
Title: Challenges and recommendations to improve installability and archival stability of

omics computational tools

Serghei Mangul1,2$#, Thiago Mosqueiro2$, Richard J. Abdill 3, Dat Duong1, Keith Mitchell 1 , Varuni

Sarwal 4, Brian Hill 1, Jaqueline Brito5, Russell Jared Littman1, Benjamin Statz1, Angela Ka-Mei

Lam 1, Gargi Dayama3, Laura Grieneisen 3, Lana S. Martin2, Jonathan Flint6, Eleazar Eskin1,7, Ran

Blekhman 3,8

1 Department of Computer Science, University of California Los Angeles, 580 Portola Plaza, Los

Angeles, CA 90095, USA

2 Institute for Quantitative and Computational Biosciences, University of California Los

Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA

3 Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church

St SE, Minneapolis, MN 55455, USA

4 Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India

5 Institute of Mathematics and Computer Science, University of São Paulo, São Paulo, Brazil

6 Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior,

University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA

7 Department of Human Genetics, University of California Los Angeles, 695 Charles E. Young

Drive South, Los Angeles, CA 90095, USA

8 Department of Ecology, Evolution, and Behavior, University of Minnesota, 100 Ecology

Building, 1987 Upper Buford Cir, Falcon Heights, MN 55108, USA

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

$ - These authors contributed equally to the paper

- Corresponding author

Abstract

Developing new software tools for analysis of large-scale biological data is a key component of

advancing modern biomedical research. Scientific reproduction of published findings requires

running computational tools on data generated by such studies, yet little attention is presently

allocated to the installability and archival stability of computational software tools. Scientific

journals require data and code sharing, but none currently require authors to guarantee the

continuing functionality of newly published tools. We have estimated the archival stability of

computational biology software tools by performing an empirical analysis of the internet

presence for 36,702 omics software resources published from 2005 to 2017. We found that

almost 28% of all resources are currently not accessible through URLs published in the paper

they first appeared in. Among the 98 software tools selected for our installability test, 51%

were deemed “easy to install ,” and 28% of the tools failed to be installed at all due to problems

in the implementation. Moreover, for papers introducing new software, we found that the

number of citations significantly increased when authors provided an easy installation process.

We propose for incorporation into journal policy several practical solutions for increasing the

widespread installability and archival stability of published bioinformatics software.

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction

During the past decade, the rapid advancement of genomics and sequencing

technologies has inspired a large and diverse collection of new algorithms in computational

biology 1,2. In the last 15 years, the amount of available genomic sequencing data has doubled

every few months 3,4. Life-science and biomedical researchers are leveraging computational

tools to analyze this unprecedented volume of genomic data 3,4, which has been critical in

solving complex biological problems and subsequently laying the essential groundwork for the

development of novel clinical translations 5. The exponential growth of genomic data has

reshaped the landscape of contemporary biology, making computational tools a key driver of

scientific research 6,7.

As computational and data-enabled research become increasingly popular in biology,

novel challenges arise, accompanied by standards that attempt to remedy them. One such

challenge is computational reproducibility—the ability to reproduce published findings by

running the same computational tool on the data generated by the study 8–10. While several

journals have introduced requirements for the sharing of data and code, there are currently no

effective requirements to promote installability and long-term archival stability of software

tools, creating situations in which researchers share source code that either doesn't run or

disappears altogether. These issues can limit the applicability of the developed software tools

and impair the community's ability to reproduce results generated by software tools in the

original publication.

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/gwlh+Bjk2
https://paperpile.com/c/n1Yl0Y/SUle+Ttf5
https://paperpile.com/c/n1Yl0Y/SUle+Ttf5
https://paperpile.com/c/n1Yl0Y/8soH
https://paperpile.com/c/n1Yl0Y/TWGi+7NP8
https://paperpile.com/c/n1Yl0Y/tSDD+13dS+22f9
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

The synergy between computational and wet-lab researchers is especially productive

when software developers distribute their tools as packages that are easy to use and install 11.

Though many new tools are released each year, comparatively few incorporate adequate

documentation, presentation and distribution, resulting in a frustrating situation in which

existing tools address every problem except how to run them 12.

Widespread support for software installability promises to have a major impact on the

scientific community 13, and practical solutions have been proposed to guide the development

of scientific software 14,16–17. While the scale of this issue in computational biology has yet to be

estimated, the bioinformatics community warns that poorly maintained or improperly

implemented tools will ultimately hinder progress in data-driven fields like genomics and

systems biology 3,7,18.

Challenges to effective software development and distribution in academia

 Successfully implementing and distributing software for scientific analysis involves

numerous unique challenges that have been previously outlined by other scholars 11,15,16,19. In

particular, fundamental differences between software development workflows in academia and

in industry challenge the installability and archival stability of novel tools developed by

academics. These differences can be broken down into three broad categories:

● Software written by researchers tends to be written with the idea that users will

be knowledgeable about the code and appropriate environment and

dependencies. This sometimes results in tools that are difficult to install, with

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/liHM
https://paperpile.com/c/n1Yl0Y/aOCM
https://paperpile.com/c/n1Yl0Y/HjJW
https://paperpile.com/c/n1Yl0Y/wGbj+2AH9+IDvH
https://paperpile.com/c/n1Yl0Y/3hyv
https://paperpile.com/c/n1Yl0Y/7NP8+SUle+vlFh
https://paperpile.com/c/n1Yl0Y/liHM+2AH9+ckV4+IDvH
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

instructions and command-line options that are unclear and confusing, but are

also critical for the tool’s function.

● Academic journals are a primary source for information and documentation of

noncommercial scientific software, even though the static nature of publications

means this vital information quickly falls out of date.

● Incentives in academia heavily favor the publication of new software, not the

maintenance of existing tools.

First, software developers in industrial settings receive considerably more resources for

developing user-friendly tools than their counterparts in academic settings 20. Commercial

software is developed by large teams of software engineers that include specialized user

experience (UX) developers. In academic settings, software is developed by smaller groups of

researchers who may lack formal training in software engineering, particularly UX and

cross-platform design. Many computational tools lack a user-friendly interface to facilitate the

installation or execution process 12. Developing an easy-to-use installation interface is further

complicated when the software relies on third-party tools that need to be installed in advance,

called “dependencies.” Installing dependencies is an especially complicated process for

researchers with limited computational knowledge. Well-defined UX standards for software

development could help software developers in computational biology promote widespread

implementation and use of their newly developed computational tools.

Second, companies efficiently distribute industry-produced software using dedicated

company units or contractors—services that universities and scientific funding agencies do not

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/OjS7
https://paperpile.com/c/n1Yl0Y/aOCM
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

typically provide for academic-developed software. The computational biology community has

adopted by default a pragmatic, short-term framework for disseminating software

development,21 which generally consists of publishing a paper describing the software tool in a

peer-reviewed journal. So-called “methods papers” are dedicated to explaining the rationale

behind the novel computational tool and demonstrating its efficacy with sample datasets.

Supplemental materials such as detailed instructions, tutorials, dependencies, and source code

are made available on the internet and included in the published paper as a URL, but generally

exist in a location out of the journal’s direct control. The quality, format, and long-term

availability of supplemental materials varies among software developers and is subject to less

scrutiny in the peer-review process compared to the published paper itself. This approach limits

the installability of software tools for use in research and hinders the community’s ability to

evaluate the tools themselves 22.

Third, the academic structures of funding, hiring, and promotion offer little reward for

continuous, long-term development and maintenance of tools and databases 23, and software

developers can lose funding for even the most widely used tools. Loss of external funding can

slow and even discontinue software development, potentially impacting the research

productivity of studies that depend on these tools 24. Interrupted development also hinders the

ability to reproduce results from published studies that use discontinued tools. In general,

industry-developed software is supported by teams of software engineers dedicated to

developing and implementing updates for as long as the software is considered valuable. Many

software developers in academia do not have access to mechanisms that could ensure a similar

level of maintenance and stability.

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/3B3C
https://paperpile.com/c/n1Yl0Y/rX4C
https://paperpile.com/c/n1Yl0Y/kURj
https://paperpile.com/c/n1Yl0Y/fA9f
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

We combined two approaches to determine the effects of these challenges on the

proportion of bioinformatics tools that could be considered user-friendly. First, we investigated

tens of thousands of URLs corresponding to bioinformatics tools and resources to determine

whether they are archivally stable—whether users can even reach the websites described in

the papers evaluated. Next, we investigated the number of tools that provided an easy-to-use

installation interface to download and install the software and any required dependencies.

Archival stability of published computational tools and resources

The World Wide Web provides a platform of unprecedented scope for data and

software archival stability, yet long-term preservation of online resources remains a largely

unsolved problem 25. Published software tools are made accessible through the Uniform

Resource Locator (URL), which is typically provided in the abstract or main text of the paper and

is often assumed to be a practically permanent locator. However, a URL may become inactive

due to removal or reconfiguration of web content. The “death of URLs” 26 has been described

for decades in various terms, including “link rot” 27 and “lost Internet References.” 28 At the

onset, the World Wide Web promised the virtually infinite availability of digital resources; in

practice, many are lost. For example, many tools in computational biology are hosted on

academic web pages that become inactive with time, sometimes only months after their initial

publication. These software packages are typically developed by small groups of graduate

students or postdoctoral scholars who, considering the temporary nature of such positions,

cannot maintain such websites and software for longer periods of time.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/WNuH
https://paperpile.com/c/n1Yl0Y/jcW0
https://paperpile.com/c/n1Yl0Y/7Eim
https://paperpile.com/c/n1Yl0Y/VNl3
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Multiple studies have identified the deterioration of long-term archival stability of

published software tools 18,26,28–31. In order to begin assessing the magnitude of these issues in

computational biology, we comprehensively evaluated the archival stability of computational

biology tools used in 51,236 biomedical papers published across 10 relevant peer-reviewed

journals over a span of 18 years, from 2000 to 2017 (Table S1). Out of the 51,236 examined

papers, 13.6% contained at least one URL in their abstracts, and another 38.3% contained URLs

in the body of the paper. To increase the likelihood that the identified URL corresponds to a

software tool or database, we inspected 10 neighboring words for specific keywords commonly

used, including "pipeline", "code", "software", "available", "publicly", and others (See Methods

Section). Complete details on our methodology for extracting the URLs, including all parameters

and thresholds, are provided in the Supplementary Methods.

We used a web mining approach to test 36,702 published URLs that our survey

identified. We categorized unreachable URLs into two groups: unreachable due to connection

timeout and unreachable due to error (“broken” links, i.e., 404 HTTP status). We separately

categorized accessible URLs that returned immediately and those that used redirection—that

is, URLs to which servers responded by pointing the user to a new URL that then connects

successfully. We found that 26.7% of evaluated URLs are successfully redirected to new URLs.

(Some URLs were redirected to pages that subsequently returned an error; these were not

considered successful.) Of all identified URLs, 11.9% were unreachable because of connection

timeouts, and 15.9% were “broken.” To prevent erroneous classification caused by

configuration of our automated tests, we manually verified more than 900 URLs reported as

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/jcW0+VNl3+ZqwP+7N1R+vlFh+JVyQ
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

“timeouts,” or requests that did not receive a response within an acceptable amount of time

(Figure S1).

Next, we grouped the URLs by the year in which the computational biology tool was first

referenced in a publication. As expected, the time since publication is a key predictor of URL

archival stability (Fisher exact test, p-value <10-15). 41.9% of the software referenced before

2012 (n=15,439) is unavailable, whereas only 17.5% of the recent software referenced in 2012

and later (n=21,263) is unavailable (Figure 1a). After 2013, we observe a drop in the absolute

number of archivally unstable resources (Figure 1b). Despite the strong decline in the

percentage of missing resources over time, there are still 200 resources published every year

with links that were broken by the time we tested them. The data and scripts for reproducing

the plots in Figure 1 are available at https://github.com/smangul1/good.software.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://github.com/smangul1/good.software
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1. Archival stability of 36,702 published URLs across 10 systems and computational

biology journals over the span of 13 years. An asterisk (*) denotes categories that have a

difference that is statistically significant. Error bars, where present, indicate standard error of

the mean (SEM). (a) Archival stability status of all links evaluated from papers published

between 2005 and 2017. Percentages of each category (y-axis) are reported over a 13-year

span (x-axis). (b) A line graph comparing the overall numbers (y-axis) of functional (green

circles) and non-functional (orange squares) links observed in papers published over time

(x-axis). (c) A bar chart showing the mean Altmetric “attention score” (y-axis) for papers,

separated by the status of the URL (x-axis) observed in that paper. (d) A bar chart showing the

mean number of mentions of papers in social media (blog posts, Twitter feeds, etc.) according

to Altmetric, divided by the age of the paper in years (y-axis). Papers are separated by the

status of the URL (x-axis) found in the paper. (e) A bar chart illustrating the mean Altmetric

readership count per year of papers (y-axis) containing URLs in each of the categories (x-axis).

(f) The proportion of unreachable links (due to connection timeout or due to error) stored on

web services designed to host source code (e.g., GitHub and SourceForge) and ‘Other’ web

services. (g) A line plot illustrating the proportion (y-axis) of the total links observed in each

year (x-axis) that point to GitHub or SourceForge. (h) A bar chart illustrating the proportion of

links hosted on GitHub or SourceForce (vertical axis) that are no longer functional (horizontal

axis), compared to links hosted elsewhere.

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

 Prior research demonstrates that the availability of published bioinformatics resources

has a significant impact on citation counts 30. In addition to those generally accepted measures

of scientific impact, we assessed the effect of software availability on complementary metrics

of impact, such as measures of social media mentions, media coverage, and public attention

(Figure 1c–e). We found that papers with accessible links exhibit increased engagement by

readers in social media, reflected in a significantly higher number of citations in social media

platforms per year (Figure 1d ; Kruskal–Wallis p-value = 1.75×10-161, Dunn’s test p=9.66×10 -103

for accessible vs. broken, p=3.37×10-76 for accessible vs. timeout, adjusted for multiple tests

using the Benjamini–Hochberg procedure) and an increased Altmetrics score 32 when compared

to papers with “broken” and “timeout” links (Figure 1c; Kruskal–Wallis, p-value = 1.66×10-25,

Dunn’s test p=2.47×10-17 for accessible vs. broken, p=4.16×10-14 for accessible vs. timeout).

While the difference is small, we found the readership of papers with accessible links differed

significantly from papers with links that are classified as broken or timeouts—surprisingly, the

median reader count per year (according to Altmetric) was lower for papers with accessible

links (Figure 1e; Dunn’s test p=1.17×10-6 for accessible vs. broken, p=8.42×10-15 for accessible

vs. timeout).

In addition, we tested the impact of using websites designed to host source code, such

as GitHub and SourceForge, on the archival stability of bioinformatics software. These websites

have been used by the bioinformatics community since 2001, and the proportion of software

tools hosted on these sites has grown substantially, from 1.6% in 2012 to 13% in 2016 (Figure

1g). We find that URLs pointing to these websites have a high rate of archival stability: 97.6% of

the links to GitHub and 93.0% of the links to Sourceforge are accessible, while only 70.3% of

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/7N1R
https://paperpile.com/c/n1Yl0Y/UsFy
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

links hosted elsewhere are accessible (Figure 1h), a significant difference (Fisher-exact test

GitHub vs. Others, p=2.70×10-106; SourceForge vs. Others p=1.31×10-5).

Our results suggest that the computational biology community would benefit from such

approaches, which effectively guarantee permanent access to published scientific URLs.

Specifically, several key principles emerge that promise to positively impact the availability of

published bioinformatics resources, including the number of citations and social media

references. In addition, bioinformatics tools and resources stored on web services designed to

host source code have a significantly higher chance of remaining accessible.

Tool installability

We developed a computational framework capable of systematically verifying the

archival stability and installability of published software tools. We applied this framework to 98

randomly selected tools across various domains of computational biology (Method Section).

Those tools were selected independently from the 36,702 URLs used above (‘Archival stability

of published computational tools and resources’). We engaged undergraduate and graduate

students to run the installation test using a standardized protocol (Figure S2); we recorded the

time required to install the tools and other important features, allowing up to two hours per

software package. In total, 71 hours of installation time was required in attempts to install 98

tools. We categorized a tool as “easy to install” if it could be installed in 15 minutes or less,

“complex” if it required more than 15 minutes but was successfully installed before the two

hour limit, and “not installed” if the tool could not be successfully installed within two hours

(Table S2 and Figure 2).

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

The most stringent evaluation was the “automatic installation test,” in which the tester

is required to strictly follow the instructions provided in the manual of the software tool

(Methods; Figure 2a)—we determined that 57.1% of the selected tools failed this test. The vast

majority (39 out of 42) of the tools that passed this test finished in fewer than 15 minutes and

were classified as “easy to install” (Table S2). For the tools failing the test, we performed

manual intervention during which the tester was allowed to install missing dependencies and

modify code to resolve installation errors. On average, it took an additional 70 minutes to install

tools failing the “automatic installation test” (Mann–Whitney U test, p-value=4.7x10-9; Figure

2c). Manual intervention was unsuccessful for 66% of the tools that initially failed the automatic

installation test. Failed manual installation was due to numerous issues, including hard-coded

parameters, invalid folder paths or header files, and usage of unavailable software

dependencies.

Next, we assessed the effect of the ease of installation on the popularity of tools in the

computational biology community by investigating the number of citations for the paper

describing the software tools. We find that tools which we were able to install had significantly

more citations compared to tools which we were not able to successfully install within two

hours (Figure 2d; Mann–Whitney U test, p-value=0.032). These results suggest, perhaps not

surprisingly, that tools which are easier to install are more likely to be adopted by the

community.

In addition, we aimed to see whether the accuracy of a tool’s installation instructions

affects its installation time. Considering the proportion of commands that are undocumented

(estimated as a ratio between the executed commands and commands in the manual), we find

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

that tools with easier installation have a significantly lower percentage of undocumented

commands (Figure 2e; Mann–Whitney U test, p-value=0.04). Considering a significant increase

of installation time and a low rate of success for tools failing automatic installation test, we

argue that reliance on manual intervention to successfully install and run computational biology

tools is an unsustainable practice. Software developers would benefit from ensuring a simple

installation process and providing adequate installation instructions.

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2. Installability of 98 randomly selected published software tools across 22 life science

journals over a span of 15 years. Error bars, where present, indicate SEM. (a) Pie chart showing

the percentage of tools with various levels of installability. (b) A pie chart showing the

proportion of evaluated tools that required no deviation from the documented installation

procedure. (c) Tools that require no manual intervention (pass automatic installation test)

exhibit decreased installation time. (d) Tools installed exhibit increased citation per year

compared with tools which were not installed (Kruskal–Wallis, p- value = 0.035). (e) Tools which

are easy to install include a decreased portion of undocumented commands (Not Installed vs.

Easy Install: Mann–Whitney U test, p-value=0.01 , Easy Install vs. Complex Install:

Mann–Whitney U test, p-value=8.3x10 -8). (f) Tools available in well-maintained package

managers such as Bioconda were always installable, while tools not shipped via package

managers were prone to problems in 32% of the studied cases.

The vast majority of surveyed tools fail to provide one-line solutions for installation,

instead providing step-by-step instructions. On average, eight commands were required to

install surveyed tools, while only 3.9 commands were provided in the manual. Among the

surveyed software tools, 23 tools provide one-line installation solutions that worked

successfully, of which nine were available via the Bioconda package manager 33 (Table S2). A

package manager is a system that automates the installation, upgrade, and configuration of a

collection of software tools in a consistent manner. Tools with single-command installations

require on average 6 minutes of installation time, which is significantly faster when compared

to tools which require multi-command installation (Kruskal–Wallis, p-value=4.7x10-6) (Figure

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/rZGJ
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

S3) . Tools available in well-maintained package managers (e.g., Bioconda) were always

installable, while tools not shipped via package managers failed to install in 32% of the studied

cases (Figure 2f).

Box 1. Principles to increase installability and archival stability of omics computational tools

and resources.

The results from our study point to several specific opportunities for establishing an

effective software development and distribution practice. Here we present five principles to

increase the installability and archival stability of omics computational tools and resources. The

majority of surveyed software tools and resources address only a portion of these principles.

1. Host software and resources on archivally stable services

Selecting the appropriate service to host your software and resources is critical. A

simple solution is to use web services designed to host source code (e.g. GitHub 34,35 or

Sourceforge). In our study, we have determined that more than 96% of software tools

and resources stored at GitHub or Sourceforge are accessible, and tools hosted on these

services remain stable for longer periods of time (Table S3). Ideally, the repositories

storing code should also be more permanently archived using a service such as Zenodo

(https://zenodo.org), which is designed to provide long-term stability for scientific data.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/tTQW+9dDR
https://zenodo.org/
https://zenodo.org/
https://zenodo.org/
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

2. Provide easy-to-use installation interface

Use sustainable and comprehensive software distribution. One example of a sustainable

package manager is Bioconda33, which is language-agnostic and available on Linux and

Mac operating systems. Bioconda, technically a "channel" within the broader Conda

project, is one the most popular package managers in bioinformatics, currently covering

2900 software tools that are continuously maintained, updated, and extended by a

growing global community 33. Bioconda provides a one-line solution for downloading

and installing a tool.

3. Take care of all the dependencies the tool needs

Even the most widely used tools rely on dependencies. To facilitate simple installation,

provide an easy-to-use interface to download and install all required dependencies.

Ideally, all necessary installation instructions should be included in a single script,

especially when the number of installation commands is large. Package managers can

potentially make this problem easier to solve. Bioconda also automatically generates

containers for each Bioconda “recipe” 36, which provides all files and information

needed to install a package. Other implementations of containerized software (e.g.

Docker - https://www.docker.com/ and Singularity - https://www.sylabs.io/docs/) also

usually have all dependencies preinstalled. Often, language-specific solutions are also

available (e.g Bioconductor37 and the Comprehensive R Archive Network (CRAN)). One

drawback of Bioconda is that the existing tools in portable package managers are

manually updated by the team or community, often delaying such updates. For

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/rZGJ
https://paperpile.com/c/n1Yl0Y/rZGJ
https://paperpile.com/c/n1Yl0Y/mHXC
https://www.docker.com/
https://www.sylabs.io/docs/
https://paperpile.com/c/n1Yl0Y/bhjP
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

example, as of August 10, 2018, R 3.5 was unavailable under Bioconda despite being

released almost four months prior. If possible, one should design an installation script

combining the commands for installing dependencies and developed software tools into

a single script. Ideally, these dependencies should be installed in a user-configurable

directory, as with Python “virtual environments,” which can help avoid conflicts with

existing software on the system.

4. Provide an example dataset

Provide an example dataset inside the software package, with a description of the

expected results. Similar to unit- and integration-testing practices in software

engineering, example datasets allow the user to verify that the tool was successfully

installed and works properly before running the tool on experimental data. A tool may

be installed with no errors, yet it may still fail to successfully run on the input data. Only

68% of examined tools provide an example dataset (Table S2).

5. Provide a ‘Quick Start’ guide

Allow the user to verify the installation and performance of the tool. Providing a ‘Quick

Start’ guide is the best way for the user to validate that the tools are installed and

working properly. The guide should provide the commands needed to download, install,

and run the software tool on the example dataset. An example of a ‘Quick Start’ guide is

provided in Supplemental Note 2. In addition to the ‘Quick Start’, a detailed manual

must be provided with information on options, advanced features and configuration.

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Best practices for creating bioinformatics software documentation are discussed

elsewhere 38.

6. Choose an adequate name

Choose a software name that best reflects the developed tool or resource. Today’s “age

of Google” places new demands on the function of tool names, which should be

memorable and unique, yet easily searchable. In addition, there are no regulations on

tool names. For example, there are at least six tools named “Prism,” making it

challenging to find the right tool (Supplementary Note 3). Scout the web to check the

uniqueness of a name before publishing a new tool.

7. Assume no root privileges

Tools are often installed on high-performance computing clusters where users do not

have administrative (root/superuser) privileges to install software into system

directories. When developing instructions for installation of the proposed software tool,

avoid commands that require root access. Examples of such commands include those

that use package managers that require root/superuser privileges, such as “apt-get

install” or “yum install.”

8. Make platform-agnostic decisions when possible

Create tools that will work on as many systems as possible—specification of various

versions of UNIX-like systems may limit the installability of software. Design your

software to minimize reliance on OS-specific functionality to make it easier for users to

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/b7sv
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

use your tools in diverse environments. Platform-specific installation commands (e.g.,

Homebrew 39) should also be avoided.

--end Box 1

Discussion

Our study assesses a critical issue in computational biology that is characterized by lack

of standards regarding installability and long-term archival stability of omics computational

tools and resources. Despite recent requirements on the behalf of journals to impose data and

code sharing on published authors’ work, 27.8% of 36,702 omics software resources examined

in this study are not currently accessible via the original published URLs. Among the 98 software

packages selected for our installability test, 49.0% of omics tools failed our “easy-to-install”

test. In addition, 27.6% of surveyed tools could not be installed due to severe problems in the

implementation process. One-quarter of examined tools are easy to install and use; in these

cases, we identify a set of good practices for software development and dissemination.

Reviewers assessing the papers that present new software tools could begin addressing

this problem with the adoption of a rigorous, standardized approach during the peer review

process. Feasible solutions for improving the installability and archival stability of

peer-reviewed software tools include requirements for providing installation scripts, test data,

and functions that allow automatic checks for the plausibility of installing and running the tool.

For example, “forking” is a simple procedure that ensures the version of cited code within an

article may persist beyond initial publication 40. Academic journals recently took a major step

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/pJ26
https://paperpile.com/c/n1Yl0Y/9g9c
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

toward improving archival stability by permanently forking published software on GitHub (e.g.,

41).

The current workflow of computational biology software development in academia

encourages researchers to develop and publish new tools, but this process does not incentivize

long-term maintenance of existing tools. Results from this study provide a strong argument for

the development of standardized approaches capable of verifying and archiving software.

Further, our results suggest that funding agencies should emphasize support for maintenance

of existing tools and databases.

Manual interventions and long installation times are unappealing to many users,

especially to those with limited computational skills. Many life science and medical researchers

lack formal computational training and may be unable to perform manual interventions (e.g.,

installing dependencies or editing computer code during installation). Users could leverage

advanced knowledge of the time and computational skills required to properly install a

software package. We propose a prototype of a badge server that runs an automated

installation test, thus introducing to the peer review process explicit assessment of a tool’s

installability. This badge server would be particularly useful in computational biology, an

interdisciplinary field comprised of reviewers who often lack the skills and time to verify the

installability of software tools. Many benchmarking studies already routinely report relative

ease of installation and use of new tools as components of their performance metrics42 .

Acknowledgments

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/bGCw
https://paperpile.com/c/n1Yl0Y/k66A
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

SM acknowledges support from a QCB Collaboratory Postdoctoral Fellowship, and the QCB

Collaboratory community directed by Matteo Pellegrini. S.M. and E.E. are supported by

National Science Foundation grants 0513612, 0731455, 0729049, 0916676, 1065276, 1302448,

1320589, 1331176, and 1815624, and National Institutes of Health grants K25-HL080079,

U01-DA024417, P01-HL30568, P01-HL28481, R01-GM083198, R01-ES021801, R01-MH101782,

and R01-ES022282. R.B. is grateful for support from the National Institutes of General Medicine

(R35-GM128716) and a McKnight Land-Grant Professorship from the University of Minnesota.

We thank John Didion (https://twitter.com/jdidion) for an interesting discussion over Twitter

about the issue of software installability.

References

1. Van Noorden, R., Maher, B. & Nuzzo, R. The top 100 papers. Nature 514, 550–553 (2014).

2. Wren, J. D. Bioinformatics programs are 31-fold over-represented among the highest

impact scientific papers of the past two decades. Bioinformatics 32, 2686–2691 (2016).

3. Greene, A. C., Giffin, K. A., Greene, C. S. & Moore, J. H. Adapting bioinformatics curricula

for big data. Brief. Bioinform. 17, 43–50 (2016).

4. Stephens, Z. D. et al. Big Data: Astronomical or Genomical? PLoS Biol. 13, e1002195 (2015).

5. Ahn, W.-Y. & Busemeyer, J. R. Challenges and promises for translating computational tools

into clinical practice. Current Opinion in Behavioral Sciences 11, 1–7 (2016).

6. Markowetz, F. All biology is computational biology. PLoS Biol. 15, e2002050 (2017).

7. Marx, V. The big challenges of big data. Nature 498, 255–260 (2013).

24

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://twitter.com/jdidion
http://paperpile.com/b/n1Yl0Y/gwlh
http://paperpile.com/b/n1Yl0Y/gwlh
http://paperpile.com/b/n1Yl0Y/gwlh
http://paperpile.com/b/n1Yl0Y/gwlh
http://paperpile.com/b/n1Yl0Y/gwlh
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/Bjk2
http://paperpile.com/b/n1Yl0Y/SUle
http://paperpile.com/b/n1Yl0Y/SUle
http://paperpile.com/b/n1Yl0Y/SUle
http://paperpile.com/b/n1Yl0Y/SUle
http://paperpile.com/b/n1Yl0Y/SUle
http://paperpile.com/b/n1Yl0Y/SUle
http://paperpile.com/b/n1Yl0Y/Ttf5
http://paperpile.com/b/n1Yl0Y/Ttf5
http://paperpile.com/b/n1Yl0Y/Ttf5
http://paperpile.com/b/n1Yl0Y/Ttf5
http://paperpile.com/b/n1Yl0Y/Ttf5
http://paperpile.com/b/n1Yl0Y/Ttf5
http://paperpile.com/b/n1Yl0Y/Ttf5
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/8soH
http://paperpile.com/b/n1Yl0Y/TWGi
http://paperpile.com/b/n1Yl0Y/TWGi
http://paperpile.com/b/n1Yl0Y/TWGi
http://paperpile.com/b/n1Yl0Y/TWGi
http://paperpile.com/b/n1Yl0Y/TWGi
http://paperpile.com/b/n1Yl0Y/7NP8
http://paperpile.com/b/n1Yl0Y/7NP8
http://paperpile.com/b/n1Yl0Y/7NP8
http://paperpile.com/b/n1Yl0Y/7NP8
http://paperpile.com/b/n1Yl0Y/7NP8
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

8. Stodden, V., Seiler, J. & Ma, Z. An empirical analysis of journal policy effectiveness for

computational reproducibility. Proc. Natl. Acad. Sci. U. S. A. 115, 2584–2589 (2018).

9. Gertler, P., Galiani, S. & Romero, M. How to make replication the norm. Nature 554,

417–419 (2018).

10. Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows is

automated using continuous analysis. Nat. Biotechnol. 35, 342–346 (2017).

11. List, M., Ebert, P. & Albrecht, F. Ten Simple Rules for Developing Usable Software in

Computational Biology. PLoS Comput. Biol. 13, e1005265 (2017).

12. Baxter, S. M., Day, S. W., Fetrow, J. S. & Reisinger, S. J. Scientific Software Development Is

Not an Oxymoron. PLoS Comput. Biol. 2, e87 (2006).

13. Carpenter, A. E., Kamentsky, L. & Eliceiri, K. W. A call for bioimaging software usability.

Nat. Methods 9, 666–670 (2012).

14. Leprevost, F. da V. et al. On best practices in the development of bioinformatics software.

Front. Genet. 5, (2014).

15. Prlić, A. & Procter, J. B. Ten simple rules for the open development of scientific software.

PLoS Comput. Biol. 8, e1002802 (2012).

16. Altschul, S. et al. The anatomy of successful computational biology software. Nat.

Biotechnol. 31, 894–897 (2013).

17. Jiménez, R. C. et al. Four simple recommendations to encourage best practices in research

software. F1000Res. 6, (2017).

18. Ősz, Á., Pongor, L. S., Szirmai, D. & Győrffy, B. A snapshot of 3649 Web-based services

published between 1994 and 2017 shows a decrease in availability after 2 years. Brief.

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/tSDD
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/13dS
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/22f9
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/liHM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/aOCM
http://paperpile.com/b/n1Yl0Y/HjJW
http://paperpile.com/b/n1Yl0Y/HjJW
http://paperpile.com/b/n1Yl0Y/HjJW
http://paperpile.com/b/n1Yl0Y/HjJW
http://paperpile.com/b/n1Yl0Y/HjJW
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/wGbj
http://paperpile.com/b/n1Yl0Y/2AH9
http://paperpile.com/b/n1Yl0Y/2AH9
http://paperpile.com/b/n1Yl0Y/2AH9
http://paperpile.com/b/n1Yl0Y/2AH9
http://paperpile.com/b/n1Yl0Y/2AH9
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/IDvH
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/3hyv
http://paperpile.com/b/n1Yl0Y/vlFh
http://paperpile.com/b/n1Yl0Y/vlFh
http://paperpile.com/b/n1Yl0Y/vlFh
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Bioinform. (2017). doi:10.1093/bib/bbx159

19. Gewaltig, M.-O. & Cannon, R. Current practice in software development for computational

neuroscience and how to improve it. PLoS Comput. Biol. 10, e1003376 (2014).

20. Guellec, D. & Van Pottelsberghe De La Potterie, B. The impact of public R&D expenditure

on business R&D*. Economics of Innovation and New Technology 12, 225–243 (2003).

21. Ahmed, Z., Zeeshan, S. & Dandekar, T. Developing sustainable software solutions for

bioinformatics by the ‘ Butterfly’ paradigm. F1000Res. 3, 71 (2014).

22. Kanitz, A. et al. Comparative assessment of methods for the computational inference of

transcript isoform abundance from RNA-seq data. Genome Biol. 16, 150 (2015).

23. Support Model Organism Databases. Available at:

http://www.genetics-gsa.org/MODsupport. (Accessed: 11th August 2018)

24. Database under maintenance. Nat. Methods 13, 699–699 (2016).

25. Chen, S.-S. Digital Preservation: Organizational Commitment, Archival Stability, and

Technological Continuity. Journal of Organizational Computing and Electronic Commerce

17, 205–215 (2007).

26. Carnevale, R. J. & Aronsky, D. The life and death of URLs in five biomedical informatics

journals. Int. J. Med. Inform. 76, 269–273 (2007).

27. Markwell, J. & Brooks, D. W. ‘Link rot’ limits the usefulness of web-based educational

materials in biochemistry and molecular biology. Biochemistry and Molecular Biology

Education 31, 69–72 (2003).

28. Dellavalle, R. P. et al. Information science. Going, going, gone: lost Internet references.

Science 302, 787–788 (2003).

26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

http://paperpile.com/b/n1Yl0Y/vlFh
http://paperpile.com/b/n1Yl0Y/vlFh
http://dx.doi.org/10.1093/bib/bbx159
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/ckV4
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/OjS7
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/3B3C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/rX4C
http://paperpile.com/b/n1Yl0Y/kURj
http://www.genetics-gsa.org/MODsupport.
http://paperpile.com/b/n1Yl0Y/kURj
http://paperpile.com/b/n1Yl0Y/fA9f
http://paperpile.com/b/n1Yl0Y/fA9f
http://paperpile.com/b/n1Yl0Y/fA9f
http://paperpile.com/b/n1Yl0Y/fA9f
http://paperpile.com/b/n1Yl0Y/fA9f
http://paperpile.com/b/n1Yl0Y/WNuH
http://paperpile.com/b/n1Yl0Y/WNuH
http://paperpile.com/b/n1Yl0Y/WNuH
http://paperpile.com/b/n1Yl0Y/WNuH
http://paperpile.com/b/n1Yl0Y/WNuH
http://paperpile.com/b/n1Yl0Y/WNuH
http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/jcW0
http://paperpile.com/b/n1Yl0Y/7Eim
http://paperpile.com/b/n1Yl0Y/7Eim
http://paperpile.com/b/n1Yl0Y/7Eim
http://paperpile.com/b/n1Yl0Y/7Eim
http://paperpile.com/b/n1Yl0Y/7Eim
http://paperpile.com/b/n1Yl0Y/7Eim
http://paperpile.com/b/n1Yl0Y/7Eim
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
http://paperpile.com/b/n1Yl0Y/VNl3
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

29. Ducut, E., Liu, F. & Fontelo, P. An update on Uniform Resource Locator (URL) decay in

MEDLINE abstracts and measures for its mitigation. BMC Med. Inform. Decis. Mak. 8,

(2008).

30. Wren, J. D., Georgescu, C., Giles, C. B. & Hennessey, J. Use it or lose it: citations predict the

continued online availability of published bioinformatics resources. Nucleic Acids Res. 45,

3627–3633 (2017).

31. Wren, J. D. URL decay in MEDLINE--a 4-year follow-up study. Bioinformatics 24, 1381–1385

(2008).

32. Piwowar, H. Altmetrics: Value all research products. Nature 493, 159 (2013).

33. Grüning, B. et al. Bioconda: sustainable and comprehensive software distribution for the

life sciences. Nat. Methods 15, 475–476 (2018).

34. Perez-Riverol, Y. et al. Ten Simple Rules for Taking Advantage of Git and GitHub. PLoS

Comput. Biol. 12, e1004947 (2016).

35. When it comes to reproducible science, Git is code for success. Available at:

https://www.natureindex.com/news-blog/when-it-comes-to-reproducible-science-git-is-c

ode-for-success. (Accessed: 11th August 2018)

36. da Veiga Leprevost, F. et al. BioContainers: an open-source and community-driven

framework for software standardization. Bioinformatics 33, 2580–2582 (2017).

37. Gentleman, R. C. et al. Bioconductor: open software development for computational

biology and bioinformatics. Genome Biol. 5, R80 (2004).

38. Karimzadeh, M. & Hoffman, M. M. Top considerations for creating bioinformatics software

documentation. Brief. Bioinform. 19, 693–699 (2018).

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/ZqwP
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/7N1R
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/JVyQ
http://paperpile.com/b/n1Yl0Y/UsFy
http://paperpile.com/b/n1Yl0Y/UsFy
http://paperpile.com/b/n1Yl0Y/UsFy
http://paperpile.com/b/n1Yl0Y/UsFy
http://paperpile.com/b/n1Yl0Y/UsFy
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/rZGJ
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/tTQW
http://paperpile.com/b/n1Yl0Y/9dDR
https://www.natureindex.com/news-blog/when-it-comes-to-reproducible-science-git-is-code-for-success.
https://www.natureindex.com/news-blog/when-it-comes-to-reproducible-science-git-is-code-for-success.
http://paperpile.com/b/n1Yl0Y/9dDR
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/mHXC
http://paperpile.com/b/n1Yl0Y/bhjP
http://paperpile.com/b/n1Yl0Y/bhjP
http://paperpile.com/b/n1Yl0Y/bhjP
http://paperpile.com/b/n1Yl0Y/bhjP
http://paperpile.com/b/n1Yl0Y/bhjP
http://paperpile.com/b/n1Yl0Y/bhjP
http://paperpile.com/b/n1Yl0Y/bhjP
http://paperpile.com/b/n1Yl0Y/bhjP
http://paperpile.com/b/n1Yl0Y/b7sv
http://paperpile.com/b/n1Yl0Y/b7sv
http://paperpile.com/b/n1Yl0Y/b7sv
http://paperpile.com/b/n1Yl0Y/b7sv
http://paperpile.com/b/n1Yl0Y/b7sv
http://paperpile.com/b/n1Yl0Y/b7sv
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

39. Homebrew. Homebrew Available at: https://brew.sh/. (Accessed: 17th August 2018)

40. Forking software used in eLife papers to GitHub. elifesciences.org (2017).

41. Mosqueiro, T. et al. Task allocation and site fidelity jointly influence foraging regulation in

honeybee colonies. R Soc Open Sci 4, 170344 (2017).

42. Hunt, M., Newbold, C., Berriman, M. & Otto, T. D. A comprehensive evaluation of assembly

scaffolding tools. Genome Biol. 15, R42 (2014).

43. Fonseca, N. A., Rung, J., Brazma, A. & Marioni, J. C. Tools for mapping high-throughput

sequencing data. Bioinformatics 28, 3169–3177 (2012).

44. Pabinger, S. et al. A survey of tools for variant analysis of next-generation genome

sequencing data. Brief. Bioinform. 15, 256–278 (2014).

45. Dworkin, M. J. SHA-3 Standard: Permutation-Based Hash and Extendable-Output

Functions . (2015).

Glossary

installability. The tool is considered usable if (a) the tool and its corresponding

dependencies can be installed on Linux/UNIX-based operating systems, and if (b) the tool can

produce expected results from the input data with no errors.

Automated installation test. This test of software installation ease is performed by the

biomedical researcher, using only installation commands provided in the manual in the

recommended order. No extra commands are allowed. A tool passes the automated installation

test if the user can successfully install the package following only the commands from the

manual.

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

http://paperpile.com/b/n1Yl0Y/pJ26
http://paperpile.com/b/n1Yl0Y/pJ26
http://paperpile.com/b/n1Yl0Y/pJ26
https://brew.sh/
http://paperpile.com/b/n1Yl0Y/pJ26
http://paperpile.com/b/n1Yl0Y/9g9c
http://paperpile.com/b/n1Yl0Y/9g9c
http://paperpile.com/b/n1Yl0Y/9g9c
http://paperpile.com/b/n1Yl0Y/bGCw
http://paperpile.com/b/n1Yl0Y/bGCw
http://paperpile.com/b/n1Yl0Y/bGCw
http://paperpile.com/b/n1Yl0Y/bGCw
http://paperpile.com/b/n1Yl0Y/bGCw
http://paperpile.com/b/n1Yl0Y/bGCw
http://paperpile.com/b/n1Yl0Y/bGCw
http://paperpile.com/b/n1Yl0Y/bGCw
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/k66A
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/Wp2O
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/yCd2
http://paperpile.com/b/n1Yl0Y/fepJ
http://paperpile.com/b/n1Yl0Y/fepJ
http://paperpile.com/b/n1Yl0Y/fepJ
http://paperpile.com/b/n1Yl0Y/fepJ
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Package manager is a collection of software tools that automate the installation of a

tool’s core package and updates in a consistent manner. Package managers also help solve the

‘dependencies problem’ by automatically installing required third-party software packages.

Bioconda is one of the most popular package managers for omics computational tools. A

growing global community of Bioconda users continuously maintain, update, and extend more

than 2900 software tools.

Methods

Protocol to check the archival stability of published software tools

We downloaded open access papers via PubMed from 10 systems and computational

biology journals from the NCBI FTP server (ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/). We included

the following journals: Nature Biotechnology, Genome Medicine, Nature Methods, Genome

Biology, BMC Systems Biology, Bioinformatics, PLoS Computational Biology, BMC

Bioinformatics, BMC Genomics, and Nucleic Acids Research.

Papers were downloaded in XML format, which contains name-tags for field extraction.

(Raw data from PubMed is available at https://doi.org/10.6084/m9.figshare.7641083)

Specifically, we focused on three tags: <abstract>, <body>, and <text-link>. Each paper’s

abstract is enclosed inside the <abstract> tag (Figure S1). The <body> tag contains the key

contents like introduction, methods, results, and discussion. <ext-link> tags contain internet

addresses for external sources (e.g., supplementary data and directions for downloading data

sources and software packages). We have prepared a folder containing a small set of papers in

XML format for testing purposes, available at

29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.6084/m9.figshare.7641083
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://github.com/smangul1/good.software/blob/master/download.parse.data/Nat_Methods

.tar.gz?raw=true.

 We deployed a heuristic approach to limit links to software produced by each paper’s

authors. We assumed that these links are in <ext-link> tags whose neighbor words contain one

of the following keywords: "here", "pipeline", "code", "software", "available", "publicly", "tool",

"method", "algorithm", "download", "application", "apply", "package", and "library". We

searched for these words in a neighborhood that extended 75 characters from both the start

and end of each <ext-link> tag.

 For each extracted link, we initially used the HTTPError class of the Python library urllib2

to get the HTTP status. Status number 400 and above indicate broken links; for example, the

well-known 404 code indicates "Page Not Found." Some URLs point at servers that did not

respond at all. Since the threshold for the allotted time to wait for a response may bias the

results, we manually verified 931 URLs reported with the timeout error code (Figure S1).

Multiple attempts were made to validate each extracted URL: First, an HTTP request

was sent to each URL; if that was not successful, an FTP request was sent, to avoid marking

URLs as "broken" if they used this older method of transferring files instead. HTTP requests that

received "redirect" responses (status codes 300–399) were followed to the endpoint specified

by the redirection (or redirections), to determine the final destination of the request. If the

request ultimately completed successfully, the initial redirect code was recorded, and that link

appears in our data as a redirection. However, some requests eventually resulted in errors—for

example, if a server rewrites a received URL according to a formula, but the rewritten URL

points to a file that doesn't exist. Redirections that eventually resulted in an error were

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://github.com/smangul1/good.software/blob/master/download.parse.data/Nat_Methods.tar.gz?raw=true
https://github.com/smangul1/good.software/blob/master/download.parse.data/Nat_Methods.tar.gz?raw=true
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

recorded with that error code instead. There is only one exception to this classification: If a

server responded with a redirection status, but the redirection pointed at a URL that only

changes the URL’s protocol from “http” to “https,” we classified this as a “success” rather than

a “redirection.” Our protocol to check the archival stability of published software tools is

available at https://github.com/smangul1/good.software. Parsed HTTP information for each

links is available at https://doi.org/10.6084/m9.figshare.7738901.

Protocol to check the installability of published software tools

To standardize the operating system environment for each tool installation, we used a

CentOS 7 (v1710.01) Vagrant virtual machine. CentOS is an open-source operating system that

is widely used in research computing. To prevent dependency mismatches caused by previously

installed packages, we installed each tool in a new Vagrant virtual machine. Our virtual machine

was provisioned with several commonly used software tools using the YUM package manager,

to accommodate low-level dependencies that many developers would assume were already

installed: epel-release, java (version 1.8.0), wget, vim, unzip, gcc and gcc-devel, python, and R.

Users seeking to replicate this environment can use the Vagrant provisioning script found here:

https://github.com/smangul1/good.software/blob/master/toolInstall/Vagrantfile

We present a summary of our protocol in Figure S3. Tools were classified into three

categories: (1) easy to install, where installation took less than 15 minutes; (2) hard to install,

where installation took between 15 minutes and two hours; and (3) not installed, meaning

installation took longer than two hours or could not be completed. We tested a total of 98 tools

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://github.com/smangul1/good.software
https://doi.org/10.6084/m9.figshare.7738901
https://github.com/smangul1/good.software/blob/master/toolInstall/Vagrantfile
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

across various categories and fields as described below. Information on the tools tested and the

results of the test are available in Table S2 and are shared at

https://doi.org/10.6084/m9.figshare.7738949.

Tools for microbiome profiling

The installability of 10 common tools for microbiome analysis was tested. To develop a

list of popular tools, two co-authors independently made lists of 30 tools currently used for

microbiome data processing, based on a literature survey, and identified those present on both

lists. Microbiome tools can vary in their specificity of use; we limited the final tool list to five

tools that process raw sequences into a final OTU table, and five tools capable of broad

downstream analysis functions.

Tools for read alignment

We tested the installability of 10 tools for read alignment. We randomly selected a total

of 20 tools—10 tools from a recent survey 43 and 10 tools from PubMed

(https://www.ncbi.nlm.nih.gov/pubmed/). The full list of extracted URLs is available at

https://github.com/smangul1/good.software . To confirm that the installation process indeed

worked, we used reads generated from the complete genome of Enterobacteria phage lambda

(NC_001416.1).

32

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.6084/m9.figshare.7738949
https://paperpile.com/c/n1Yl0Y/Wp2O
https://www.ncbi.nlm.nih.gov/pubmed/
https://github.com/smangul1/good.software
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Tools for variant calling tools

We tested the installability of seven randomly sampled tools designed for variant calling

44. We confirmed successful software installation when the core functionality of each package

could be executed with an example dataset. Only one of the tools was not packaged with an

example dataset, in which case we randomly chose an open example dataset. We discarded

from our study the tools for which papers could not be located.

Tools for structural variants tools

We examined the installability of 52 common tools used for the structural variant (SV)

calling from whole genome sequencing (WGS) data. First, we compiled a list of tools that use

read alignment, where reads aligned to the locations are inconsistent with the expected insert

size of the library or expected read depth at a specific locus. We randomly selected 50 tools out

of 70 programs designed to detect SVs from WGS data and published after 2011. We confirmed

the successful installation of each software package by executing its core functionality with an

example dataset.

Additional omics tools

Lastly, we randomly selected 20 published tools based on the URL present in the

abstract or the body of the publications available in PubMed

(https://www.ncbi.nlm.nih.gov/pubmed/). The full list of extracted URLs is available at

https://github.com/smangul1/good.software.

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/yCd2
https://www.ncbi.nlm.nih.gov/pubmed/
https://github.com/smangul1/good.software
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Statistical analysis

Once the archival information was recorded, variance analysis was performed to assess

the differences among the links categorized as ‘accessible’, ‘redirected’, ‘broken’ and ‘time out’

as they related to four paper-level metrics: the number of citations in the original paper where

the tool was published; number of citations per year in social media platforms such as blogs

and Twitter feeds; total readership per year, as measured by Altmetrics; and the Altmetric

“attention score.” Because the distributions of all five measures presented heavy tails and

deviated from a bell-shaped distribution, we performed a Kruskal–Wallis test on ranks, followed

by pairwise Dunn’s tests to confirm which groups presented significant differences with a

significance level of 0.01. We provide all p-values and test statistics from these experiments in

our electronic supplemental material on GitHub

(https://github.com/smangul1/good.software).

Supplementary Notes

Supplemental Note 1. An example of the ‘Quick Start’

1. Download the tool using: git clone https://github.com/x/software.tool.git

2. Install tool using: cd software.tool; ./install.sh

34

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://github.com/smangul1/good.software
https://github.com/x/software.tool.git
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

3. Run the tool for the example dataset (distributed with the tool): ./software.tool

example.dataset

Supplementary Note 2. Automatic verification of software installability

Software quality, including installability, is typically not thoroughly tested in the formal

peer review process, and relying on reviewer feedback can be problematic, as the reviewers

may lack the computational skills and time to verify the tools. It is possible to automate the

assessment process when software guarantees access to (i) the software binaries or source

code; (ii) a script that installs the software in a given Linux environment; (iii) a small example

dataset and its expected output; and (iv) a script to perform the analysis on the dataset from

(iii) .

To provide an automated and openly verifiable certification that a tool is usable, we

suggest a model of a server that uses public badges to endorse the installability of a software

tool. The server will issue a certificate to the software author, which indicates that the

proposed software passed an ‘Automatic Installation Test.’ The installation process, in this case,

includes a testing phase that ensures the installation can be successful. Authors of

computational tools who submit their software tool to our badge server, alongside an

installation script and an example dataset, will receive a badge of confirmation which certifies

that the software tool was successfully installed in a third-party environment. Using a Secure

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hash Algorithm 45, each generated badge would be unique to each version of the software,

installation script, test dataset, and operating system used by the server.

To validate a badge, the server will use a private cryptographic key to publicly sign the

badge. Public badge testing provides a strong endorsement of the tool installability up to the

current highest standards in the industry, as only the same software version, installation script,

and test dataset will confirm the authenticity of the badge and its public signature. A public

badge platform will provide a mechanism for researchers and editors of journals in

computational biology to verify the installability of a tool in under five minutes through

confirmation of the server’s signature. Badges inform the user a priori if and under what

conditions the software is installable, potentially reducing for each user a significant amount of

time that otherwise would be required to test software and attempt installing software that is

ultimately uninstallable.

In addition to guaranteeing that a software tool can be successfully installed in a

standardized environment, the badge also reflects which specific Linux system was used during

the test installation. (Linux-based systems are the most commonly used operating systems in

the field of computational biology.) Furthermore, the badge server does not assume an open

source software and can be generated based on the source code or binary files.

The server creates an instance of a Linux virtual machine and runs the installation script

and test protocol submitted. If the installation completes without errors, and the test dataset

provides the expected result, a badge is created that certifies the installability of the tool under

the tested conditions. The badge consists of a unique summary generated by the Secure Hash

Algorithm 3 (SHA-3) 45, of the items submitted by authors. The server then uses a private

36

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://paperpile.com/c/n1Yl0Y/fepJ
https://paperpile.com/c/n1Yl0Y/fepJ
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

cryptographic key to publicly sign this summary. There is a small probability that the hashed

summary of two different objects created by SHA-3 could be identical (also known as collision);

however, this method is the current technological standard of unique badge creation and is

broadly accepted by all industries. Using the server’s public key and the hashed version of the

software, any user can authenticate the signature and prove that the server was indeed able to

install the tool without manual intervention.

Supplementary Note 3

List of bioinformatics tools with name Prism.

● https://www.ncbi.nlm.nih.gov/pubmed/22851530 (Structural Variance)

● https://academic.oup.com/nar/article/43/20/9645/1394603 (Metabolomics)

● https://www.ncbi.nlm.nih.gov/pubmed/21068001 (Viral Genomics)

● http://honig.c2b2.columbia.edu/prism/ (Protein Structure Analysis)

https://www.ncbi.nlm.nih.gov/pubmed/15991339 (Protein Structure)

● https://www.bits.vib.be/software-overview/graphpad-prism (Statistics and

visualization)

Supplementary Tables

37

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://www.ncbi.nlm.nih.gov/pubmed/22851530
https://academic.oup.com/nar/article/43/20/9645/1394603
https://www.ncbi.nlm.nih.gov/pubmed/21068001
http://honig.c2b2.columbia.edu/prism/
https://www.ncbi.nlm.nih.gov/pubmed/15991339
https://www.bits.vib.be/software-overview/graphpad-prism
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal name Number of

URLs

Number of

accessible URLs

Nature Biotechnology 180 149

Genome Medicine 352 312

Nature Methods 403 326

Genome Biology 904 746

BMC Systems Biology 912 638

Bioinformatics 3131 2448

PLoS Computational Biology 3226 2529

BMC Bioinformatics 6840 4651

BMC Genomics 7651 5699

Nucleic Acids Research 13103 9011

Table S1. The names of the 10 journals that were used to retrieve the URLs. We reported the

total number of papers with URLs in abstract or body of the paper (‘Number of URLs ’), and the

number of accessible URLs, which were not broken or timeout (‘Number of accessible URLs’).

ID Source Citations
per year

Instal
latio
n
com
man
ds
exec
uted

Co
m
ma
nds
doc
um
ent
ed

Undo
cume
nted
com
man
ds

Automati
c
installatio
n test

Instal
latio
n
time

Installati
on
difficulty

Sampl
e data
provi
ded

ID1 Bioconda 1122.60 1 1 0% Pass 5 Easy Y

ID2 Bioconda 13.83 1 1 0% Pass 5 Easy Y

38

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

ID3 Bioconda 5.14 1 1 0% Pass 5 Easy Y

ID4 Bioconda 163.20 1 1 0% Pass 5 Easy Y

ID5 Bioconda 247.40 1 1 0% Pass 15 Easy Y

ID6 Bioconda 57.20 1 1 0% Pass 5 Easy Y

ID7 Bioconda 60.30 1 1 0% Pass 5 Easy Y

ID8 Other 33.45 3 3 0% Pass 5 Easy Y

ID9 Other 6.83 22 4 82% Fail 30 Complex Y

ID10 Bioconda 124.00 1 1 0% Pass 30 Complex Y

ID11 Other 1059.00 10 7 30% Fail 60 Complex Y

ID12 Bioconductor 159.00 20 2 90% Fail 60 Complex Y

ID13 pip 73.17 12 10 17% Fail 60 Complex Y

ID14 BitBucket 36.25 30 10 67% Fail 120 Complex Y

ID15 Bioconductor 57.83 2 2 0% Pass 5 Easy Y

ID16 Github 798.40 3 2 33% Fail 5 Easy Y

ID17 Bioconductor 36.00 23 2 91% Fail 120 Complex Y

ID18 Other 683.11 2 2 0% Pass 5 Easy Y

ID19 Github 216.33 12 3 75% Fail 30 Complex Y

ID20 Github 16.25 8 6 25% Fail 60 Complex Y

ID21 Other 14.70 13 13 0% Pass 15 Easy Y

ID22 SourceForge 22.71 190 7 96% Fail 120 Not
installed

Y

ID24 Other 169.22 2 2 0% Pass 5 Easy Y

ID25 Other 15.63 52 N/
A

0% Fail 120 Complex N

ID26 BitBucket 0.71 7 4 43% Fail 30 Complex Y

ID27 Other 39.10 12 12 0% Pass 15 Easy Y

39

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

ID28 Other 12.75 4 4 0% Pass 15 Easy Y

ID29 Other 1.71 4 4 0% Fail 30 Not
installed

Y

ID30 Other 1.00 2 2 0% Pass 15 Easy Y

ID31 Other 0.29 7 2 71% Fail 5 Not
installed

Y

ID32 Other 2.60 11 4 64% Fail 15 Not
installed

Y

ID33 Other 13.33 5 5 0% Pass 15 Easy Y

ID34 Other 3.20 5 3 40% Fail 30 Complex Y

ID35 Other 8.00 4 3 25% Fail 15 Easy Y

ID36 Other 2.50 7 7 0% Fail 15 Not
installed

Y

ID37 Other 3.00 6 6 0% Pass 15 Easy Y

ID38 Other 3.25 5 4 20% Fail 15 Easy Y

ID39 Other 3.00 10 10 0% Fail 30 Not
installed

Y

ID40 Other 2.67 3 3 0% Pass 15 Easy Y

ID41 Other 1.33 2 2 0% Pass 5 Easy Y

ID42 Other 124.10 1 1 0% Pass 5 Easy N

ID43 Other 15.30 1 1 0% Pass 5 Easy Y

ID44 Other 7.17 2 1 50% Fail 15 Easy N

ID45 SourceForge 1.83 1 N/
A

0% Fail 15 Not
installed

Y

ID46 Github 1.50 1 1 0% Pass 15 Easy N

ID47 Github 1.33 3 3 0% Pass 5 Easy Y

ID48 Github 2.75 7 7 0% Pass 15 Easy Y

ID49 Github 3.00 7 7 0% Pass 15 Easy N

40

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

ID50 Bioconductor 1.00 1 1 0% Pass 5 Easy Y

ID51 Github 0.67 5 3 40% Fail 30 Not
installed

Y

ID52 Other 39.00 N/A N/
A

0% Pass 5 Easy Y

ID53 Bioconductor 26.57 2 1 50% Fail 5 Easy N

ID54 Other 43.00 5 1 80% Fail 120 Complex Y

ID55 SourceForge 8.00 1 1 0% Pass 5 Easy N

ID56 SourceForge 16.00 2 N/
A

0% Fail 5 Easy N

ID57 Other 4.67 1 1 0% Pass 5 Easy N

ID58 Github 13.75 5 N/
A

0% Fail 30 Complex N

ID59 Other 2.43 2 N/
A

0% Fail 5 Easy N

ID60 SourceForge 1.60 5 N/
A

0% Fail 30 Complex N

ID61 Github 1.67 1 1 0% Pass 5 Easy Y

ID62 Github 5.75 4 3 25% Fail 120 Complex N

ID63 Github 1450.90 3 3 0% Pass 5 Easy Y

ID64 Other 30.75 7 3 57% Fail 120 Complex Y

ID65 Github 3.75 3 2 33% Fail 5 Easy N

ID66 Other 1.33 1 1 0% Pass 5 Easy N

ID67 Other 24.00 4 N/
A

0% Fail 120 Not
installed

N

ID68 Other 15.10 4 2 50% Fail 120 Complex Y

ID69 Other 4.33 4 N/
A

0% Fail 120 Not
installed

N

41

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

ID70 SourceForge 13.29 1 1 0% Fail 120 Not
installed

N

ID71 Other 16.29 1 1 0% Pass 5 Easy Y

ID72 Other 9.56 N/A N/
A

0% Fail 120 Not
installed

Y

ID73 Other 7.25 N/A 3 0% Fail 120 Not
installed

N

ID74 Other 5.11 N/A N/
A

0% Fail 120 Not
installed

N

ID75 Other 9.80 N/A 1 0% Fail 120 Not
installed

Y

ID76 Other 7.00 N/A N/
A

0% Fail 120 Not
installed

N

ID77 Github 4.50 N/A 6 0% Fail 120 Not
installed

N

ID78 SourceForge 3.00 9 9 0% Fail 120 Not
installed

Y

ID79 Other 47.13 N/A 2 0% Fail 5 Not
installed

N

ID80 Other 1.38 N/A N/
A

0% Fail 5 Not
installed

N

ID81 Other 3.33 N/A N/
A

0% Fail 120 Not
installed

Y

ID82 Github 3.33 6 6 0% Fail 120 Not
installed

Y

ID83 Other 8.90 14 14 0% Fail 120 Not
installed

Y

ID84 Other 23.60 N/A N/
A

0% Fail 30 Not
installed

Y

ID85 Other 24.20 N/A 7 0% Fail 120 Not
installed

Y

ID86 Other 28.50 N/A 29 0% Fail 120 Not N

42

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

installed

ID87 SourceForge 10.56 N/A N/
A

0% Pass 5 Easy N

ID88 SourceForge 12.25 N/A N/
A

0% Pass 5 Easy N

ID89 Other 10.43 N/A N/
A

0% Pass 120 Complex Y

ID90 Other 12.17 1 1 0% Pass 5 Easy Y

ID91 Other 2.00 2 2 0% Pass 5 Easy N

ID92 Github 2.25 12 12 0% Pass 120 Complex Y

ID93 Other 1.67 3 3 0% Pass 5 Easy N

ID94 Github 3.25 1 1 0% Pass 5 Easy Y

ID95 Github 16.89 10 3 70% Fail 120 Not
installed

Y

ID96 BitBucket 9.71 3 3 0% Pass 120 Complex N

ID97 SourceForge 76.30 1 1 0% Pass 5 Easy Y

ID98 Github 3.00 9 9 0% Pass 5 Easy Y

ID99 Github 75.71 1 1 0% Pass 5 Easy N

Table S2. Installability of 98 published software tools between 2004 and 2018.

Link

locatio

n Journal name

pubmed

id Year Link

Url

status

abstra

ct

BMC_Bioinform

atics

1215071

8 2002

http://sourceforge.net/projects/slritool

s/ 301

body

BMC_Bioinform

atics

1188225

0 2002 http://tacg.sourceforge.net 200

43

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

body

BMC_Bioinform

atics

1249308

0 2002 http://squirrel-sql.sourceforge.net/ 200

Link

locatio

n Journal name pubmed id Year Link Url status

body

BMC_Bioinformati

cs 19732427 2009

http://github.com/egonw/xw

s-taverna/tree/master 301

body Bioinformatics 19417059 2009 http://github.com/semin/ulla 301

Table S3. List of earliest published software tools and resources stored on

https://sourceforge.net and https://github.com/

Supplementary Figures

44

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://sourceforge.net/
https://github.com/
https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S1. Protocol to check the archival stability of a published software tool or resource.

Numbers are provided for illustrative purposes and correspond to the link presented in the

abstracts of the published papers considered in this study.

45

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S2. Protocol to verify the installability of a published software tool.

46

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S3. A box plot showing the time required to install tools that required a single command,

compared to tools that required multiple (Mann–Whitney U test, p-value=4.7x10-6).

47

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/

