the abstract of the

published papers) across 12 years. URLs are categorized as ‘accessible + redirected’ and ‘broken

+ timeout’. Numbers of URLs per category reported across 12 years.​ (c)​​ No effect of the

journal impact factor on the availability of published links was observed. ​(d) ​​Accessible links

exhibit increased citations in social media (e.g., blog posts, twitter feeds, etc) per year

compared to ‘broken’ and ‘timeout’ links (Kruskal-Wallis, ​p-​value = 10​-256​). ​(e)​​ Altmetric

readership score (y-axis) is not significantly different across URL categories (x-axis). ​(f)

Accessible links exhibit increased Altmetric score compared to ‘broken’ and ‘timeout’ links

(Kruskal-Wallis, ​p-​value = 10​-15​). ​(g) ​​The proportion of unreachable links (due to connection

timeout or due to error) stored on web services designed to host source code (e.g., GitHub

and SourceForge) and ‘Other’ web services. ​(h) ​​ URLs hosted on web services that are designed

to host source code exhibit decreased the fraction of unreachable links (‘GitHub’ vs ‘Others’

p-value=10 ​-249​; SourceForge vs ‘Others’ p-value=10​-7, ​Fisher-exact test).

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

 A published URL can often be relocated to another URL, which is connected to the

original URL via redirection. We found that 25% of active URLs are redirected to new URLs.

However, 26% of updated URLs for published software are still not connected to the original

published URLs (that is, there is no redirection to the current software URL). This disconnection

is a consequence of the static nature of journal publications, which does not allow updating

information in the published content.

Similarly to the results of previous studies ​30​, the results of our survey show no effect of

the journal impact factor on the availability of published links (​Figure 1e​​). Prior research

demonstrates that the availability of published bioinformatics resources has a significant impact

on citation counts ​30​. In addition to those generally accepted measures of scientific impact, we

have assessed the effect of software availability on complementary metrics of impact, such as

measures of social media mentions, media coverage, and public attention (​Figure 1f-h​​). We

found that papers with accessible links exhibit increased engagement by readers in social

media, reflected in a significantly higher number of citations in social media platforms (e.g.,

blog posts, twitter feeds, etc) per year and an increased Altmetrics score ​32​ when compared to

papers with ‘broken’ and ‘timeout’ links (Kruskal-Wallis, H=492, ​p-​value = 10​-256​).

In addition, we tested the impact of using websites designed to host source code, such

as GitHub and SourceForge, on the archival stability of bioinformatics software. These websites

have been used by the bioinformatics community since 2001, and the proportion of software

tools hosted on these sites has grown substantially, from 5% in 2012 to 20% in 2017 (​Figure 1g​​).

We find that URLs pointing to these websites have a high rate of accessibility; 99% of the links

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/7N1R
https://paperpile.com/c/n1Yl0Y/7N1R
https://paperpile.com/c/n1Yl0Y/UsFy
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

to GitHub and 96% of the links to Sourceforge are accessible, while only 72% of links hosted

elsewhere are accessible (​Figure 1h)​​.

Our results suggest that the computational biology community would benefit from such

approaches, which effectively guarantee permanent access to published scientific URLs.

Specifically, several key principles emerge that promise to positively impact the availability of

published bioinformatics resources, including the number of citations and social media

references. In addition, bioinformatics tools and resources stored on web services designed to

host source code have a significantly higher chance of remaining accessible.

Tool usability

We have developed a computational framework capable of systematically verifying the

accessibility and usability of published software tools. We applied this framework to 99

randomly selected tools across various domains of computational biology (​Method Section​​).

We engaged undergraduate and graduate students to run the installation test using a

standardized protocol (​Figure S2​​); we recorded the time required to install the tools and other

important features, allowing up to two hours per software package. In total, 72 hours of

installation time was required to install 99 tools. We categorized a tool as ‘easy to install’ if it

could be installed in 15 minutes or less; ‘complex installation’ if it required more than 15

minutes but was successfully installed before the two hour limit; and ‘not installed’ if the tool

could not be successfully installed within two hours (​Table S1​​ and ​Figure 2​​).

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

We determined that 57.1% of the selected tools failed the ‘automatic installation test’,

where the tester is required to strictly follow the instructions provided in the manual of the

software tool (Methods; ​Figure 2a​​). In most tools (52%), the automatic installation test finished

in fewer than 15 minutes (​Table S1​​), as no additional commands outside of the manual were

required. For the tools failing the test, we performed manual intervention where the tester was

allowed to install missing dependencies and modify code to resolve the installation error. On

average, it took an additional 70 minutes to run commands not provided in the installation

instructions to successfully install the tool, which resulted in a significant increase of installation

time (Kruskal-Wallis, p-value=4.7x10​-9​; ​Figure 2b ​​). Manual intervention was unsuccessful for

66% of the tools that initially failed the automatic installation test; failed manual installation

was due to numerous issues, including hard coded parameters, invalid folder paths or header

files, and usage of unavailable software dependencies.

Next, we assessed the effect of the ease of installation on the popularity of tools in the

computational biology community by investigating the number of citations for the paper

describing the software tools. We find that tools which we were able to install had significantly

more citations compared to tools which we were not able to successfully install within two

hours (​Figure 2c​​; Kruskal-Wallis, p-value=0.032). These results suggest, perhaps not surprisingly,

that tools which are easier to install are more likely to be adopted by the community.

In addition, we aimed to see whether the documentation within the code affects the

installation time. Considering the proportion of commands that are undocumented (estimated

as a ratio between the executed commands and commands in the manual), we find that tools

with easier installation have a significantly lower percentage of undocumented commands

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

(​Figure 2d​​; Kruskal-Wallis​, ​p-value=2.3x10 ​-6​). Considering a significant increase of installation

time and a low rate of success for tools failing automatic installation test, we argue that

reliance on manual intervention to successfully install and run computational biology tools is an

unsustainable practice. Software developers would benefit from ensuring a simple installation

process and providing adequate installation instructions.

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2. ​​Usability of 99 randomly selected published software tools across 22 life science

journals over a span of 15 years. Software tools were categorized as ‘easy to install’ if the total

installation time was 15 minutes or less; ‘Complex installation’ if the total installation time was

longer than 15 minutes but fewer than two hours; ‘Not installed’ if the software could not be

installed in two hours. ​(a) ​​ Pie charts showing the percentage of tools with various level of

usability. ​(b) ​​Tools that require no manual intervention (pass automatics installation test)

exhibit decreased installation time (Kruskal-Wallis​, ​p-value=4.7x10 ​-09​). ​(c) ​​ Tools installed exhibit

increased citation per year compared with tools which were not installed (Kruskal-Wallis​,

p-​value = 0.032). ​(d)​​ Tools which are easy to install include a decreased portion of

undocumented commands (Not Installed vs. Easy Install: Kruskal-Wallis​, ​p-value=2.3x10 ​-6 ​, Easy

Install vs. Complex Install: Kruskal-Wallis​, ​p-value=4.7x10 ​-6 ​). ​(e) ​​Tools available in the

well-maintained package managers such as Bioconda were always installable, while tools not

shipped via package managers were prone to problems in 32% of the studied cases.

Ideally, all necessary installation instructions should be included in a single script,

especially when the number of installation commands is large. In addition, installation scripts

should contain commands necessary to install all required dependencies. The vast majority of

surveyed tools fail to provide one-line solutions for installation, and, instead, provide

step-by-step instructions. On average, eight commands were required to install surveyed tools,

while only 3.9 commands were provided in the manual. Among the surveyed software tools, 24

tools provide one-line installation solution, of which nine were available via the Bioconda

package manager ​33​ (Table S1). A package manager ​is a collection of software tools that

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/rZGJ
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

automate the installation, upgrade, and configuration in a consistent manner.​ Tools with

single-command installation require on average six minutes installation time, which is

significantly faster when compared to tools which require multi-command installation

(Kruskal-Wallis, p-value=4.7x10​-6 ​) (​Figure S3​​) ​ ​. Tools available in well-maintained package

managers (e.g., Bioconda) were always installable, while tools not shipped via package

managers were prone to problems in 32% of the studied cases (​Figure 2e​​).

Automatic verification of software usability

Software quality, including usability, is typically not thoroughly tested in the formal peer

review process. Rather than relying on reviewer feedback, which is often problematic as the

reviewers may lack the computational skills and time to verify the tools, it is possible to

automate the assessment process when software guarantees access to (i) the software binaries

or source code; (ii) a script that installs the software in a given UNIX environment; (iii) a small

example dataset and its expected output; and (iv) a script to perform the analysis on the

dataset from ​(iii)​.

To provide an automated and openly verifiable certification that a tool is usable, we

suggest a model of a server that uses public badges to endorse the usability of a software tool.

The server will issue a certificate to the software author, which indicates that the proposed

software passed an ‘Automatic Installation Test.’ The installation process, in this case, includes

a testing phase that ensures the installation can be successful. Authors of computational tools

that submit their software tool to our badge server, alongside an installation script and an

example dataset, will receive a badge of confirmation which certifies that the software tool was

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

successfully installed in a third-party environment. Using a Secure Hash Algorithm ​34​, each

generated badge would be unique to each version of the software, installation script, test

dataset, and operating system used by the server.

To validate a badge, the server will use a private cryptographic key to publicly sign the

badge. Public badge testing provides a strong endorsement of the tool usability up to the

current highest standards in the industry, as only the same software version, installation script,

and test dataset will confirm the authenticity of the badge and its public signature. A public

badge platform will provide a mechanism for researchers and editors of journals in

computational biology to verify the usability of a tool in under five minutes through

confirmation of the server’s signature. Badges inform the user ​a priori ​ if and under what

conditions the software is installable, potentially reducing for each user a significant amount of

time that otherwise would be required to test software and attempt installing software that is

ultimately uninstallable. To ensure the usability of our badge server, we also provide a small

script that automates the verification of badges (see Supplementary Note 2).

In addition to guaranteeing that a software tool can be successfully installed in a

standardized environment, the badge also reflects which specific UNIX system was used during

the test installation. (UNIX-based systems are the most commonly used operating systems in

the field of computational biology.) Furthermore, the badge server does not assume an open

source software and can be generated based on the source code or binary files.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/fepJ
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Box 1. Principles to increase usability and archival stability of omics computational tools and

resources.

The results from our study point to several specific opportunities for establishing an

effective software development and distribution practice. Here we present five principles to

increase the usability and archival stability of omics computational tools and resources. The

majority of surveyed software tools and resources address only a portion of these principles.

1. Host software and resources on archivally stable services

Selecting the appropriate service to host your software and resources is critical. A

simple solution is to use web services designed to host source code (e.g. GitHub ​36,37​ or

Sourceforge). In our study, we have determined that more than 98% of software tools

and resources stored at GitHub or Sourceforge are accessible, and tools hosted on these

services remain stable for longer periods of time (Table S2). Ideally, the repositories

storing code should be permanently archived via ​38​, for example, GitHub or SourceForge

releases, Zenodo​ (​https://zenodo.org​), or Internet Archive (​https://archive.org/​).

2. Provide easy-to-use installation interface

Use sustainable and comprehensive software distribution. One example of a sustainable

package manager is Bioconda​33​, which is language agnostic and available on Linux, UNIX,

and Mac operating systems. Bioconda is the most popular package manager, currently

covering 2900 software tools that are continuously maintained, updated, and extended

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/tTQW+9dDR
https://paperpile.com/c/n1Yl0Y/6ElT
https://zenodo.org/
https://zenodo.org/
https://archive.org/
https://paperpile.com/c/n1Yl0Y/rZGJ
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

by a growing global community ​33​. Bioconda provides a one-line solution for

downloading and installing a tool.

3. Take care of all the dependencies the tool needs

Even the most widely used tools rely on dependencies. To facilitate simple installation

with required dependencies, provide an easy-to-use interface to download and install all

dependencies. Package managers can potentially solve this problem since all

dependencies are usually preinstalled. Bioconda also automatically generates containers

for each Bioconda ‘recipe’ ​39​, which provide all files and information needed to install a

package. One drawback is that the existing tools in portable package managers are

manually updated by the team or community, often delaying such updates. For

example, as of August 10, 2018, R 3.5 was unavailable under Bioconda. Alternatively, a

simple bash script can be used to combine the commands for installing dependencies

and developed software tools into a single script. Forcing users to install such

dependencies in a non-configurable location can lead to conflicts. To avoid conflicts, one

can design an installation script that installs all dependencies in a user-configurable

directory.

4. Provide an example dataset

Provide an example dataset inside the software package, with a description of the

expected results. Similar to unit and integration testing practices in software

engineering, example datasets allow the user to verify that the tool was successfully

installed and works properly before running the tool on experimental data. A tool may

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/rZGJ
https://paperpile.com/c/n1Yl0Y/mHXC
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

be installed with no errors, yet it may still fail to successfully run on the input data. Only

68% of examined tools provide an example dataset (Table S1).

5. Provide a ‘Quick Start’ guide

Allow the user to verify the installation and performance of the tool. Providing a ‘Quick

Start’ guide is the best way for the user to know that the tools are installed and is

working properly. The guide should provide the commands needed to download, install,

and run the software tool on the example dataset. An example of a ‘Quick Start’ guide is

provided in Supplemental Note 2. In addition to the ‘Quick Start’, a detailed manual

needs to be provided with information on options and advanced features and

configuration of the tool. Best practices of creating bioinformatics software

documentation are discussed elsewhere ​17​.

6. Choose an adequate name

Choose a software name that best reflects the developed tool or resource. Today’s “age

of Google” places new demands on the function of tool names, which should be

memorable and unique, yet easily searchable. In addition, there are no regulations on

tool names. For example, there are at least six tools named ‘Prism,’ making it

challenging to find the right tool (Supplementary Note 3). Scout the web to check the

uniqueness of a name before publishing a new tool.

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/b7sv
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

7. Assume no root privileges

Tools are often installed on a high-performance computing cluster where users do not

have administrative (root/superuser) privileges to install software into system

directories. When developing instructions for installation of the proposed software tool,

avoid commands that require root access. Examples of such commands include those

that use package managers that require root/superuser privileges, such as ​sudo apt-get

install or sudo yum install.

8. Create agnostic installation platform or distribute different versions for each platform

Specification of various versions of UNIX-based systems may limit the usability of

software. Developers should either create a tool that will work on any platform or

create a separate version for each platform. Platform-specific commands (e.g.,

Homebrew ​40​) ​should be avoided.

--end Box 1

Discussion

Our study assesses an emergent software crisis in computational biology that is

characterized by lack of standards regarding usability and long-term archival stability of omics

computational tools and resources. Despite recent requirements on the behalf of journals to

impose data and code sharing on published authors’ work, 25.0% of 26,631 omics software

resources examined in this study are not currently accessible via the original published URLs.

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/pJ26
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Among the 99 software packages selected for our usability test, 49.0% of computational biology

tools failed our ‘easy-to-install’ test. In addition, 27.6% of surveyed tools could not be installed

due to severe problems in the implementation process. One-quarter of examined tools are easy

to install and use; in these cases, we identify a set of good practices for software development

and dissemination.

Reviewers assessing the papers that present new software tools could begin addressing

this problem with the adoption of a rigorous, standardized approach during the peer review

process. Feasible solutions for improving the usability and archival stability of peer-reviewed

software tools include requirements for providing installation scripts, test data, and functions

that allow automatic checks for the plausibility of installing and running the tool. For example,

forking is a simple procedure that ensures the version of cited code within an article may

persist beyond initial publication ​41​. Academic journals recently took a major step toward

improving archival stability by permanently forking published software to GitHub (e.g.,

(Mosqueiro et al. 2017)​).

The current workflow of computational biology software development in academia

encourages researchers to develop and publish new tools, but this process does not incentivize

long-term maintenance of existing tools. Results from this study provide a strong argument for

the development of standardized approaches capable of verifying and archiving software.

Further, our results suggest that funding agencies should emphasize support for maintenance

of existing tools and databases.

Manual interventions and long installation times are unappealing to many users,

especially to those with limited computational skills. Many life science and medical researchers

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/9g9c
https://paperpile.com/c/n1Yl0Y/bGCw
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

lack formal computational training and may be unable to perform manual interventions (e.g.,

installing dependencies or editing computer code during installation). Users could leverage

advanced knowledge of the time and computational skills required to properly install a

software package. We propose a prototype of a badge server that runs an ​automated

installation test, thus introducing to the peer review process explicit assessment of a tool’s

usability. This badge server would be particularly useful in computational biology, an

interdisciplinary field comprised of reviewers who often lack the skills and time to verify the

usability of software tools. Many benchmarking studies already routinely report relative ease of

installation and use of new tools as components of their performance metrics​44​ .

Acknowledgment

We thank John Didion (​https://twitter.com/jdidion​) for an interesting discussion over Twitter

about the issue of software usability.

References

1. Van Noorden, R., Maher, B. & Nuzzo, R. The top 100 papers. ​Nature​ ​514,​​ 550–553 (2014).

2. Wren, J. D. Bioinformatics programs are 31-fold over-represented among the highest

impact scientific papers of the past two decades. ​Bioinformatics​ ​32,​​ 2686–2691 (2016).

3. Markowetz, F. All biology is computational biology. ​PLoS Biol. ​ ​15,​​ e2002050 (2017).

4. Marx, V. The big challenges of big data. ​Nature ​ ​498,​​ 255–260 (2013).

5. Greene, A. C., Giffin, K. A., Greene, C. S. & Moore, J. H. Adapting bioinformatics curricula

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/k66A
https://twitter.com/jdidion
http://paperpile.com/b/n1Yl0Y/gwlh
http://paperpile.com/b/n1Yl0Y/gwlh
http://paperpile.com/b/n1Yl0Y/gwlh
http://paperpile.com/b/n1Yl0Y/gwlh
http://paperpile.com/b/n1Yl0Y/gwlh
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/TWGi
http://paperpile.com/b/n1Yl0Y/TWGi
http://paperpile.com/b/n1Yl0Y/TWGi
http://paperpile.com/b/n1Yl0Y/TWGi
http://paperpile.com/b/n1Yl0Y/TWGi
http://paperpile.com/b/n1Yl0Y/7NP8
http://paperpile.com/b/n1Yl0Y/7NP8
http://paperpile.com/b/n1Yl0Y/7NP8
http://paperpile.com/b/n1Yl0Y/7NP8
http://paperpile.com/b/n1Yl0Y/7NP8
http://paperpile.com/b/n1Yl0Y/SUle
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

for big data. ​Brief. Bioinform. ​ ​17,​​ 43–50 (2016).

6. Ahn, W.-Y. & Busemeyer, J. R. Challenges and promises for translating computational tools

into clinical practice. ​Current Opinion in Behavioral Sciences ​ ​11,​​ 1–7 (2016).

7. Stodden, V., Seiler, J. & Ma, Z. An empirical analysis of journal policy effectiveness for

computational reproducibility. ​Proc. Natl. Acad. Sci. U. S. A.​ ​115,​​ 2584–2589 (2018).

8. Gertler, P., Galiani, S. & Romero, M. How to make replication the norm. ​Nature​ ​554,

417–419 (2018).

9. Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows is

automated using continuous analysis. ​Nat. Biotechnol.​ ​35,​​ 342–346 (2017).

10. List, M., Ebert, P. & Albrecht, F. Ten Simple Rules for Developing Usable Software in

Computational Biology. ​PLoS Comput. Biol.​ ​13,​​ e1005265 (2017).

11. Baxter, S. M., Day, S. W., Fetrow, J. S. & Reisinger, S. J. Scientific Software Development Is

Not an Oxymoron. ​PLoS Comput. Biol. ​ ​2,​​ e87 (2006).

12. Prlić, A. & Procter, J. B. Ten simple rules for the open development of scientific software.

PLoS Comput. Biol. ​ ​8,​​ e1002802 (2012).

13. Gewaltig, M.-O. & Cannon, R. Current practice in software development for computational

neuroscience and how to improve it. ​PLoS Comput. Biol.​ ​10,​​ e1003376 (2014).

14. Altschul, S. ​et al. ​ The anatomy of successful computational biology software. ​Nat.

Biotechnol. ​ ​31,​​ 894–897 (2013).

15. Carpenter, A. E., Kamentsky, L. & Eliceiri, K. W. A call for bioimaging software usability.

Nat. Methods​ ​9,​​ 666–670 (2012).

16. Leprevost, F. da V. ​et al.​ On best practices in the development of bioinformatics software.

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

http://paperpile.com/b/n1Yl0Y/SUle
http://paperpile.com/b/n1Yl0Y/SUle
http://paperpile.com/b/n1Yl0Y/SUle
http://paperpile.com/b/n1Yl0Y/SUle
http://paperpile.com/b/n1Yl0Y/SUle
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/2AH9
http://paperpile.com/b/n1Yl0Y/2AH9
http://paperpile.com/b/n1Yl0Y/2AH9
http://paperpile.com/b/n1Yl0Y/2AH9
http://paperpile.com/b/n1Yl0Y/2AH9
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/HjJW
http://paperpile.com/b/n1Yl0Y/HjJW
http://paperpile.com/b/n1Yl0Y/HjJW
http://paperpile.com/b/n1Yl0Y/HjJW
http://paperpile.com/b/n1Yl0Y/HjJW
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/wGbj
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Front. Genet. ​ ​5,​​ (2014).

17. Karimzadeh, M. & Hoffman, M. M. Top considerations for creating bioinformatics software

documentation. ​Brief. Bioinform.​ ​19,​​ 693–699 (2018).

18. Queiroz, F., Silva, R., Miller, J., Brockhauser, S. & Fangohr, H. Good Usability Practices in

Scientific Software Development. (2017). doi:​10.6084/m9.figshare.5331814.v3

19. Jiménez, R. C. ​et al.​ Four simple recommendations to encourage best practices in research

software. ​F1000Res.​ ​6,​​ (2017).

20. Ősz, Á., Pongor, L. S., Szirmai, D. & Győrffy, B. A snapshot of 3649 Web-based services

published between 1994 and 2017 shows a decrease in availability after 2 years. ​Brief.

Bioinform.​ (2017). doi:​10.1093/bib/bbx159

21. Support Model Organism Databases. Available at:

http://www.genetics-gsa.org/MODsupport.​ (Accessed: 11th August 2018)

22. Database under maintenance. ​Nat. Methods​ ​13,​​ 699–699 (2016).

23. Guellec, D. & Van Pottelsberghe De La Potterie, B. The impact of public R&D expenditure

on business R&D*. ​Economics of Innovation and New Technology​ ​12,​​ 225–243 (2003).

24. Ahmed, Z., Zeeshan, S. & Dandekar, T. Developing sustainable software solutions for

bioinformatics by the ‘ Butterfly’ paradigm. ​F1000Res. ​ ​3,​​ 71 (2014).

25. Kanitz, A. ​et al.​ Comparative assessment of methods for the computational inference of

transcript isoform abundance from RNA-seq data. ​Genome Biol.​ ​16,​​ 150 (2015).

26. Chen, S.-S. Digital Preservation: Organizational Commitment, Archival Stability, and

Technological Continuity. ​Journal of Organizational Computing and Electronic Commerce

17,​​ 205–215 (2007).

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/b7sv
http://paperpile.com/b/n1Yl0Y/b7sv
http://paperpile.com/b/n1Yl0Y/b7sv
http://paperpile.com/b/n1Yl0Y/b7sv
http://paperpile.com/b/n1Yl0Y/b7sv
http://paperpile.com/b/n1Yl0Y/b7sv
http://paperpile.com/b/n1Yl0Y/PH34
http://paperpile.com/b/n1Yl0Y/PH34
http://dx.doi.org/10.6084/m9.figshare.5331814.v3
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/vlFh
http://paperpile.com/b/n1Yl0Y/vlFh
http://paperpile.com/b/n1Yl0Y/vlFh
http://paperpile.com/b/n1Yl0Y/vlFh
http://paperpile.com/b/n1Yl0Y/vlFh
http://dx.doi.org/10.1093/bib/bbx159
http://paperpile.com/b/n1Yl0Y/kURj
http://www.genetics-gsa.org/MODsupport.
http://paperpile.com/b/n1Yl0Y/kURj
http://paperpile.com/b/n1Yl0Y/fA9f
http://paperpile.com/b/n1Yl0Y/fA9f
http://paperpile.com/b/n1Yl0Y/fA9f
http://paperpile.com/b/n1Yl0Y/fA9f
http://paperpile.com/b/n1Yl0Y/fA9f
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/WNuH
http://paperpile.com/b/n1Yl0Y/WNuH
http://paperpile.com/b/n1Yl0Y/WNuH
http://paperpile.com/b/n1Yl0Y/WNuH
http://paperpile.com/b/n1Yl0Y/WNuH
http://paperpile.com/b/n1Yl0Y/WNuH
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

27. Carnevale, R. J. & Aronsky, D. The life and death of URLs in five biomedical informatics

journals. ​Int. J. Med. Inform. ​ ​76,​​ 269–273 (2007).

28. Dellavalle, R. P. ​et al.​ Information science. Going, going, gone: lost Internet references.

Science ​ ​302,​​ 787–788 (2003).

29. Ducut, E., Liu, F. & Fontelo, P. An update on Uniform Resource Locator (URL) decay in

MEDLINE abstracts and measures for its mitigation. ​BMC Med. Inform. Decis. Mak.​ ​8,

(2008).

30. Wren, J. D., Georgescu, C., Giles, C. B. & Hennessey, J. Use it or lose it: citations predict the

continued online availability of published bioinformatics resources. ​Nucleic Acids Res.​ ​45,

3627–3633 (2017).

31. Wren, J. D. URL decay in MEDLINE--a 4-year follow-up study. ​Bioinformatics​ ​24,​​ 1381–1385

(2008).

32. Piwowar, H. Altmetrics: Value all research products. ​Nature​ ​493,​​ 159 (2013).

33. Grüning, B. ​et al. ​ Bioconda: sustainable and comprehensive software distribution for the

life sciences. ​Nat. Methods​ ​15,​​ 475–476 (2018).

34. Dworkin, M. J. ​SHA-3 Standard: Permutation-Based Hash and Extendable-Output

Functions ​. (2015).

35. Mergel, I. Open collaboration in the public sector: The case of social coding on GitHub.

Gov. Inf. Q.​ ​32,​​ 464–472 (2015).

36. Perez-Riverol, Y. ​et al.​ Ten Simple Rules for Taking Advantage of Git and GitHub. ​PLoS

Comput. Biol. ​ ​12,​​ e1004947 (2016).

37. When it comes to reproducible science, Git is code for success. Available at:

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/UsFy
http://paperpile.com/b/n1Yl0Y/UsFy
http://paperpile.com/b/n1Yl0Y/UsFy
http://paperpile.com/b/n1Yl0Y/UsFy
http://paperpile.com/b/n1Yl0Y/UsFy
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/fepJ
http://paperpile.com/b/n1Yl0Y/fepJ
http://paperpile.com/b/n1Yl0Y/fepJ
http://paperpile.com/b/n1Yl0Y/fepJ
http://paperpile.com/b/n1Yl0Y/a9TP
http://paperpile.com/b/n1Yl0Y/a9TP
http://paperpile.com/b/n1Yl0Y/a9TP
http://paperpile.com/b/n1Yl0Y/a9TP
http://paperpile.com/b/n1Yl0Y/a9TP
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/9dDR
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.natureindex.com/news-blog/when-it-comes-to-reproducible-science-git-is-c

ode-for-success.​ (Accessed: 11th August 2018)

38. Thelwall, M. A fair history of the Web? Examining country balance in the Internet Archive.

Libr. Inf. Sci. Res.​ ​26,​​ 162–176 (2004).

39. da Veiga Leprevost, F. ​et al. ​ BioContainers: an open-source and community-driven

framework for software standardization. ​Bioinformatics​ ​33,​​ 2580–2582 (2017).

40. Homebrew. ​Homebrew ​ Available at: ​https://brew.sh/.​ (Accessed: 17th August 2018)

41. Forking software used in eLife papers to GitHub. ​elifesciences.org​ (2017).

42. Kaiser, J. BIOMEDICAL RESOURCES. Funding for key data resources in jeopardy. ​Science

351,​​ 14 (2016).

43. Pickrell, J. beanbag genomics. ​beanbag genomics ​ Available at:

https://joepickrell.wordpress.com/.​ (Accessed: 11th August 2018)

44. Hunt, M., Newbold, C., Berriman, M. & Otto, T. D. A comprehensive evaluation of assembly

scaffolding tools. ​Genome Biol.​ ​15,​​ R42 (2014).

45. Fonseca, N. A., Rung, J., Brazma, A. & Marioni, J. C. Tools for mapping high-throughput

sequencing data. ​Bioinformatics​ ​28,​​ 3169–3177 (2012).

46. Pabinger, S. ​et al.​ A survey of tools for variant analysis of next-generation genome

sequencing data. ​Brief. Bioinform.​ ​15,​​ 256–278 (2014).

29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://www.natureindex.com/news-blog/when-it-comes-to-reproducible-science-git-is-code-for-success.
https://www.natureindex.com/news-blog/when-it-comes-to-reproducible-science-git-is-code-for-success.
http://paperpile.com/b/n1Yl0Y/9dDR
http://paperpile.com/b/n1Yl0Y/6ElT
http://paperpile.com/b/n1Yl0Y/6ElT
http://paperpile.com/b/n1Yl0Y/6ElT
http://paperpile.com/b/n1Yl0Y/6ElT
http://paperpile.com/b/n1Yl0Y/6ElT
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/pJ26
http://paperpile.com/b/n1Yl0Y/pJ26
http://paperpile.com/b/n1Yl0Y/pJ26
https://brew.sh/
http://paperpile.com/b/n1Yl0Y/pJ26
http://paperpile.com/b/n1Yl0Y/9g9c
http://paperpile.com/b/n1Yl0Y/9g9c
http://paperpile.com/b/n1Yl0Y/9g9c
http://paperpile.com/b/n1Yl0Y/cKw2
http://paperpile.com/b/n1Yl0Y/cKw2
http://paperpile.com/b/n1Yl0Y/cKw2
http://paperpile.com/b/n1Yl0Y/cKw2
http://paperpile.com/b/n1Yl0Y/cKw2
http://paperpile.com/b/n1Yl0Y/6t0E
http://paperpile.com/b/n1Yl0Y/6t0E
http://paperpile.com/b/n1Yl0Y/6t0E
https://joepickrell.wordpress.com/
http://paperpile.com/b/n1Yl0Y/6t0E
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Glossary

Usability.​​ The tool is considered usable if (a) the tool and its corresponding

dependencies can be installed on Linux/UNIX-based operating systems, and if (b) the tool can

produce expected results from the input data with no errors.

Automated installation test.​​ This test of software installation ease is performed by the

biomedical researcher. The researcher is using only installation commands provided in the

manual in the recommended order. No extra commands are allowed. A tool passes the

automated installation test if the user can successfully install the package following only the

commands from the manual.

The package manager​​ ​is a collection of software tools that automate the installation of

a tool’s core package and updates in a consistent manner.​ Package managers help solve the

‘dependencies problem’ by pre-installing required third-party software packages. Bioconda is

one of the most popular package managers for omics computational tools. A growing global

community of Bioconda users continuously maintain, update, and extend over 2900 software

tools.

Methods

Protocol to check the archival stability of published software tools

We downloaded open access papers via PubMed from 10 systems and computational

biology journals from NCBI FTP server (ftp://​ftp.ncbi.nlm.nih.gov/pub/pmc/​). We included the

following journals: ​Bioinformatics​, ​BMC Genomics​, ​Genome Medicine ​, ​Nature Methods ​, ​PLoS

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

http://ftp.ncbi.nlm.nih.gov/pub/pmc/
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computational Biology​, ​BMC Bioinformatics​, ​BMC System Biology​, ​Genome Biology ​, ​Nature

Biotechnology ​, ​Nucleic Acids Research ​, and ​GigaScience​.

Papers were downloaded in XML format containing name-tags for field extraction. (Raw

data from PubMed is available at ​​https://github.com/smangul1/good.software​​/.) Specifically,

we focused on three name-tags: <abstract>, <body>, and <text-link>. Each paper’s abstract is

enclosed inside the <abstract> tag (Figure S1). The <body> tag contains the key contents like

introduction, methods, results, and discussion. <ext-link> tags contain internet addresses for

external sources (e.g., supplementary data and directions for downloading data sources and

software packages).

 We deployed a heuristic approach in extracting only software links produced by the

paper’s author(s). We assumed that these links are in <ext-link> tags whose neighbor words

contain one of the following keywords: "here", "pipeline", "code", "software", "available",

"publicly", "tool", "method", "algorithm", "download", "application", "apply", "package", and

"library". The links to the software Biogem are found inside two different <ext-link> tags. The

first link, ​http://www.biogems.info​, will be marked by the keyword “available,” on the right;

whereas the second link, ​http://www.biogems.info/howto.html​, is marked by the same word

“available,” from the left. The neighborhood for an <ext-link> tab is 75 characters, including

spacing (about 5-10 words on average) from the start and end of the tag.

 For each extracted link, we used the HTTPError class of the Python library urllib2 to get

the HTTP status. Status number 400 and above indicate broken links; for example, the

well-known 404 code implies "Page Not Found". We used links found in the body of a paper

when the abstract does not contain any external internet links. Since the threshold for the

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://github.com/smangul1/good.software/wiki
http://www.biogems.info/
http://www.biogems.info/
http://www.biogems.info/howto.html
http://www.biogems.info/howto.html
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

allotted time may bias the results, we manually verified 1229 URLs reported with the timeout

error code (​Figure S1 ​​). Our protocol to check the archival stability of published software tools is

freely available at ​https://github.com/smangul1/good.software​.

Protocol to check the usability of published software tools

To standardize the operating system environment for each tool installation, we used a

CentOS 7 (v1710.01) Vagrant virtual machine. CentOS is an open-source operating system that

is widely used in research computing. To prevent dependency mismatches due to previously

installed packages, we installed each tool in a new Vagrant virtual machine. We present a

summary of our protocol in Figure S3. Tools were classified into three categories: (1) easy to

install, where installation took less than 15 minutes; (2) hard to install, where installation took

between 15 minutes and two hours; and (3) not installed, meaning installation took longer than

two hours or could not be completed. We tested a total of 99 tools across various categories

and fields as described below. Information on the tools tested and the results of the test are

available in Table S1.

Tools for microbiome profiling

The usability of 10 common tools for microbiome analysis was tested. ​To develop a

comprehensive list of popular tools, two co-authors co-authors independently made lists of 30

microbiome tools currently used for microbiome data processing, based on a literature survey,

and identified those present on both lists. Microbiome tools can vary in their specificity of use;

32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://github.com/smangul1/good.software
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

we limited the final tool list to five tools that process raw sequences into a final OTU table, and

five tools capable of broad downstream analysis functions.

Tools for read alignment

We tested the usability of 10 tools for read alignment. We randomly selected a total of

20 tools—10 tools from a recent survey ​45​ and 10 tools from PubMed

(​https://www.ncbi.nlm.nih.gov/pubmed/​). The full list of extracted URLs is available at

https://github.com/smangul1/good.software/wiki​ . To confirm that the installation process

indeed worked, we used reads generated from the complete genome of ​Enterobacteria phage

lambda ​ (NC_001416.1).

Tools for variant calling tools

We tested the usability of seven randomly sampled tools designed for variant calling ​46​.

We confirmed successful software installation when the core functionality of each package

could be executed with an example dataset. Only one of the tools was not packaged with an

example dataset, in which case we randomly chose an open example dataset. We discarded

from our study the tools for which papers could not be located.

Tools for structural variants tools

We examined the usability of 52 common tools used for the structural variant (SV) calling from

whole genome sequencing (WGS) data. First, we compiled a list of tools that use read

alignment, where reads aligned to the locations are inconsistent with the expected insert size

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/Wp2O
https://www.ncbi.nlm.nih.gov/pubmed/
https://github.com/smangul1/good.software/wiki
https://paperpile.com/c/n1Yl0Y/yCd2
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

of the library or expected read depth at a specific locus. We randomly selected 50 tools out of

70 programs designed to detect SVs from WGS data and published after 2011. We confirmed

the successful installation of each software package by executing its core functionality with an

example dataset.

Additional omics tools

Lastly, we randomly selected 20 published tools based on the URL present in the abstract or the

body of the publications available in PubMed (​https://www.ncbi.nlm.nih.gov/pubmed/​). The

full list of extracted URLs is available at

https://github.com/smangul1/good.software/wiki​ .

Statistical analysis

Once the archival information was recorded, variance analysis was performed to assess

the differences among the links categorized as ‘accessible’, ‘redirected’, ‘broken’ and ‘time out’.

We inspected differences in five different statistics: impact factor of the journal where the tool

was published; the number of citations in the original paper where the tool was published;

number of citations per year in social media platforms such as blogs and twitter feeds; total

readership measured by Altmetrics; and the final Altmetric score. Because the distributions of

all five measures presented heavy tails and deviated from a bell-shaped distribution, we

performed a Kruskal-Wallis test on ranks, followed by a Tukey post-hoc test to confirm which

groups presented significant differences with a significance level of 0.01. We provide all

34

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://www.ncbi.nlm.nih.gov/pubmed/
https://github.com/smangul1/good.software/wiki
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

p-values and test statistics from these experiments in our electronic supplemental material on

GitHub

(​https://github.com/smangul1/good.software/wiki/Reproducing-the-results​).

Supplementary Notes

Supplemental Note 1. ​​An example of the ‘Quick Start’

1. Download the tool using: git clone ​https://github.com/x/software.tool.git

2. Install tool using: cd software.tool; ./install.sh

3. Run the tool for the example dataset (distributed with the tool): ./software.tool

example.dataset

Supplementary Note 2. ​​Badge Server to inspect installation reproducibility.

The server creates an instance of a UNIX virtual machine and runs the installation script

and test protocol submitted. If the installation completes without errors, and the test dataset

provides the expected result, a badge is created that certifies the usability of the tool under the

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://github.com/smangul1/good.software/wiki/Reproducing-the-results
https://github.com/x/software.tool.git
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

tested conditions. The badge consists of a unique summary generated by the Secure Hash

Algorithm 3 (SHA-3) ​34​, of the items submitted by authors. The server then uses a private

cryptographic key to publicly sign this summary. There is a small probability that the hashed

summary of two different objects created by SHA-3 could be identical (also known as collision);

however, this method is the current technological standard of unique badge creation and is

broadly accepted by all industries. Using the server’s public key and the hashed version of the

software, any user can authenticate the signature and prove that the server was indeed able to

install the tool without manual intervention.

Researchers would benefit from access to the verification process. We provide a small

script that verifies whether a given badge was issued by our server. Verifying the authenticity of

the server’s signature only takes a few minutes and can be done automatically with this client

script. Therefore, our model provides a mechanism for computational biology researchers and

journal editors with minimal technical knowledge to verify the usability of a tool in under five

minutes. We provide badges endorsing a software package’s usability, and both the badge

server and the client script are publicly available on GitHub.

Supplementary Note 3

List of bioinformatics tools with name Prism.

● https://www.ncbi.nlm.nih.gov/pubmed/22851530​ (Structural Variance)

● https://academic.oup.com/nar/article/43/20/9645/1394603​ (Metabolomics)

● https://www.ncbi.nlm.nih.gov/pubmed/21068001​ (Viral Genomics)

36

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/fepJ
https://www.ncbi.nlm.nih.gov/pubmed/22851530
https://academic.oup.com/nar/article/43/20/9645/1394603
https://www.ncbi.nlm.nih.gov/pubmed/21068001
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

● http://honig.c2b2.columbia.edu/prism/​ (Protein Structure Analysis)

https://www.ncbi.nlm.nih.gov/pubmed/15991339​ (Protein Structure)

● https://www.bits.vib.be/about

Supplementary Tables

tool.ID package.m

anager

number.c

itations.p

er.year

executed.

command

s

commands.

manual

undoc.c

omman

ds

Automatic

.instalatio

n.test

instalat

ion.tim

e

easy.flag exa

mpl

e.p

rovi

ded

ID1 Other 0.29 7 2 0.7 Fail 5 Not.installed Y

ID2 Github 0.67 5 3 0.4 Fail 30 Not.installed Y

ID3 BitBucket 0.71 7 4 0.4 Fail 30 Complex Y

ID4 Other 1 2 2 0 Pass 15 Easy Y

ID5 Bioconduct

or

1 1 1 0 Pass 5 Easy Y

ID6 Other 1.33 2 2 0 Pass 5 Easy Y

ID7 Github 1.33 3 3 0 Pass 5 Easy Y

ID8 Other 1.33 1 1 0 Pass 5 Easy N

ID9 Other 1.38 N/A N/A N/A N/A 5 Not.installed N

ID10 Github 1.5 1 1 0 Pass 15 Easy N

ID11 SourceForg

e

1.6 5 N/A N/A N/A 30 Complex N

ID12 Github 1.67 1 1 0 Pass 5 Easy Y

ID13 Other 1.67 3 3 0 Pass 5 Easy N

37

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

http://honig.c2b2.columbia.edu/prism/
https://www.ncbi.nlm.nih.gov/pubmed/15991339
https://www.bits.vib.be/about
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

ID14 Other 1.71 4 4 0 Pass 30 Not.installed Y

ID15 SourceForg

e

1.83 1 1 0 Pass 15 Not.installed Y

ID16 Other 2 2 2 0 Pass 5 Easy N

ID17 Github 2.25 12 12 0 Pass 120 Complex Y

ID18 Other 2.43 2 N/A N/A N/A 5 Easy N

ID19 Other 2.5 7 7 0 Pass 15 Not.installed Y

ID20 Other 2.6 11 4 0.6 Fail 15 Not.installed Y

ID21 Other 2.67 3 3 0 Pass 15 Easy Y

ID22 Github 2.75 7 7 0 Pass 15 Easy Y

ID23 SourceForg

e

3 4 4 0 Fail 120 Not.installed Y

ID24 Other 3 10 10 0 Pass 30 Not.installed Y

ID25 Other 3 6 6 0 Pass 15 Easy Y

ID26 Github 3 7 7 0 Pass 15 Easy N

ID27 Github 3 9 9 0 Pass 5 Easy Y

ID28 Other 3.2 5 3 0.4 Fail 30 Complex Y

ID29 Other 3.25 5 4 0.2 Fail 15 Easy Y

ID30 Github 3.25 1 1 0 Pass 5 Easy Y

ID31 Other 3.33 N/A N/A N/A Fail 120 Not.installed Y

ID32 Github 3.33 6 6 0 Fail 120 Not.installed Y

ID33 Github 3.75 3 2 0.3 Fail 5 Easy N

ID34 Other 4.33 4 N/A N/A N/A 120 Not.installed N

ID35 Github 4.5 N/A 6 N/A Fail 120 Not.installed N

ID36 Other 4.67 1 1 0 Pass 5 Easy N

ID37 Other 5.11 N/A N/A N/A Fail 120 Not.installed N

38

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

ID38 Bioconda 5.14 1 1 0 Pass 5 Easy Y

ID39 Github 5.75 4 3 0.3 Fail 120 Complex N

ID40 Other 6.83 22 4 0.8 Fail 30 Complex Y

ID41 Other 7 N/A N/A N/A Fail 120 Not.installed N

ID42 Other 7.17 2 1 0.5 Fail 15 Easy N

ID43 Other 7.25 N/A 3 N/A Fail 120 Not.installed N

ID44 Other 8 4 3 0.3 Fail 15 Easy Y

ID45 SourceForg

e

8 1 1 0 Pass 5 Easy N

ID46 Other 8.9 14 14 0 Fail 120 Not.installed Y

ID47 Other 9.56 N/A N/A N/A Fail 120 Not.installed Y

ID48 Bioconda 9.71 1 1 0 Pass 15 Easy N

ID49 Other 9.8 N/A 1 N/A Fail 120 Not.installed Y

ID50 Other 10.43 N/A N/A N/A N/A 120 Complex Y

ID51 SourceForg

e

10.56 N/A N/A N/A N/A 5 Easy N

ID52 Other 12.17 1 1 0 Pass 5 Easy Y

ID53 SourceForg

e

12.25 N/A N/A N/A N/A 5 Easy N

ID54 Other 12.75 4 4 0 Pass 15 Easy Y

ID55 SourceForg

e

13.29 1 1 0 Pass 120 Not.installed N

ID56 Other 13.33 5 5 0 Pass 15 Easy Y

ID57 Github 13.75 5 N/A N/A N/A 30 Complex N

ID58 Bioconda 13.83 1 1 0 Pass 5 Easy Y

ID59 Other 14.7 13 13 0 Pass 15 Easy Y

ID60 Other 15.1 4 2 0.5 Fail 120 Complex Y

39

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

ID61 Other 15.3 1 1 0 Pass 5 Easy Y

ID62 Other 15.63 52 N/A N/A N/A 120 Complex N

ID63 SourceForg

e

16 2 N/A N/A N/A 5 Easy N

ID64 Github 16.25 8 6 0.3 Fail 60 Complex Y

ID65 Other 16.29 1 1 0 Pass 5 Easy Y

ID66 Github 16.89 10 3 0.7 Fail 120 Not.installed Y

ID67 SourceForg

e

22.71 190 7 1 Fail 120 Not.installed Y

ID68 Other 23.6 N/A N/A N/A N/A 30 Not.installed Y

ID69 Other 24 4 N/A N/A Fail 120 Not.installed N

ID70 Other 24.2 N/A 7 N/A Fail 120 Not.installed Y

ID71 Bioconduct

or

26.57 2 1 0.5 Fail 5 Easy N

ID72 Other 28.5 N/A 29 N/A Fail 120 Not.installed N

ID73 Other 30.75 7 3 0.6 Fail 120 Complex Y

ID74 Other 33.45 3 3 0 Pass 5 Easy Y

ID75 Bioconduct

or

36 23 2 0.9 Fail 120 Complex Y

ID76 BitBucket 36.25 30 10 0.7 Fail 120 Complex Y

ID77 Other 39 3 3 0 Pass 5 Easy Y

ID78 Other 39.1 12 12 0 Pass 15 Easy Y

ID79 Other 43 5 1 0.8 Fail 120 Complex Y

ID80 Other 47.13 N/A 2 N/A N/A 5 Not.installed N

ID81 Bioconda 57.2 1 1 0 Pass 5 Easy Y

ID82 Bioconduct

or

57.83 2 2 0 Pass 5 Easy Y

ID84 Bioconda 60.3 1 1 0 Pass 5 Easy Y

40

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

ID85 pip 73.17 12 10 0.2 Fail 60 Complex Y

ID86 Github 75.71 1 1 0 Pass 5 Easy N

ID87 SourceForg

e

76.3 1 1 0 Pass 5 Easy Y

ID88 Bioconda 124 1 1 0 Pass 5 Easy Y

ID89 Other 124.1 1 1 0 Pass 5 Easy N

ID90 Bioconduct

or

159 20 2 0.9 Fail 60 Complex Y

ID91 Bioconda 163.2 1 1 0 Pass 5 Easy Y

ID92 Other 169.22 2 2 0 Pass 5 Easy Y

ID93 Github 216.33 12 3 0.8 Fail 30 Complex Y

ID94 Bioconda 247.4 1 1 0 Pass 5 Easy Y

ID95 Other 683.11 2 2 0 Pass 5 Easy Y

ID96 Github 798.4 3 2 0.3 Fail 5 Easy Y

ID97 Other 1059 10 7 0.3 Fail 60 Complex Y

ID98 Bioconda 1122.6 1 1 0 Pass 5 Easy Y

ID99 Bioconda 1450.9 3 3 0 Pass 5 Complex Y

Table S1.​​ Accessibility and usability of 99 published software tools over 2004-2018 period.

Link

locatio

n Journal name

pubmed

id Year Link

Url

status

abstra

ct

BMC_Bioinform

atics

1215071

8 2002

http://sourceforge.net/projects/slritool

s/ 301

abstra

ct

BMC_Bioinform

atics

1240113

4 2002

http://sourceforge.net/projects/slritool

s/ 301

body BMC_Bioinform 1188225 2002 http://tacg.sourceforge.net 200

41

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

atics 0

body

BMC_Bioinform

atics

1201902

2 2002

http://www.sourceforge.net/projects/sl

ritools/ 301

body

BMC_Bioinform

atics

1215071

8 2002

http://sourceforge.net/projects/slritool

s 301

body

BMC_Bioinform

atics

1249308

0 2002 http://squirrel-sql.sourceforge.net/ 200

Link

locatio

n Journal name pubmed id Year Link Url status

body

BMC_Bioinformati

cs 19732427 2009

http://github.com/egonw/xw

s-taverna/tree/master 301

body Bioinformatics 19417059 2009 http://github.com/semin/ulla 301

Table S2. ​​List of earliest published software tools and resources stored on

http://sourceforge.net ​ and ​https://github.com/

42

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

http://sourceforge.net/
https://github.com/
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figures

43

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S1.​​ Protocol to check the archival stability of a published software tool or resource.

Numbers are provided for illustrative purposes and correspond to the link presented in the

abstracts of the published papers considered in this study.

44

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S2.​​ Protocol to verify the usability of a published software tool.

45

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S3.​​ Effect of the number of commands used to run a published software tool on the

installation time (Kruskal-Wallis, p-value=4.7x10​-6 ​)

46

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://twitter.com/jdidion
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

