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Abstract  

Developing new software tools for analysis of large-scale, biological data is a key component of               

advancing computational, data-enabled research. Scientific reproduction of published findings         

requires running computational tools on data generated by such studies, yet little attention is              

presently allocated to the usability and archival stability of computer code encapsulated as             

computational software tools. Scientific journals require data and code sharing, but none            

currently require authors to guarantee software usability and long-term archival stability of            

newly published tools. We developed an accurate estimation of the accessibility of            

computational biology software tools by performing an empirical analysis of usability and            

archival stability of 24,490 omics software resources published from 2000 to 2017. We found              

that 26% of all omics software resources are currently not accessible through URLs published in               

the paper. Among the tools selected for our comprehensive and systematic usability test, ​49%              

were deemed “difficult to install​,” and 28% of the tools failed to be installed due to problems in                  

the implementation. Moreover, for papers introducing new software, we found that the            

number of citations significantly increased when authors provided an easy installation process            

for published software. We propose for incorporation into journal policy several practical            

solutions for increasing the widespread usability and archival stability of published           

bioinformatics software. 
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Introduction 

During the past decade, the rapid advancement of genomics and sequencing           

technologies has generated an enormous amount and diversity of new algorithms in            

computational biology ​1,2​. I​n the last 15 years​, the amount of available genomic sequencing data               

has doubled every few months. In order to analyze this unprecedented volume of genomic data               

5​, many life-science and biomedical researchers are leveraging computational tools to solve            

complex biological problems and subsequently lay the essential groundwork for the           

development of novel clinical translations ​6​. The exponential growth of genomic data has             

therefore reshaped the landscape of contemporary biology, making computational tools a key            

driver of scientific research ​3,4​. 

Novel challenges and standards arise as computational and data-enabled research          

become increasingly popular in biology. One such challenge is computational          

reproducibility—the ability to replicate published findings by running the same computational           

tool on the data generated by the published study ​7–9​. In order to scientifically reproduce               

published findings, a researcher must be able to run the computational tool with original              

settings and parameters on data generated by such studies. While several journals have             

introduced enforcements for the sharing of data and code, there currently are no effective              

requirements to promote usability and long-term archival stability of software tools. Limited            

software usability and archival stability of computational tools can ultimately impair our ability             

to reproduce published results.  
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The synergy between computational and wet-lab researchers and the reproduction of           

published results are especially productive when software developers distribute their tools as            

packages that are easy to use and install ​10​. Ideally, computational tools for genomic analysis               

would not require of the user extensive knowledge in computer science for installation and              

usage. Given the emergence of new tools released each year, comparatively inadequate            

presentation and distribution of an otherwise advantageous software package could limit its            

scientific utility ​11​. The computational biology community is now building a consensus on the              

importance of encouraging software development that is both computationally efficient and           

easy to use ​10,12–14​. Primary principles behind successful computational biology software include            

quality and reusability of the source code, a factor that helps avoid reimplementing previously              

developed solutions to recurrent problems ​11,12​. 

Widespread support for software usability promises to have a major impact on the             

scientific community ​15​, and practical solutions have been proposed to guide the development             

of scientific software ​12,14,16​, ​17​, ​18​, ​19​, ​10​, ​13​. Such solutions represent a crucial first response to the             

growing ‘software crisis’ of inefficiency and redundancy, a dilemma driven by the limited             

usability yet the prolific online availability of many computational biology tools published each             

year. While the scale of the ‘software crisis’ in computational biology has yet to be estimated,                

the bioinformatics community warns that poorly maintained or improperly implemented tools           

will ultimately hinder progress in big data-driven fields, such as genomics and systems biology              

4,5,20​.  
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Challenges to effective software development and distribution in academia 

 Successfully implementing and distributing software for scientific analysis involves 

numerous unique challenges that have been previously outlined by other scholars ​10,12–14​.  In 

particular, fundamental differences between software development workflows in academia and 

in industry challenge the usability and archival stability of novel tools developed by academics.  

Academic developers produce and test the majority of new computational biology tools, yet, in 

comparison to industry employees, the academic worker has access to fewer resources for 

producing usable, archivally stable packages. 

First, software developers in industrial settings receive considerably more resources for 

developing user-friendly tools than their counterparts in academic settings ​23​. The public or 

private software is developed by large teams of software engineers that include specialized 

user experience (UX) developers. In academic settings, software is developed by smaller groups 

of researchers who may lack formal training in software engineering, particularly UX and 

cross-platform design. Many computational tools lack a user-friendly interface to facilitate the 

installation or execution process ​11​. Developing an easy-to-use installation interface is further 

complicated when the software relies on third-party tools that need to be installed in advance, 

called ‘dependencies.’ Installing dependencies is an especially complicated process for 

researchers with limited computational knowledge. Even a stable online presence cannot 

guarantee widespread usability of such software tools; life science and medical researchers 

cannot explore all potential options for analyzing genomic or other types of biological “big 

data” with a software that lacks an easy-to-use installation interface. Well-defined UX 
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standards for software development could help software developers in computational biology 

promote widespread implementation and use of their newly developed computational tools. 

Second, companies efficiently distribute industry-produced software using dedicated 

company units or contractors—services that universities and scientific funding agencies do not 

typically provide for academic-developed software. The computational biology community has 

adopted by default a pragmatic, short-term framework for disseminating software 

development ​24​.  In academia, the dissemination model of new software consists of publishing a 

paper describing the software tool in a peer-reviewed journal.  So-called “methods papers” are 

dedicated to explaining the rationale behind the novel computational tool and demonstrating 

with sample datasets the efficacy of the tool. Supplemental materials such as detailed 

instructions, tutorials, dependencies, and source code are made available on the internet and 

included in the published paper as a URL. The quality, format, and long-term availability of 

supplemental materials varies among software developers and is subject to less scrutiny in the 

peer-review process compared to the published paper itself. This approach limits the usability 

of software tools and ultimately hinders the community’s ability to evaluate the tools in 

benchmarking studies ​25​.  

Third, industry-developed software is supported by teams of software engineers 

dedicated to developing and implementing updates for as long as the software is considered 

valuable to the community. Many software developers in academia do not have access to 

mechanisms that could ensure continuous maintenance and long-term archival stability of 

published tools. Journals require publicly accessible URLs when publishing a computational tool, 

but there is presently no standard approach for ensuring long-term archiving of web content. 
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For example, many published tools in computational biology are hosted on academic web 

pages that become inactive with time, sometimes only months after initial publication. These 

software packages are typically developed by small groups of graduate students or postdoctoral 

scholars who, considering the temporary nature of such positions, cannot maintain such 

websites and software for longer periods of time. 

Fourth, computational biology software developers in academia receive more incentive          

and support to develop new tools than to maintain existing tools. Once published, the              

structures of funding, hiring, and promotion in academia offer the developer little incentive for              

continuous, long-term development and maintenance of existing software tools and databases           

21​. Software developers can lose funding for even the most widely-used tools. Loss of external               

funding may halt and even discontinue software development, potentially impacting the           

research productivity of studies that depend on these tools ​22​. Halted software development             

also hinders the ability to reproduce results from published studies that use discontinued tools.  

Archival stability of published computational tools and resources 

The World Wide Web provides a platform of unprecedented scope for data and             

software accessibility, yet long-term preservation of online resources remains a largely           

unresolved problem ​26​. Published software tools are made accessible through the Uniform            

Resource Locator (URL), which is typically provided in the abstract or main text of the paper and                 

is often assumed to be a practically permanent locator. However, a URL may become inactive               

due to removal or reconfiguration of web content. This phenomenon is described by various              

terms, including ‘death of URL’ ​27 or ‘lost Internet Reference’ ​28​. At the onset, the World Wide                 
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Web promised the virtually infinite availability of digital resources; in practice, many digital             

resources are lost. 

Multiple studies have identified across various biomedical journals the deterioration of           

long-term archival stability of published software tools ​20,27–31​. In order to begin assessing the              

current software crisis in computational biology, we comprehensively evaluated the archival           

stability of computational biology tools used in 51,236 biomedical papers published across 10             

relevant peer-reviewed journals over a span of 17 years, from 2000 to 2017. Out of the 51,236                 

examined papers, 13.6% contained at least one URL in their abstracts, and the other 38.3%               

contained URLs in the body of the paper. To ensure that the identified URL corresponds to an                 

active software tool or database, we inspected 10 neighboring words for specific keywords             

commonly used, including "pipeline", "code", "software", "available", "publicly", and others          

(See Methods Section). Complete details on our methodology for extracting the URLs, including             

all parameters and thresholds, are provided in the Supplementary Methods.  

We used a web mining approach to test 26,631 published URLs that our survey              

identified. Of all identified URLs, 4.2% were unreachable because of connection timeouts, and             

24.4% were ‘broken’ (i.e., 404 HTTP status). The threshold for allotted time may bias results; we                

manually verified URLs reported with the timeout error code (​Figure S1​​).  

Next, we grouped the URLs by the year in which the computational biology tool was 

referenced by the corresponding publication. As expected, the time since publication is a 

driving factor for URL archival stability (Kruskal-Wallis, p-value <10​-16​). 31.9% of the software 

before 2012 are unavailable; whereas only 13.6% of the recent software (after 2012) are 

unavailable (​Figure 1a​​). After 2014, we observe a drop in the absolute number of archivally 
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unstable resources (​Figure 1b​​).  Despite the strong decline in the percentage of archivally 

unstable resources with time, there are still 200 archivally unstable resources published every 

year. The data and scripts for reproducing the plots in ​Figure 1 ​​are available at 

https://github.com/smangul1/good.software/wiki/​.  
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Figure 1.​​ Archival stability of 24,490 published URLs across 10 systems and computational 

biology journals over the span of 17 years.  ​(a) ​​ Accessibility status of 7,010 URLs parsed from 

the abstracts of published peer-reviewed papers. We categorized unreachable URLs into two 

groups: unreachable due to connection timeout (‘Timeout’, orange color), and unreachable due 

to error (i.e., 404 HTTP status) (‘Broken’, red color). We separately categorized accessible URLs 

that use redirection (‘Redirected’, blue color) and accessible URLs that do not   redirection 

‘Accessible’ (green color).  Percentages of each category (y-axis) are reported over a 12-year 

span (x-axis).  ​(b) ​​Distribution of  7,010 abstract URLs (extracted from the abstract of the 

published papers) across 12 years. URLs are categorized as ‘accessible + redirected’ and ‘broken 

+ timeout’. Numbers of URLs per category reported across 12 years.​  (c)​​  No effect of the 

journal impact factor on the availability of published links was observed.  ​(d) ​​Accessible links 

exhibit increased citations in social media (e.g., blog posts, twitter feeds, etc) per year 

compared to ‘broken’ and ‘timeout’ links (Kruskal-Wallis,  ​p-​value = 10​-256​).  ​(e)​​ Altmetric 

readership score (y-axis) is not significantly different across URL categories (x-axis). ​(f) 

Accessible links exhibit increased Altmetric score compared to ‘broken’ and ‘timeout’ links 

(Kruskal-Wallis, ​p-​value = 10​-15​). ​(g) ​​The proportion of unreachable links (due to connection 

timeout or due to error ) stored on web services designed to host source code  (e.g., GitHub 

and SourceForge)  and ‘Other’ web services. ​(h) ​​ URLs hosted on web services that are designed 

to host source code exhibit decreased the fraction of unreachable links (‘GitHub’ vs ‘Others’ 

p-value=10 ​-249​; SourceForge vs ‘Others’ p-value=10​-7, ​Fisher-exact test).  
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 A published URL can often be relocated to another URL, which is connected to the 

original URL via redirection. We found that 25% of active URLs are redirected to new URLs. 

However, 26% of updated URLs for published software are still not connected to the original 

published URLs (that is, there is no redirection to the current software URL). This disconnection 

is a consequence of the static nature of journal publications, which does not allow updating 

information in the published content. 

Similarly to the results of previous studies ​30​, the results of our survey show no effect of 

the journal impact factor on the availability of published links (​Figure 1e​​). Prior research 

demonstrates that the availability of published bioinformatics resources has a significant impact 

on citation counts ​30​. In addition to those generally accepted measures of scientific impact, we 

have assessed the effect of software availability on complementary metrics of impact, such as 

measures of social media mentions, media coverage, and public attention (​Figure 1f-h​​). We 

found that papers with accessible links exhibit increased engagement by readers in social 

media, reflected in a significantly higher number of citations in social media platforms (e.g., 

blog posts, twitter feeds, etc) per year and an increased Altmetrics score ​32​ when compared to 

papers with ‘broken’ and ‘timeout’ links (Kruskal-Wallis, H=492, ​p-​value = 10​-256​).  

In addition, we tested the impact of using websites designed to host source code, such 

as GitHub and SourceForge, on the archival stability of bioinformatics software. These websites 

have been used by the bioinformatics community since 2001, and the proportion of software 

tools hosted on these sites has grown substantially, from 5% in 2012 to 20% in 2017 (​Figure 1g​​). 

We find that URLs pointing to these websites have a high rate of accessibility; 99% of the links 
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to GitHub and 96% of the links to Sourceforge are accessible, while only 72% of links hosted 

elsewhere are accessible (​Figure 1h)​​.  

Our results suggest that the computational biology community would benefit from such 

approaches, which effectively guarantee permanent access to published scientific URLs. 

Specifically, several key principles emerge that promise to positively impact the availability of 

published bioinformatics resources, including the number of citations and social media 

references. In addition, bioinformatics tools and resources stored on web services designed to 

host source code have a significantly higher chance of remaining accessible.  

 

Tool usability  

We have developed a computational framework capable of systematically verifying the 

accessibility and usability of published software tools. We applied this framework to 99 

randomly selected tools across various domains of computational biology (​Method Section​​). 

We engaged undergraduate and graduate students to run the installation test using a 

standardized protocol (​Figure S2​​); we recorded the time required to install the tools and other 

important features, allowing up to two hours per software package.  In total, 72 hours of 

installation time was required to install 99 tools. We categorized a tool as ‘easy to install’ if it 

could be installed in 15 minutes or less; ‘complex installation’ if it required more than 15 

minutes but was successfully installed before the two hour limit; and ‘not installed’ if the tool 

could not be successfully installed within two hours (​Table S1​​ and ​Figure 2​​).  
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We determined that 57.1% of the selected tools failed the ‘automatic installation test’, 

where the tester is required to strictly follow the instructions provided in the manual of the 

software tool (Methods; ​Figure 2a​​). In most tools (52%), the automatic installation test finished 

in fewer than 15 minutes (​Table S1​​), as no additional commands outside of the manual were 

required. For the tools failing the test, we performed manual intervention where the tester was 

allowed to install missing dependencies and modify code to resolve the installation error. On 

average, it took an additional 70 minutes to run commands not provided in the installation 

instructions to successfully install the tool, which resulted in a significant increase of installation 

time (Kruskal-Wallis, p-value=4.7x10​-9​; ​Figure 2b ​​). Manual intervention was unsuccessful for 

66% of the tools that initially failed the automatic installation test; failed manual installation 

was due to numerous issues, including hard coded parameters, invalid folder paths or header 

files, and usage of unavailable software dependencies.  

Next, we assessed the effect of the ease of installation on the popularity of tools in the 

computational biology community by investigating the number of citations for the paper 

describing the software tools. We find that tools which we were able to install had significantly 

more citations compared to tools which we were not able to successfully install within two 

hours (​Figure 2c​​; Kruskal-Wallis, p-value=0.032). These results suggest, perhaps not surprisingly, 

that tools which are easier to install are more likely to be adopted by the community. 

In addition, we aimed to see whether the documentation within the code affects the 

installation time. Considering the proportion of commands that are undocumented (estimated 

as a ratio between the executed commands and commands in the manual), we find that tools 

with easier installation have a significantly lower percentage of undocumented commands 
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( ​Figure 2d​​; Kruskal-Wallis​, ​p-value=2.3x10 ​-6​).  Considering a significant increase of installation 

time and a low rate of success for tools failing automatic installation test, we argue that 

reliance on manual intervention to successfully install and run computational biology tools is an 

unsustainable practice. Software developers would benefit from ensuring a simple installation 

process and providing adequate installation instructions.  
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Figure 2. ​​Usability of 99 randomly selected published software tools across 22 life science 

journals over a span of 15 years. Software tools were categorized as ‘easy to install’ if the total 

installation time was 15 minutes or less;  ‘Complex installation’ if the total installation time was 

longer than 15 minutes but fewer than two hours;  ‘Not installed’ if the software could not be 

installed in two hours.  ​(a) ​​ Pie charts showing the percentage of tools with various level of 

usability. ​(b) ​​Tools that require no manual intervention (pass automatics installation test) 

exhibit decreased installation time (Kruskal-Wallis​, ​p-value=4.7x10 ​-09​). ​(c) ​​ Tools installed exhibit 

increased citation per year compared with tools which were not installed (Kruskal-Wallis​, 

p-​value = 0.032).   ​(d)​​ Tools which are easy to install include a decreased portion of 

undocumented commands (Not Installed vs. Easy Install: Kruskal-Wallis​, ​p-value=2.3x10 ​-6 ​, Easy 

Install vs. Complex Install: Kruskal-Wallis​, ​p-value=4.7x10 ​-6 ​). ​(e) ​​Tools available in the 

well-maintained package managers such as Bioconda were always installable, while tools not 

shipped via package managers were prone to problems in 32% of the studied cases.  

 

Ideally, all necessary installation instructions should be included in a single script, 

especially when the number of installation commands is large. In addition, installation scripts 

should contain commands necessary to install all required dependencies. The vast majority of 

surveyed tools fail to provide one-line solutions for installation, and, instead, provide 

step-by-step instructions. On average, eight commands were required to install surveyed tools, 

while only 3.9 commands were provided in the manual. Among the surveyed software tools, 24 

tools provide one-line installation solution, of which nine were available via the Bioconda 

package manager ​33​ (Table S1).  A package manager ​is a collection of software tools that 
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automate the installation, upgrade, and configuration in a consistent manner.​ Tools with 

single-command installation require on average six minutes installation time, which is 

significantly faster when compared to tools which require multi-command installation 

(Kruskal-Wallis, p-value=4.7x10​-6 ​) (​Figure S3​​) ​ ​. Tools available in well-maintained package 

managers (e.g., Bioconda) were always installable, while tools not shipped via package 

managers were prone to problems in 32% of the studied cases (​Figure 2e​​).  

Automatic verification of software usability  

Software quality, including usability, is typically not thoroughly tested in the formal peer 

review process. Rather than relying on reviewer feedback, which is often problematic as the 

reviewers may lack the computational skills and time to verify the tools, it is possible to 

automate the assessment process when software guarantees access to (i) the software binaries 

or source code; (ii) a script that installs the software in a given UNIX environment; (iii) a small 

example dataset and its expected output; and (iv) a script to perform the analysis on the 

dataset from ​(iii)​.  

To provide an automated and openly verifiable certification that a tool is usable, we 

suggest a model of a server that uses public badges to endorse the usability of a software tool. 

The server will issue a certificate to the software author, which indicates that the proposed 

software passed an ‘Automatic Installation Test.’ The installation process, in this case, includes 

a testing phase that ensures the installation can be successful. Authors of computational tools 

that submit their software tool to our badge server, alongside an installation script and an 

example dataset, will receive a badge of confirmation which certifies that the software tool was 
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successfully installed in a third-party environment. Using a Secure Hash Algorithm ​34​, each 

generated badge would be unique to each version of the software, installation script, test 

dataset, and operating system used by the server.  

To validate a badge, the server will use a private cryptographic key to publicly sign the 

badge. Public badge testing provides a strong endorsement of the tool usability up to the 

current highest standards in the industry, as only the same software version, installation script, 

and test dataset will confirm the authenticity of the badge and its public signature. A public 

badge platform will provide a mechanism for researchers and editors of journals in 

computational biology to verify the usability of a tool in under five minutes through 

confirmation of the server’s signature. Badges inform the user ​a priori ​ if and under what 

conditions the software is installable, potentially reducing for each user a significant amount of 

time that otherwise would be required to test software and attempt installing software that is 

ultimately uninstallable. To ensure the usability of our badge server, we also provide a small 

script that automates the verification of badges (see Supplementary Note 2). 

In addition to guaranteeing that a software tool can be successfully installed in a 

standardized environment, the badge also reflects which specific UNIX system was used during 

the test installation. (UNIX-based systems are the most commonly used operating systems in 

the field of computational biology.) Furthermore, the badge server does not assume an open 

source software and can be generated based on the source code or binary files.  

 

19 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint 

https://paperpile.com/c/n1Yl0Y/fepJ
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/


Box 1. Principles to increase usability and archival stability of omics computational tools and 

resources.  

The results from our study point to several specific opportunities for establishing an             

effective software development and distribution practice. Here we present five principles to            

increase the usability and archival stability of omics computational tools and resources. The             

majority of surveyed software tools and resources address only a portion of these principles.  

  

1. Host software and resources on archivally stable services  

Selecting the appropriate service to host your software and resources is critical. A 

simple solution is to use web services designed to host source code (e.g.  GitHub ​36,37​ or 

Sourceforge). In our study, we have determined that more than 98% of software tools 

and resources stored at GitHub or Sourceforge are accessible, and tools hosted on these 

services remain stable for longer periods of time (Table S2).  Ideally, the repositories 

storing code should be permanently archived via ​38​, for example, GitHub or SourceForge 

releases, Zenodo​ ( ​https://zenodo.org​),  or Internet Archive (​https://archive.org/​).  

2. Provide easy-to-use installation interface  

Use sustainable and comprehensive software distribution. One example of a sustainable 

package manager is Bioconda​33​, which is language agnostic and available on Linux, UNIX, 

and Mac operating systems. Bioconda is the most popular package manager, currently 

covering 2900 software tools that are continuously maintained, updated, and extended 
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by a growing global community ​33​. Bioconda provides a one-line solution for 

downloading and installing a tool.  

3. Take care of all the dependencies the tool needs 

Even the most widely used tools rely on dependencies. To facilitate simple installation 

with required dependencies, provide an easy-to-use interface to download and install all 

dependencies. Package managers can potentially solve this problem since all 

dependencies are usually preinstalled. Bioconda also automatically generates containers 

for each Bioconda ‘recipe’ ​39​, which provide all files and information needed to install a 

package. One drawback is that the existing tools in portable package managers are 

manually updated by the team or community, often delaying such updates. For 

example, as of August 10, 2018, R 3.5 was unavailable under Bioconda. Alternatively, a 

simple bash script can be used to combine the commands for installing dependencies 

and developed software tools into a single script. Forcing users to install such 

dependencies in a non-configurable location can lead to conflicts. To avoid conflicts, one 

can design an installation script that installs all dependencies in a user-configurable 

directory. 

4. Provide an example dataset  

Provide an example dataset inside the software package, with a description of the 

expected results. Similar to unit and integration testing practices in software 

engineering, example datasets allow the user to verify that the tool was successfully 

installed and works properly before running the tool on experimental data. A tool may 

21 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452532doi: bioRxiv preprint 

https://paperpile.com/c/n1Yl0Y/rZGJ
https://paperpile.com/c/n1Yl0Y/mHXC
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/


be installed with no errors, yet it may still fail to successfully run on the input data.  Only 

68% of examined tools provide an example dataset (Table S1).  

5. Provide a ‘Quick Start’ guide 

Allow the user to verify the installation and performance of the tool. Providing a ‘Quick 

Start’ guide is the best way for the user to know that the tools are installed and is 

working properly. The guide should provide the commands needed to download, install, 

and run the software tool on the example dataset. An example of a ‘Quick Start’ guide is 

provided in Supplemental Note 2. In addition to the ‘Quick Start’, a detailed manual 

needs to be provided with information on options and advanced features and 

configuration of the tool. Best practices of creating bioinformatics software 

documentation are discussed elsewhere ​17​. 

6. Choose an adequate name  

Choose a software name that best reflects the developed tool or resource. Today’s “age 

of Google” places new demands on the function of tool names, which should be 

memorable and unique, yet easily searchable. In addition, there are no regulations on 

tool names. For example, there are at least six tools named ‘Prism,’ making it 

challenging to find the right tool (Supplementary Note 3). Scout the web to check the 

uniqueness of a name before publishing a new tool. 
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7. Assume no root privileges 

Tools are often installed on a high-performance computing cluster where users do not 

have administrative (root/superuser) privileges to install software into system 

directories. When developing instructions for installation of the proposed software tool, 

avoid commands that require root access. Examples of such commands include those 

that use package managers that require root/superuser privileges, such as ​sudo apt-get 

install or sudo yum install. 

8. Create agnostic installation platform or distribute different versions for each platform  

Specification of various versions of UNIX-based systems may limit the usability of 

software. Developers should either create a tool that will work on any platform or 

create a separate version for each platform. Platform-specific commands (e.g., 

Homebrew ​40​) ​should be avoided. 

 

--end Box 1 

Discussion 

Our study assesses an emergent software crisis in computational biology that is            

characterized by lack of standards regarding usability and long-term archival stability of omics             

computational tools and resources. Despite recent requirements on the behalf of journals to             

impose data and code sharing on published authors’ work, 25.0% of 26,631 omics software              

resources examined in this study are not currently accessible via the original published URLs.              
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Among the 99 software packages selected for our usability test, 49.0% of computational biology              

tools failed our ‘easy-to-install’ test. In addition, 27.6% of surveyed tools could not be installed               

due to severe problems in the implementation process. One-quarter of examined tools are easy              

to install and use; in these cases, we identify a set of good practices for software development                 

and dissemination.  

Reviewers assessing the papers that present new software tools could begin addressing            

this problem with the adoption of a rigorous, standardized approach during the peer review              

process. Feasible solutions for improving the usability and archival stability of peer-reviewed            

software tools include requirements for providing installation scripts, test data, and functions            

that allow automatic checks for the plausibility of installing and running the tool. For example,               

forking is a simple procedure that ensures the version of cited code within an article may                

persist beyond initial publication ​41​. Academic journals recently took a major step toward             

improving archival stability by permanently forking published software to GitHub (e.g.,           

(Mosqueiro et al. 2017)​).  

The current workflow of computational biology software development in academia          

encourages researchers to develop and publish new tools, but this process does not incentivize              

long-term maintenance of existing tools. Results from this study provide a strong argument for              

the development of standardized approaches capable of verifying and archiving software.           

Further, our results suggest that funding agencies should emphasize support for maintenance            

of existing tools and databases. 

Manual interventions and long installation times are unappealing to many users, 

especially to those with limited computational skills. Many life science and medical researchers 
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lack formal computational training and may be unable to perform manual interventions (e.g., 

installing dependencies or editing computer code during installation). Users could leverage 

advanced knowledge of the time and computational skills required to properly install a 

software package. We propose a prototype of a badge server that runs an ​automated 

installation test, thus introducing to the peer review process explicit assessment of a tool’s 

usability. This badge server would be particularly useful in computational biology, an 

interdisciplinary field comprised of reviewers who often lack the skills and time to verify the 

usability of software tools. Many benchmarking studies already routinely report relative ease of 

installation and use of new tools as components of their performance metrics​44​ . 
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Glossary  

Usability.​​  The tool is considered usable if (a) the tool and its corresponding 

dependencies can be installed on Linux/UNIX-based operating systems, and if (b) the tool can 

produce expected results from the input data with no errors.  

Automated installation test.​​  This test of software installation ease is performed by the 

biomedical researcher. The researcher is using only installation commands provided in the 

manual in the recommended order. No extra commands are allowed.  A tool passes the 

automated installation test if the user can successfully install the package following only the 

commands from the manual.  

The package manager​​ ​is a collection of software tools that automate the installation of 

a tool’s core package and updates in a consistent manner.​ Package managers help solve the 

‘dependencies problem’ by pre-installing required third-party software packages.  Bioconda is 

one of the most popular package managers for omics computational tools. A growing global 

community of Bioconda users continuously maintain, update, and extend over 2900 software 

tools. 

Methods 

Protocol to check the archival stability of published software tools 

We downloaded open access papers via PubMed from 10 systems and computational            

biology journals from NCBI FTP server (ftp://​ftp.ncbi.nlm.nih.gov/pub/pmc/​). We included the          

following journals: ​Bioinformatics​, ​BMC Genomics​, ​Genome Medicine ​, ​Nature Methods ​, ​PLoS          
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Computational Biology​, ​BMC Bioinformatics​, ​BMC System Biology​, ​Genome Biology ​, ​Nature          

Biotechnology ​, ​Nucleic Acids Research ​, and ​GigaScience​.  

Papers were downloaded in XML format containing name-tags for field extraction. (Raw            

data from PubMed is available at ​​https://github.com/smangul1/good.software​​/.) Specifically,        

we focused on three name-tags: <abstract>, <body>, and <text-link>. Each paper’s abstract is             

enclosed inside the <abstract> tag (Figure S1). The <body> tag contains the key contents like               

introduction, methods, results, and discussion. <ext-link> tags contain internet addresses for           

external sources (e.g., supplementary data and directions for downloading data sources and            

software packages). 

 We deployed a heuristic approach in extracting only software links produced by the             

paper’s author(s). We assumed that these links are in <ext-link> tags whose neighbor words              

contain one of the following keywords: "here", "pipeline", "code", "software", "available",           

"publicly", "tool", "method", "algorithm", "download", "application", "apply", "package", and         

"library". The links to the software Biogem are found inside two different <ext-link> tags. The               

first link, ​http://www.biogems.info​, will be marked by the keyword “available,” on the right;             

whereas the second link, ​http://www.biogems.info/howto.html​, is marked by the same word           

“available,” from the left. The neighborhood for an <ext-link> tab is 75 characters, including              

spacing (about 5-10 words on average) from the start and end of the tag.  

 For each extracted link, we used the HTTPError class of the Python library urllib2 to get                

the HTTP status. Status number 400 and above indicate broken links; for example, the              

well-known 404 code implies "Page Not Found". We used links found in the body of a paper                 

when the abstract does not contain any external internet links. Since the threshold for the               
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allotted time may bias the results, we manually verified 1229 URLs reported with the timeout               

error code ( ​Figure S1 ​​). Our protocol to check the archival stability of published software tools is                

freely available at ​https://github.com/smangul1/good.software​. 

Protocol to check the usability of published software tools 

To standardize the operating system environment for each tool installation, we used a             

CentOS 7 (v1710.01) Vagrant virtual machine. CentOS is an open-source operating system that             

is widely used in research computing. To prevent dependency mismatches due to previously             

installed packages, we installed each tool in a new Vagrant virtual machine. We present a               

summary of our protocol in Figure S3. Tools were classified into three categories: (1) easy to                

install, where installation took less than 15 minutes; (2) hard to install, where installation took               

between 15 minutes and two hours; and (3) not installed, meaning installation took longer than               

two hours or could not be completed. We tested a total of 99 tools across various categories                 

and fields as described below. Information on the tools tested and the results of the test are                 

available in Table S1. 

 

Tools for microbiome profiling  

The usability of 10 common tools for microbiome analysis was tested. ​To develop a              

comprehensive list of popular tools, two co-authors co-authors independently made lists of 30             

microbiome tools currently used for microbiome data processing, based on a literature survey,             

and identified those present on both lists. Microbiome tools can vary in their specificity of use;                
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we limited the final tool list to five tools that process raw sequences into a final OTU table, and                   

five tools capable of broad downstream analysis functions. 

Tools for read alignment  

We tested the usability of 10 tools for read alignment. We randomly selected a total of 

20 tools—10 tools from a recent survey ​45​ and 10 tools from PubMed 

( ​https://www.ncbi.nlm.nih.gov/pubmed/​).  The full list of extracted URLs is available at  

https://github.com/smangul1/good.software/wiki​ . To confirm that the installation process 

indeed worked, we used reads generated from the complete genome of ​Enterobacteria phage 

lambda ​ (NC_001416.1).  

Tools for variant calling tools  

We tested the usability of seven randomly sampled tools designed for variant calling ​46​.              

We confirmed successful software installation when the core functionality of each package            

could be executed with an example dataset. Only one of the tools was not packaged with an                 

example dataset, in which case we randomly chose an open example dataset. We discarded              

from our study the tools for which papers could not be located.  

Tools for structural variants tools 

We examined the usability of 52 common tools used for the structural variant (SV) calling from 

whole genome sequencing (WGS) data.  First, we compiled a list of tools that use read 

alignment, where reads aligned to the locations are inconsistent with the expected insert size 
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of the library or expected read depth at a specific locus. We randomly selected 50 tools out of 

70  programs designed to detect SVs from WGS data and published after 2011. We confirmed 

the successful installation of each software package by executing its core functionality with an 

example dataset. 

 
 
Additional omics tools  
  
Lastly, we randomly selected 20 published tools based on the URL present in the abstract or the 

body of the publications available in PubMed (​https://www.ncbi.nlm.nih.gov/pubmed/​ ). The 

full list of extracted URLs is available at  

https://github.com/smangul1/good.software/wiki​ .  

Statistical analysis  

Once the archival information was recorded, variance analysis was performed to assess            

the differences among the links categorized as ‘accessible’, ‘redirected’, ‘broken’ and ‘time out’.             

We inspected differences in five different statistics: impact factor of the journal where the tool               

was published; the number of citations in the original paper where the tool was published;               

number of citations per year in social media platforms such as blogs and twitter feeds; total                

readership measured by Altmetrics; and the final Altmetric score. Because the distributions of             

all five measures presented heavy tails and deviated from a bell-shaped distribution, we             

performed a Kruskal-Wallis test on ranks, followed by a Tukey post-hoc test to confirm which               

groups presented significant differences with a significance level of 0.01. We provide all             
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p-values and test statistics from these experiments in our electronic supplemental material on             

GitHub  

( ​https://github.com/smangul1/good.software/wiki/Reproducing-the-results​). 

 

Supplementary Notes 

 

 

Supplemental Note 1. ​​An example of the ‘Quick Start’  

 

1. Download the tool using: git clone ​https://github.com/x/software.tool.git 

2. Install tool using: cd software.tool; ./install.sh 

3. Run the tool for the example dataset (distributed with the tool): ./software.tool 

example.dataset  

 

 

Supplementary Note 2. ​​Badge Server to inspect installation reproducibility.  

 

The server creates an instance of a UNIX virtual machine and runs the installation script 

and test protocol submitted. If the installation completes without errors, and the test dataset 

provides the expected result, a badge is created that certifies the usability of the tool under the 
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tested conditions. The badge consists of a unique summary generated by the Secure Hash 

Algorithm 3 (SHA-3) ​34​, of the items submitted by authors. The server then uses a private 

cryptographic key to publicly sign this summary. There is a small probability that the hashed 

summary of two different objects created by SHA-3 could be identical (also known as collision); 

however, this method is the current technological standard of unique badge creation and is 

broadly accepted by all industries. Using the server’s public key and the hashed version of the 

software, any user can authenticate the signature and prove that the server was indeed able to 

install the tool without manual intervention. 

Researchers would benefit from access to the verification process. We provide a small 

script that verifies whether a given badge was issued by our server. Verifying the authenticity of 

the server’s signature only takes a few minutes and can be done automatically with this client 

script. Therefore, our model provides a mechanism for computational biology researchers and 

journal editors with minimal technical knowledge to verify the usability of a tool in under five 

minutes. We provide badges endorsing a software package’s usability, and both the badge 

server and the client script are publicly available on GitHub. 

Supplementary Note 3 

List of bioinformatics tools with name Prism.  

● https://www.ncbi.nlm.nih.gov/pubmed/22851530​ (Structural Variance) 

● https://academic.oup.com/nar/article/43/20/9645/1394603​ (Metabolomics) 

● https://www.ncbi.nlm.nih.gov/pubmed/21068001​ (Viral Genomics) 
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● http://honig.c2b2.columbia.edu/prism/​ (Protein Structure Analysis) 

https://www.ncbi.nlm.nih.gov/pubmed/15991339​ (Protein Structure)  

● https://www.bits.vib.be/about 

 

Supplementary Tables 

 

tool.ID package.m

anager 

number.c

itations.p

er.year 

executed.

command

s 

commands.

manual 

undoc.c

omman

ds 

Automatic

.instalatio

n.test 

instalat

ion.tim

e 

easy.flag exa

mpl

e.p

rovi

ded 

ID1 Other 0.29 7 2 0.7 Fail 5 Not.installed Y 

ID2 Github 0.67 5 3 0.4 Fail 30 Not.installed Y 

ID3 BitBucket 0.71 7 4 0.4 Fail 30 Complex Y 

ID4 Other 1 2 2 0 Pass 15 Easy Y 

ID5 Bioconduct

or 

1 1 1 0 Pass 5 Easy Y 

ID6 Other 1.33 2 2 0 Pass 5 Easy Y 

ID7 Github 1.33 3 3 0 Pass 5 Easy Y 

ID8 Other 1.33 1 1 0 Pass 5 Easy N 

ID9 Other 1.38 N/A N/A N/A N/A 5 Not.installed N 

ID10 Github 1.5 1 1 0 Pass 15 Easy N 

ID11 SourceForg

e 

1.6 5 N/A N/A N/A 30 Complex N 

ID12 Github 1.67 1 1 0 Pass 5 Easy Y 

ID13 Other 1.67 3 3 0 Pass 5 Easy N 
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ID14 Other 1.71 4 4 0 Pass 30 Not.installed Y 

ID15 SourceForg

e 

1.83 1 1 0 Pass 15 Not.installed Y 

ID16 Other 2 2 2 0 Pass 5 Easy N 

ID17 Github 2.25 12 12 0 Pass 120 Complex Y 

ID18 Other 2.43 2 N/A N/A N/A 5 Easy N 

ID19 Other 2.5 7 7 0 Pass 15 Not.installed Y 

ID20 Other 2.6 11 4 0.6 Fail 15 Not.installed Y 

ID21 Other 2.67 3 3 0 Pass 15 Easy Y 

ID22 Github 2.75 7 7 0 Pass 15 Easy Y 

ID23 SourceForg

e 

3 4 4 0 Fail 120 Not.installed Y 

ID24 Other 3 10 10 0 Pass 30 Not.installed Y 

ID25 Other 3 6 6 0 Pass 15 Easy Y 

ID26 Github 3 7 7 0 Pass 15 Easy N 

ID27 Github 3 9 9 0 Pass 5 Easy Y 

ID28 Other 3.2 5 3 0.4 Fail 30 Complex Y 

ID29 Other 3.25 5 4 0.2 Fail 15 Easy Y 

ID30 Github 3.25 1 1 0 Pass 5 Easy Y 

ID31 Other 3.33 N/A N/A N/A Fail 120 Not.installed Y 

ID32 Github 3.33 6 6 0 Fail 120 Not.installed Y 

ID33 Github 3.75 3 2 0.3 Fail 5 Easy N 

ID34 Other 4.33 4 N/A N/A N/A 120 Not.installed N 

ID35 Github 4.5 N/A 6 N/A Fail 120 Not.installed N 

ID36 Other 4.67 1 1 0 Pass 5 Easy N 

ID37 Other 5.11 N/A N/A N/A Fail 120 Not.installed N 
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ID38 Bioconda 5.14 1 1 0 Pass 5 Easy Y 

ID39 Github 5.75 4 3 0.3 Fail 120 Complex N 

ID40 Other 6.83 22 4 0.8 Fail 30 Complex Y 

ID41 Other 7 N/A N/A N/A Fail 120 Not.installed N 

ID42 Other 7.17 2 1 0.5 Fail 15 Easy N 

ID43 Other 7.25 N/A 3 N/A Fail 120 Not.installed N 

ID44 Other 8 4 3 0.3 Fail 15 Easy Y 

ID45 SourceForg

e 

8 1 1 0 Pass 5 Easy N 

ID46 Other 8.9 14 14 0 Fail 120 Not.installed Y 

ID47 Other 9.56 N/A N/A N/A Fail 120 Not.installed Y 

ID48 Bioconda 9.71 1 1 0 Pass 15 Easy N 

ID49 Other 9.8 N/A 1 N/A Fail 120 Not.installed Y 

ID50 Other 10.43 N/A N/A N/A N/A 120 Complex Y 

ID51 SourceForg

e 

10.56 N/A N/A N/A N/A 5 Easy N 

ID52 Other 12.17 1 1 0 Pass 5 Easy Y 

ID53 SourceForg

e 

12.25 N/A N/A N/A N/A 5 Easy N 

ID54 Other 12.75 4 4 0 Pass 15 Easy Y 

ID55 SourceForg

e 

13.29 1 1 0 Pass 120 Not.installed N 

ID56 Other 13.33 5 5 0 Pass 15 Easy Y 

ID57 Github 13.75 5 N/A N/A N/A 30 Complex N 

ID58 Bioconda 13.83 1 1 0 Pass 5 Easy Y 

ID59 Other 14.7 13 13 0 Pass 15 Easy Y 

ID60 Other 15.1 4 2 0.5 Fail 120 Complex Y 
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ID61 Other 15.3 1 1 0 Pass 5 Easy Y 

ID62 Other 15.63 52 N/A N/A N/A 120 Complex N 

ID63 SourceForg

e 

16 2 N/A N/A N/A 5 Easy N 

ID64 Github 16.25 8 6 0.3 Fail 60 Complex Y 

ID65 Other 16.29 1 1 0 Pass 5 Easy Y 

ID66 Github 16.89 10 3 0.7 Fail 120 Not.installed Y 

ID67 SourceForg

e 

22.71 190 7 1 Fail 120 Not.installed Y 

ID68 Other 23.6 N/A N/A N/A N/A 30 Not.installed Y 

ID69 Other 24 4 N/A N/A Fail 120 Not.installed N 

ID70 Other 24.2 N/A 7 N/A Fail 120 Not.installed Y 

ID71 Bioconduct

or 

26.57 2 1 0.5 Fail 5 Easy N 

ID72 Other 28.5 N/A 29 N/A Fail 120 Not.installed N 

ID73 Other 30.75 7 3 0.6 Fail 120 Complex Y 

ID74 Other 33.45 3 3 0 Pass 5 Easy Y 

ID75 Bioconduct

or 

36 23 2 0.9 Fail 120 Complex Y 

ID76 BitBucket 36.25 30 10 0.7 Fail 120 Complex Y 

ID77 Other 39 3 3 0 Pass 5 Easy Y 

ID78 Other 39.1 12 12 0 Pass 15 Easy Y 

ID79 Other 43 5 1 0.8 Fail 120 Complex Y 

ID80 Other 47.13 N/A 2 N/A N/A 5 Not.installed N 

ID81 Bioconda 57.2 1 1 0 Pass 5 Easy Y 

ID82 Bioconduct

or 

57.83 2 2 0 Pass 5 Easy Y 

ID84 Bioconda 60.3 1 1 0 Pass 5 Easy Y 
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ID85 pip 73.17 12 10 0.2 Fail 60 Complex Y 

ID86 Github 75.71 1 1 0 Pass 5 Easy N 

ID87 SourceForg

e 

76.3 1 1 0 Pass 5 Easy Y 

ID88 Bioconda 124 1 1 0 Pass 5 Easy Y 

ID89 Other 124.1 1 1 0 Pass 5 Easy N 

ID90 Bioconduct

or 

159 20 2 0.9 Fail 60 Complex Y 

ID91 Bioconda 163.2 1 1 0 Pass 5 Easy Y 

ID92 Other 169.22 2 2 0 Pass 5 Easy Y 

ID93 Github 216.33 12 3 0.8 Fail 30 Complex Y 

ID94 Bioconda 247.4 1 1 0 Pass 5 Easy Y 

ID95 Other 683.11 2 2 0 Pass 5 Easy Y 

ID96 Github 798.4 3 2 0.3 Fail 5 Easy Y 

ID97 Other 1059 10 7 0.3 Fail 60 Complex Y 

ID98 Bioconda 1122.6 1 1 0 Pass 5 Easy Y 

ID99 Bioconda 1450.9 3 3 0 Pass 5 Complex Y 

 

 

Table S1.​​  Accessibility and usability of 99 published software tools over 2004-2018 period.  

 

 

Link 

locatio

n Journal name 

pubmed 

id Year Link 

Url 

status 

abstra

ct 

BMC_Bioinform

atics 

1215071

8 2002 

http://sourceforge.net/projects/slritool

s/ 301 

abstra

ct 

BMC_Bioinform

atics 

1240113

4 2002 

http://sourceforge.net/projects/slritool

s/ 301 

body BMC_Bioinform 1188225 2002 http://tacg.sourceforge.net 200 
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atics 0 

body 

BMC_Bioinform

atics 

1201902

2 2002 

http://www.sourceforge.net/projects/sl

ritools/ 301 

body 

BMC_Bioinform

atics 

1215071

8 2002 

http://sourceforge.net/projects/slritool

s 301 

body 

BMC_Bioinform

atics 

1249308

0 2002 http://squirrel-sql.sourceforge.net/ 200 

 

 

 

 

Link 

locatio

n Journal name pubmed id Year Link Url status 

body 

BMC_Bioinformati

cs 19732427 2009 

http://github.com/egonw/xw

s-taverna/tree/master 301 

body Bioinformatics 19417059 2009 http://github.com/semin/ulla 301 

 

 

Table S2. ​​List of earliest published software tools and resources stored on 

http://sourceforge.net ​ and ​https://github.com/  
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Supplementary Figures 
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Figure S1.​​  Protocol to check the archival stability of a published software tool or resource. 

Numbers are provided for illustrative purposes and correspond to the link presented in the 

abstracts of the published papers considered in this study.  
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Figure S2.​​  Protocol to verify the usability of a published software tool. 
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Figure S3.​​ Effect of the number of commands used to run a published software tool on the 

installation time (Kruskal-Wallis, p-value=4.7x10​-6 ​)  
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