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Abstract 

Developing new software tools for analysis of large-scale biological data is a key component of               

advancing modern biomedical research. Scientific reproduction of published findings requires          

running computational tools on data generated by such studies, yet little attention is presently              

allocated to the installability and archival stability of computational software tools. Scientific            

journals require data and code sharing, but none currently require authors to guarantee the              

continuing functionality of newly published tools. We have estimated the archival stability of             

computational biology software tools by performing an empirical analysis of the internet            

presence for 36,702 omics software resources published from 2005 to 2017. We found that              

almost 28% of all resources are currently not accessible through URLs published in the paper               

they first appeared in. Among the 98 software tools selected for our installability test, 51%               

were deemed “easy to install ,” and 28% of the tools failed to be installed at all due to problems                   

in the implementation. Moreover, for papers introducing new software, we found that the             

number of citations significantly increased when authors provided an easy installation process.            

We propose for incorporation into journal policy several practical solutions for increasing the             

widespread installability and archival stability of published bioinformatics software. 
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Introduction 

During the past decade, the rapid advancement of genomics and sequencing           

technologies has inspired a large and diverse collection of new algorithms in computational             

biology 1,2. In the last 15 years, the amount of available genomic sequencing data has doubled                

every few months 3,4. Life-science and biomedical researchers are leveraging computational           

tools to analyze this unprecedented volume of genomic data 3,4, which has been critical in               

solving complex biological problems and subsequently laying the essential groundwork for the            

development of novel clinical translations 5. The exponential growth of genomic data has             

reshaped the landscape of contemporary biology, making computational tools a key driver of             

scientific research 6,7. 

As computational and data-enabled research become increasingly popular in biology,          

novel challenges arise, accompanied by standards that attempt to remedy them. One such             

challenge is computational reproducibility—the ability to reproduce published findings by          

running the same computational tool on the data generated by the study 8–10. While several               

journals have introduced requirements for the sharing of data and code, there are currently no               

effective requirements to promote installability and long-term archival stability of software           

tools, creating situations in which researchers share source code that either doesn't run or              

disappears altogether. These issues can limit the applicability of the developed software tools             

and impair the community's ability to reproduce results generated by software tools in the              

original publication. 
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The synergy between computational and wet-lab researchers is especially productive          

when software developers distribute their tools as packages that are easy to use and install 11.                

Though many new tools are released each year, comparatively few incorporate adequate            

documentation, presentation and distribution, resulting in a frustrating situation in which           

existing tools address every problem except how to run them 12. 

Widespread support for software installability promises to have a major impact on the             

scientific community 13, and practical solutions have been proposed to guide the development             

of scientific software 14,16–17. While the scale of this issue in computational biology has yet to be                 

estimated, the bioinformatics community warns that poorly maintained or improperly          

implemented tools will ultimately hinder progress in data-driven fields like genomics and            

systems biology 3,7,18. 

Challenges to effective software development and distribution in academia 

 Successfully implementing and distributing software for scientific analysis involves 

numerous unique challenges that have been previously outlined by other scholars 11,15,16,19. In 

particular, fundamental differences between software development workflows in academia and 

in industry challenge the installability and archival stability of novel tools developed by 

academics. These differences can be broken down into three broad categories: 

● Software written by researchers tends to be written with the idea that users will 

be knowledgeable about the code and appropriate environment and 

dependencies. This sometimes results in tools that are difficult to install, with 
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instructions and command-line options that are unclear and confusing, but are 

also critical for the tool’s function.  

● Academic journals are a primary source for information and documentation of 

noncommercial scientific software, even though the static nature of publications 

means this vital information quickly falls out of date. 

● Incentives in academia heavily favor the publication of new software, not the 

maintenance of existing tools. 

 

First, software developers in industrial settings receive considerably more resources for 

developing user-friendly tools than their counterparts in academic settings 20. Commercial 

software is developed by large teams of software engineers that include specialized user 

experience (UX) developers. In academic settings, software is developed by smaller groups of 

researchers who may lack formal training in software engineering, particularly UX and 

cross-platform design. Many computational tools lack a user-friendly interface to facilitate the 

installation or execution process 12. Developing an easy-to-use installation interface is further 

complicated when the software relies on third-party tools that need to be installed in advance, 

called “dependencies.” Installing dependencies is an especially complicated process for 

researchers with limited computational knowledge. Well-defined UX standards for software 

development could help software developers in computational biology promote widespread 

implementation and use of their newly developed computational tools. 

Second, companies efficiently distribute industry-produced software using dedicated 

company units or contractors—services that universities and scientific funding agencies do not 
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typically provide for academic-developed software. The computational biology community has 

adopted by default a pragmatic, short-term framework for disseminating software 

development,21 which generally consists of publishing a paper describing the software tool in a 

peer-reviewed journal. So-called “methods papers” are dedicated to explaining the rationale 

behind the novel computational tool and demonstrating its efficacy with sample datasets. 

Supplemental materials such as detailed instructions, tutorials, dependencies, and source code 

are made available on the internet and included in the published paper as a URL, but generally 

exist in a location out of the journal’s direct control. The quality, format, and long-term 

availability of supplemental materials varies among software developers and is subject to less 

scrutiny in the peer-review process compared to the published paper itself. This approach limits 

the installability of software tools for use in research and hinders the community’s ability to 

evaluate the tools themselves 22. 

Third, the academic structures of funding, hiring, and promotion offer little reward for 

continuous, long-term development and maintenance of tools and databases 23, and software 

developers can lose funding for even the most widely used tools. Loss of external funding can 

slow and even discontinue software development, potentially impacting the research 

productivity of studies that depend on these tools 24. Interrupted development also hinders the 

ability to reproduce results from published studies that use discontinued tools. In general, 

industry-developed software is supported by teams of software engineers dedicated to 

developing and implementing updates for as long as the software is considered valuable. Many 

software developers in academia do not have access to mechanisms that could ensure a similar 

level of maintenance and stability. 
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We combined two approaches to determine the effects of these challenges on the 

proportion of bioinformatics tools that could be considered user-friendly. First, we investigated 

tens of thousands of URLs corresponding to bioinformatics tools and resources to determine 

whether they are archivally stable—whether users can even reach the websites described in 

the papers evaluated. Next, we investigated the number of tools that provided an easy-to-use 

installation interface to download and install the software and any required dependencies. 

Archival stability of published computational tools and resources 

The World Wide Web provides a platform of unprecedented scope for data and             

software archival stability, yet long-term preservation of online resources remains a largely            

unsolved problem 25. Published software tools are made accessible through the Uniform            

Resource Locator (URL), which is typically provided in the abstract or main text of the paper and                 

is often assumed to be a practically permanent locator. However, a URL may become inactive               

due to removal or reconfiguration of web content. The “death of URLs” 26 has been described                

for decades in various terms, including “link rot” 27 and “lost Internet References.” 28 At the                

onset, the World Wide Web promised the virtually infinite availability of digital resources; in              

practice, many are lost. For example, many tools in computational biology are hosted on              

academic web pages that become inactive with time, sometimes only months after their initial              

publication. These software packages are typically developed by small groups of graduate            

students or postdoctoral scholars who, considering the temporary nature of such positions,            

cannot maintain such websites and software for longer periods of time. 
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Multiple studies have identified the deterioration of long-term archival stability of           

published software tools 18,26,28–31. In order to begin assessing the magnitude of these issues in               

computational biology, we comprehensively evaluated the archival stability of computational          

biology tools used in 51,236 biomedical papers published across 10 relevant peer-reviewed            

journals over a span of 18 years, from 2000 to 2017 ( Table S1 ). Out of the 51,236 examined                  

papers, 13.6% contained at least one URL in their abstracts, and another 38.3% contained URLs               

in the body of the paper. To increase the likelihood that the identified URL corresponds to a                 

software tool or database, we inspected 10 neighboring words for specific keywords commonly             

used, including "pipeline", "code", "software", "available", "publicly", and others (See Methods           

Section). Complete details on our methodology for extracting the URLs, including all parameters             

and thresholds, are provided in the Supplementary Methods. 

We used a web mining approach to test 36,702 published URLs that our survey              

identified. We categorized unreachable URLs into two groups: unreachable due to connection            

timeout and unreachable due to error (“broken” links, i.e., 404 HTTP status). We separately              

categorized accessible URLs that returned immediately and those that used redirection—that           

is, URLs to which servers responded by pointing the user to a new URL that then connects                 

successfully. We found that 26.7% of evaluated URLs are successfully redirected to new URLs.              

(Some URLs were redirected to pages that subsequently returned an error; these were not              

considered successful.) Of all identified URLs, 11.9% were unreachable because of connection            

timeouts, and 15.9% were “broken.” To prevent erroneous classification caused by           

configuration of our automated tests, we manually verified more than 900 URLs reported as              
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“timeouts,” or requests that did not receive a response within an acceptable amount of time               

( Figure S1). 

Next, we grouped the URLs by the year in which the computational biology tool was first 

referenced in a publication. As expected, the time since publication is a key predictor of URL 

archival stability (Fisher exact test, p-value <10-15). 41.9% of the software referenced before 

2012 (n=15,439) is unavailable, whereas only 17.5% of the recent software referenced in 2012 

and later (n=21,263) is unavailable (Figure 1a). After 2013, we observe a drop in the absolute 

number of archivally unstable resources (Figure 1b). Despite the strong decline in the 

percentage of missing resources over time, there are still 200 resources published every year 

with links that were broken by the time we tested them. The data and scripts for reproducing 

the plots in Figure 1 are available at https://github.com/smangul1/good.software. 
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Figure 1. Archival stability of 36,702 published URLs across 10 systems and computational 

biology journals over the span of 13 years. An asterisk (*) denotes categories that have a 

difference that is statistically significant. Error bars, where present, indicate standard error of 

the mean (SEM). (a) Archival stability status of all links evaluated from papers published 

between 2005 and 2017. Percentages of each category (y-axis) are reported over a 13-year 

span (x-axis). (b) A line graph comparing the overall numbers (y-axis) of functional (green 

circles) and non-functional (orange squares) links observed in papers published over time 

(x-axis). (c) A bar chart showing the mean Altmetric “attention score” (y-axis) for papers, 

separated by the status of the URL (x-axis) observed in that paper. (d) A bar chart showing the 

mean number of mentions of papers in social media (blog posts, Twitter feeds, etc.) according 

to Altmetric, divided by the age of the paper in years (y-axis). Papers are separated by the 

status of the URL (x-axis) found in the paper. (e) A bar chart illustrating the mean Altmetric 

readership count per year of papers (y-axis) containing URLs in each of the categories (x-axis). 

(f) The proportion of unreachable links (due to connection timeout or due to error ) stored on 

web services designed to host source code (e.g., GitHub and SourceForge) and ‘Other’ web 

services. (g) A line plot illustrating the proportion (y-axis) of the total links observed in each 

year (x-axis) that point to GitHub or SourceForge. (h) A bar chart illustrating the proportion of 

links hosted on GitHub or SourceForce (vertical axis) that are no longer functional (horizontal 

axis), compared to links hosted elsewhere. 
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 Prior research demonstrates that the availability of published bioinformatics resources 

has a significant impact on citation counts 30. In addition to those generally accepted measures 

of scientific impact, we assessed the effect of software availability on complementary metrics 

of impact, such as measures of social media mentions, media coverage, and public attention 

( Figure 1c–e). We found that papers with accessible links exhibit increased engagement by 

readers in social media, reflected in a significantly higher number of citations in social media 

platforms per year (Figure 1d ; Kruskal–Wallis p-value = 1.75×10-161, Dunn’s test p=9.66×10 -103 

for accessible vs. broken, p=3.37×10-76 for accessible vs. timeout, adjusted for multiple tests 

using the Benjamini–Hochberg procedure) and an increased Altmetrics score 32 when compared 

to papers with “broken” and “timeout” links (Figure 1c; Kruskal–Wallis, p-value = 1.66×10-25, 

Dunn’s test p=2.47×10-17 for accessible vs. broken, p=4.16×10-14 for accessible vs. timeout). 

While the difference is small, we found the readership of papers with accessible links differed 

significantly from papers with links that are classified as broken or timeouts—surprisingly, the 

median reader count per year (according to Altmetric) was lower for papers with accessible 

links (Figure 1e; Dunn’s test p=1.17×10-6 for accessible vs. broken, p=8.42×10-15 for accessible 

vs. timeout). 

In addition, we tested the impact of using websites designed to host source code, such 

as GitHub and SourceForge, on the archival stability of bioinformatics software. These websites 

have been used by the bioinformatics community since 2001, and the proportion of software 

tools hosted on these sites has grown substantially, from 1.6% in 2012 to 13% in 2016 (Figure 

1g). We find that URLs pointing to these websites have a high rate of archival stability: 97.6% of 

the links to GitHub and 93.0% of the links to Sourceforge are accessible, while only 70.3% of 
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links hosted elsewhere are accessible (Figure 1h), a significant difference (Fisher-exact test 

GitHub vs. Others, p=2.70×10-106; SourceForge vs. Others p=1.31×10-5). 

Our results suggest that the computational biology community would benefit from such 

approaches, which effectively guarantee permanent access to published scientific URLs. 

Specifically, several key principles emerge that promise to positively impact the availability of 

published bioinformatics resources, including the number of citations and social media 

references. In addition, bioinformatics tools and resources stored on web services designed to 

host source code have a significantly higher chance of remaining accessible. 

Tool installability 

We developed a computational framework capable of systematically verifying the 

archival stability and installability of published software tools. We applied this framework to 98 

randomly selected tools across various domains of computational biology (Method Section). 

Those tools were selected independently from the 36,702 URLs used above ( ‘Archival stability 

of published computational tools and resources’). We engaged undergraduate and graduate 

students to run the installation test using a standardized protocol (Figure S2); we recorded the 

time required to install the tools and other important features, allowing up to two hours per 

software package. In total, 71 hours of installation time was required in attempts to install 98 

tools. We categorized a tool as “easy to install” if it could be installed in 15 minutes or less, 

“complex” if it required more than 15 minutes but was successfully installed before the two 

hour limit, and “not installed” if the tool could not be successfully installed within two hours 

( Table S2 and Figure 2). 
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The most stringent evaluation was the “automatic installation test,” in which the tester 

is required to strictly follow the instructions provided in the manual of the software tool 

(Methods; Figure 2a)—we determined that 57.1% of the selected tools failed this test. The vast 

majority (39 out of 42) of the tools that passed this test finished in fewer than 15 minutes and 

were classified as “easy to install” (Table S2). For the tools failing the test, we performed 

manual intervention during which the tester was allowed to install missing dependencies and 

modify code to resolve installation errors. On average, it took an additional 70 minutes to install 

tools failing the “automatic installation test” (Mann–Whitney U  test, p-value=4.7x10-9; Figure 

2c). Manual intervention was unsuccessful for 66% of the tools that initially failed the automatic 

installation test. Failed manual installation was due to numerous issues, including hard-coded 

parameters, invalid folder paths or header files, and usage of unavailable software 

dependencies. 

Next, we assessed the effect of the ease of installation on the popularity of tools in the 

computational biology community by investigating the number of citations for the paper 

describing the software tools. We find that tools which we were able to install had significantly 

more citations compared to tools which we were not able to successfully install within two 

hours (Figure 2d; Mann–Whitney U  test, p-value=0.032). These results suggest, perhaps not 

surprisingly, that tools which are easier to install are more likely to be adopted by the 

community. 

In addition, we aimed to see whether the accuracy of a tool’s installation instructions 

affects its installation time. Considering the proportion of commands that are undocumented 

(estimated as a ratio between the executed commands and commands in the manual), we find 
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that tools with easier installation have a significantly lower percentage of undocumented 

commands (Figure 2e; Mann–Whitney U test, p-value=0.04). Considering a significant increase 

of installation time and a low rate of success for tools failing automatic installation test, we 

argue that reliance on manual intervention to successfully install and run computational biology 

tools is an unsustainable practice. Software developers would benefit from ensuring a simple 

installation process and providing adequate installation instructions. 
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Figure 2. Installability of 98 randomly selected published software tools across 22 life science 

journals over a span of 15 years. Error bars, where present, indicate SEM. (a) Pie chart showing 

the percentage of tools with various levels of installability. (b) A pie chart showing the 

proportion of evaluated tools that required no deviation from the documented installation 

procedure. (c) Tools that require no manual intervention (pass automatic installation test) 

exhibit decreased installation time. (d) Tools installed exhibit increased citation per year 

compared with tools which were not installed (Kruskal–Wallis, p- value = 0.035). (e) Tools which 

are easy to install include a decreased portion of undocumented commands (Not Installed vs. 

Easy Install: Mann–Whitney U  test, p-value=0.01  , Easy Install vs. Complex Install: 

Mann–Whitney U  test, p-value=8.3x10 -8 ). (f) Tools available in well-maintained package 

managers such as Bioconda were always installable, while tools not shipped via package 

managers were prone to problems in 32% of the studied cases. 

 

The vast majority of surveyed tools fail to provide one-line solutions for installation, 

instead providing step-by-step instructions. On average, eight commands were required to 

install surveyed tools, while only 3.9 commands were provided in the manual. Among the 

surveyed software tools, 23 tools provide one-line installation solutions that worked 

successfully, of which nine were available via the Bioconda package manager 33 ( Table S2). A 

package manager is a system that automates the installation, upgrade, and configuration of a 

collection of software tools in a consistent manner. Tools with single-command installations 

require on average 6 minutes of installation time, which is significantly faster when compared 

to tools which require multi-command installation (Kruskal–Wallis, p-value=4.7x10-6 ) (Figure 
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S3)  . Tools available in well-maintained package managers (e.g., Bioconda) were always 

installable, while tools not shipped via package managers failed to install in 32% of the studied 

cases (Figure 2f ). 

 

Box 1. Principles to increase installability and archival stability of omics computational tools 

and resources. 

The results from our study point to several specific opportunities for establishing an             

effective software development and distribution practice. Here we present five principles to            

increase the installability and archival stability of omics computational tools and resources. The             

majority of surveyed software tools and resources address only a portion of these principles. 

1. Host software and resources on archivally stable services 

Selecting the appropriate service to host your software and resources is critical. A 

simple solution is to use web services designed to host source code (e.g. GitHub 34,35 or 

Sourceforge). In our study, we have determined that more than 96% of software tools 

and resources stored at GitHub or Sourceforge are accessible, and tools hosted on these 

services remain stable for longer periods of time (Table S3). Ideally, the repositories 

storing code should also be more permanently archived using a service such as Zenodo 

( https://zenodo.org), which is designed to provide long-term stability for scientific data. 
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2. Provide easy-to-use installation interface 

Use sustainable and comprehensive software distribution. One example of a sustainable 

package manager is Bioconda33, which is language-agnostic and available on Linux and 

Mac operating systems. Bioconda, technically a "channel" within the broader Conda 

project, is one the most popular package managers in bioinformatics, currently covering 

2900 software tools that are continuously maintained, updated, and extended by a 

growing global community 33. Bioconda provides a one-line solution for downloading 

and installing a tool. 

3. Take care of all the dependencies the tool needs 

Even the most widely used tools rely on dependencies. To facilitate simple installation, 

provide an easy-to-use interface to download and install all required dependencies. 

Ideally, all necessary installation instructions should be included in a single script, 

especially when the number of installation commands is large. Package managers can 

potentially make this problem easier to solve. Bioconda also automatically generates 

containers for each Bioconda “recipe” 36, which provides all files and information 

needed to install a package. Other implementations of containerized software (e.g. 

Docker - https://www.docker.com/  and Singularity - https://www.sylabs.io/docs/ ) also 

usually have all dependencies preinstalled. Often, language-specific solutions are also 

available (e.g Bioconductor37 and the Comprehensive R Archive Network (CRAN)). One 

drawback of Bioconda is that the existing tools in portable package managers are 

manually updated by the team or community, often delaying such updates. For 
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example, as of August 10, 2018, R 3.5 was unavailable under Bioconda despite being 

released almost four months prior. If possible, one should design an installation script 

combining the commands for installing dependencies and developed software tools into 

a single script. Ideally, these dependencies should be installed in a user-configurable 

directory, as with Python “virtual environments,” which can help avoid conflicts with 

existing software on the system. 

4. Provide an example dataset 

Provide an example dataset inside the software package, with a description of the 

expected results. Similar to unit- and integration-testing practices in software 

engineering, example datasets allow the user to verify that the tool was successfully 

installed and works properly before running the tool on experimental data. A tool may 

be installed with no errors, yet it may still fail to successfully run on the input data. Only 

68% of examined tools provide an example dataset (Table S2). 

5. Provide a ‘Quick Start’ guide 

Allow the user to verify the installation and performance of the tool. Providing a ‘Quick 

Start’ guide is the best way for the user to validate that the tools are installed and 

working properly. The guide should provide the commands needed to download, install, 

and run the software tool on the example dataset. An example of a ‘Quick Start’ guide is 

provided in Supplemental Note 2. In addition to the ‘Quick Start’, a detailed manual 

must be provided with information on options, advanced features and configuration. 
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Best practices for creating bioinformatics software documentation are discussed 

elsewhere 38. 

6. Choose an adequate name 

Choose a software name that best reflects the developed tool or resource. Today’s “age 

of Google” places new demands on the function of tool names, which should be 

memorable and unique, yet easily searchable. In addition, there are no regulations on 

tool names. For example, there are at least six tools named “Prism,” making it 

challenging to find the right tool (Supplementary Note 3). Scout the web to check the 

uniqueness of a name before publishing a new tool. 

7. Assume no root privileges 

Tools are often installed on high-performance computing clusters where users do not 

have administrative (root/superuser) privileges to install software into system 

directories. When developing instructions for installation of the proposed software tool, 

avoid commands that require root access. Examples of such commands include those 

that use package managers that require root/superuser privileges, such as “apt-get 

install” or “yum install.” 

8. Make platform-agnostic decisions when possible 

Create tools that will work on as many systems as possible—specification of various 

versions of UNIX-like systems may limit the installability of software. Design your 

software to minimize reliance on OS-specific functionality to make it easier for users to 
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use your tools in diverse environments. Platform-specific installation commands (e.g., 

Homebrew 39) should also be avoided. 

 

--end Box 1 

Discussion 

Our study assesses a critical issue in computational biology that is characterized by lack              

of standards regarding installability and long-term archival stability of omics computational           

tools and resources. Despite recent requirements on the behalf of journals to impose data and               

code sharing on published authors’ work, 27.8% of 36,702 omics software resources examined             

in this study are not currently accessible via the original published URLs. Among the 98 software                

packages selected for our installability test, 49.0% of omics tools failed our “easy-to-install”             

test. In addition, 27.6% of surveyed tools could not be installed due to severe problems in the                 

implementation process. One-quarter of examined tools are easy to install and use; in these              

cases, we identify a set of good practices for software development and dissemination. 

Reviewers assessing the papers that present new software tools could begin addressing            

this problem with the adoption of a rigorous, standardized approach during the peer review              

process. Feasible solutions for improving the installability and archival stability of           

peer-reviewed software tools include requirements for providing installation scripts, test data,           

and functions that allow automatic checks for the plausibility of installing and running the tool.               

For example, “forking” is a simple procedure that ensures the version of cited code within an                

article may persist beyond initial publication 40. Academic journals recently took a major step              
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toward improving archival stability by permanently forking published software on GitHub (e.g.,            

41). 

The current workflow of computational biology software development in academia          

encourages researchers to develop and publish new tools, but this process does not incentivize              

long-term maintenance of existing tools. Results from this study provide a strong argument for              

the development of standardized approaches capable of verifying and archiving software.           

Further, our results suggest that funding agencies should emphasize support for maintenance            

of existing tools and databases. 

Manual interventions and long installation times are unappealing to many users, 

especially to those with limited computational skills. Many life science and medical researchers 

lack formal computational training and may be unable to perform manual interventions (e.g., 

installing dependencies or editing computer code during installation). Users could leverage 

advanced knowledge of the time and computational skills required to properly install a 

software package. We propose a prototype of a badge server that runs an automated 

installation test, thus introducing to the peer review process explicit assessment of a tool’s 

installability. This badge server would be particularly useful in computational biology, an 

interdisciplinary field comprised of reviewers who often lack the skills and time to verify the 

installability of software tools. Many benchmarking studies already routinely report relative 

ease of installation and use of new tools as components of their performance metrics42 . 
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Glossary 

installability. The tool is considered usable if (a) the tool and its corresponding 

dependencies can be installed on Linux/UNIX-based operating systems, and if (b) the tool can 

produce expected results from the input data with no errors. 

Automated installation test. This test of software installation ease is performed by the 

biomedical researcher, using only installation commands provided in the manual in the 

recommended order. No extra commands are allowed. A tool passes the automated installation 

test if the user can successfully install the package following only the commands from the 

manual. 
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Package manager is a collection of software tools that automate the installation of a 

tool’s core package and updates in a consistent manner. Package managers also help solve the 

‘dependencies problem’ by automatically installing required third-party software packages. 

Bioconda is one of the most popular package managers for omics computational tools. A 

growing global community of Bioconda users continuously maintain, update, and extend more 

than 2900 software tools. 

Methods 

Protocol to check the archival stability of published software tools 

We downloaded open access papers via PubMed from 10 systems and computational            

biology journals from the NCBI FTP server (ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/). We included          

the following journals: Nature Biotechnology, Genome Medicine, Nature Methods, Genome          

Biology, BMC Systems Biology, Bioinformatics, PLoS Computational Biology, BMC         

Bioinformatics, BMC Genomics, and Nucleic Acids Research. 

Papers were downloaded in XML format, which contains name-tags for field extraction.            

(Raw data from PubMed is available at https://doi.org/10.6084/m9.figshare.7641083)        

Specifically, we focused on three tags: <abstract>, <body>, and <text-link>. Each paper’s            

abstract is enclosed inside the <abstract> tag ( Figure S1). The <body> tag contains the key               

contents like introduction, methods, results, and discussion. <ext-link> tags contain internet           

addresses for external sources (e.g., supplementary data and directions for downloading data            

sources and software packages). We have prepared a folder containing a small set of papers in                

XML format for testing purposes, available at       
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https://github.com/smangul1/good.software/blob/master/download.parse.data/Nat_Methods

.tar.gz?raw=true. 

 We deployed a heuristic approach to limit links to software produced by each paper’s              

authors. We assumed that these links are in <ext-link> tags whose neighbor words contain one               

of the following keywords: "here", "pipeline", "code", "software", "available", "publicly", "tool",           

"method", "algorithm", "download", "application", "apply", "package", and "library". We         

searched for these words in a neighborhood that extended 75 characters from both the start               

and end of each <ext-link> tag. 

 For each extracted link, we initially used the HTTPError class of the Python library urllib2               

to get the HTTP status. Status number 400 and above indicate broken links; for example, the                

well-known 404 code indicates "Page Not Found." Some URLs point at servers that did not               

respond at all. Since the threshold for the allotted time to wait for a response may bias the                  

results, we manually verified 931 URLs reported with the timeout error code (Figure S1). 

Multiple attempts were made to validate each extracted URL: First, an HTTP request             

was sent to each URL; if that was not successful, an FTP request was sent, to avoid marking                  

URLs as "broken" if they used this older method of transferring files instead. HTTP requests that                

received "redirect" responses (status codes 300–399) were followed to the endpoint specified            

by the redirection (or redirections), to determine the final destination of the request. If the               

request ultimately completed successfully, the initial redirect code was recorded, and that link             

appears in our data as a redirection. However, some requests eventually resulted in errors—for              

example, if a server rewrites a received URL according to a formula, but the rewritten URL                

points to a file that doesn't exist. Redirections that eventually resulted in an error were               
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recorded with that error code instead. There is only one exception to this classification: If a                

server responded with a redirection status, but the redirection pointed at a URL that only               

changes the URL’s protocol from “http” to “https,” we classified this as a “success” rather than                

a “redirection.” Our protocol to check the archival stability of published software tools is              

available at https://github.com/smangul1/good.software. Parsed HTTP information for each        

links is available at https://doi.org/10.6084/m9.figshare.7738901.  

 

Protocol to check the installability of published software tools 

To standardize the operating system environment for each tool installation, we used a             

CentOS 7 (v1710.01) Vagrant virtual machine. CentOS is an open-source operating system that             

is widely used in research computing. To prevent dependency mismatches caused by previously             

installed packages, we installed each tool in a new Vagrant virtual machine. Our virtual machine               

was provisioned with several commonly used software tools using the YUM package manager,             

to accommodate low-level dependencies that many developers would assume were already           

installed: epel-release, java (version 1.8.0), wget, vim, unzip, gcc and gcc-devel, python, and R.              

Users seeking to replicate this environment can use the Vagrant provisioning script found here:              

https://github.com/smangul1/good.software/blob/master/toolInstall/Vagrantfile 

We present a summary of our protocol in Figure S3. Tools were classified into three               

categories: (1) easy to install, where installation took less than 15 minutes; (2) hard to install,                

where installation took between 15 minutes and two hours; and (3) not installed, meaning              

installation took longer than two hours or could not be completed. We tested a total of 98 tools                  
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across various categories and fields as described below. Information on the tools tested and the               

results of the test are available in Table S2 and are shared at             

https://doi.org/10.6084/m9.figshare.7738949.  

 

Tools for microbiome profiling 

The installability of 10 common tools for microbiome analysis was tested. To develop a              

list of popular tools, two co-authors independently made lists of 30 tools currently used for               

microbiome data processing, based on a literature survey, and identified those present on both              

lists. Microbiome tools can vary in their specificity of use; we limited the final tool list to five                  

tools that process raw sequences into a final OTU table, and five tools capable of broad                

downstream analysis functions. 

Tools for read alignment 

We tested the installability of 10 tools for read alignment. We randomly selected a total 

of 20 tools—10 tools from a recent survey 43 and 10 tools from PubMed 

( https://www.ncbi.nlm.nih.gov/pubmed/). The full list of extracted URLs is available at 

https://github.com/smangul1/good.software . To confirm that the installation process indeed 

worked, we used reads generated from the complete genome of Enterobacteria phage lambda 

(NC_001416.1). 
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Tools for variant calling tools 

We tested the installability of seven randomly sampled tools designed for variant calling             

44. We confirmed successful software installation when the core functionality of each package             

could be executed with an example dataset. Only one of the tools was not packaged with an                 

example dataset, in which case we randomly chose an open example dataset. We discarded              

from our study the tools for which papers could not be located. 

Tools for structural variants tools 

We examined the installability of 52 common tools used for the structural variant (SV) 

calling from whole genome sequencing (WGS) data. First, we compiled a list of tools that use 

read alignment, where reads aligned to the locations are inconsistent with the expected insert 

size of the library or expected read depth at a specific locus. We randomly selected 50 tools out 

of 70 programs designed to detect SVs from WGS data and published after 2011. We confirmed 

the successful installation of each software package by executing its core functionality with an 

example dataset. 

 

 

Additional omics tools 

 

Lastly, we randomly selected 20 published tools based on the URL present in the 

abstract or the body of the publications available in PubMed 

( https://www.ncbi.nlm.nih.gov/pubmed/ ). The full list of extracted URLs is available at 

https://github.com/smangul1/good.software. 
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Statistical analysis 

Once the archival information was recorded, variance analysis was performed to assess            

the differences among the links categorized as ‘accessible’, ‘redirected’, ‘broken’ and ‘time out’             

as they related to four paper-level metrics: the number of citations in the original paper where                

the tool was published; number of citations per year in social media platforms such as blogs                

and Twitter feeds; total readership per year, as measured by Altmetrics; and the Altmetric              

“attention score.” Because the distributions of all five measures presented heavy tails and             

deviated from a bell-shaped distribution, we performed a Kruskal–Wallis test on ranks, followed             

by pairwise Dunn’s tests to confirm which groups presented significant differences with a             

significance level of 0.01. We provide all p-values and test statistics from these experiments in               

our electronic supplemental material on GitHub 

( https://github.com/smangul1/good.software). 

 

 

Supplementary Notes 

 

Supplemental Note 1. An example of the ‘Quick Start’ 

 

1. Download the tool using: git clone https://github.com/x/software.tool.git 

2. Install tool using: cd software.tool; ./install.sh 
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3. Run the tool for the example dataset (distributed with the tool): ./software.tool 

example.dataset 

 

 

Supplementary Note 2. Automatic verification of software installability 

Software quality, including installability, is typically not thoroughly tested in the formal 

peer review process, and relying on reviewer feedback can be problematic, as the reviewers 

may lack the computational skills and time to verify the tools. It is possible to automate the 

assessment process when software guarantees access to (i) the software binaries or source 

code; (ii) a script that installs the software in a given Linux environment; (iii) a small example 

dataset and its expected output; and (iv) a script to perform the analysis on the dataset from 

(iii) . 

To provide an automated and openly verifiable certification that a tool is usable, we 

suggest a model of a server that uses public badges to endorse the installability of a software 

tool. The server will issue a certificate to the software author, which indicates that the 

proposed software passed an ‘Automatic Installation Test.’ The installation process, in this case, 

includes a testing phase that ensures the installation can be successful. Authors of 

computational tools who submit their software tool to our badge server, alongside an 

installation script and an example dataset, will receive a badge of confirmation which certifies 

that the software tool was successfully installed in a third-party environment. Using a Secure 
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Hash Algorithm 45, each generated badge would be unique to each version of the software, 

installation script, test dataset, and operating system used by the server. 

To validate a badge, the server will use a private cryptographic key to publicly sign the 

badge. Public badge testing provides a strong endorsement of the tool installability up to the 

current highest standards in the industry, as only the same software version, installation script, 

and test dataset will confirm the authenticity of the badge and its public signature. A public 

badge platform will provide a mechanism for researchers and editors of journals in 

computational biology to verify the installability of a tool in under five minutes through 

confirmation of the server’s signature. Badges inform the user a priori  if and under what 

conditions the software is installable, potentially reducing for each user a significant amount of 

time that otherwise would be required to test software and attempt installing software that is 

ultimately uninstallable. 

In addition to guaranteeing that a software tool can be successfully installed in a 

standardized environment, the badge also reflects which specific Linux system was used during 

the test installation. (Linux-based systems are the most commonly used operating systems in 

the field of computational biology.) Furthermore, the badge server does not assume an open 

source software and can be generated based on the source code or binary files. 

The server creates an instance of a Linux virtual machine and runs the installation script 

and test protocol submitted. If the installation completes without errors, and the test dataset 

provides the expected result, a badge is created that certifies the installability of the tool under 

the tested conditions. The badge consists of a unique summary generated by the Secure Hash 

Algorithm 3 (SHA-3) 45, of the items submitted by authors. The server then uses a private 
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cryptographic key to publicly sign this summary. There is a small probability that the hashed 

summary of two different objects created by SHA-3 could be identical (also known as collision); 

however, this method is the current technological standard of unique badge creation and is 

broadly accepted by all industries. Using the server’s public key and the hashed version of the 

software, any user can authenticate the signature and prove that the server was indeed able to 

install the tool without manual intervention. 

Supplementary Note 3 

List of bioinformatics tools with name Prism. 

● https://www.ncbi.nlm.nih.gov/pubmed/22851530 (Structural Variance) 

● https://academic.oup.com/nar/article/43/20/9645/1394603 (Metabolomics) 

● https://www.ncbi.nlm.nih.gov/pubmed/21068001 (Viral Genomics) 

● http://honig.c2b2.columbia.edu/prism/ (Protein Structure Analysis) 

https://www.ncbi.nlm.nih.gov/pubmed/15991339 (Protein Structure) 

● https://www.bits.vib.be/software-overview/graphpad-prism (Statistics and 

visualization) 

 

Supplementary Tables 
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Journal name Number of 

URLs 

Number of 

accessible  URLs 

Nature Biotechnology 180 149 

Genome Medicine 352 312 

Nature Methods 403 326 

Genome Biology 904 746 

BMC Systems Biology 912 638 

Bioinformatics 3131 2448 

PLoS Computational Biology 3226 2529 

BMC Bioinformatics 6840 4651 

BMC Genomics 7651 5699 

Nucleic Acids Research 13103 9011 

 

 

Table S1. The names of the 10 journals that were used to retrieve the URLs. We reported the 

total number of papers with URLs in abstract or body of the paper (‘Number of URLs ’), and the 

number of accessible  URLs, which were not broken or timeout (‘Number of accessible URLs’). 

 

 

 

ID Source  Citations 
per year 

Instal
latio
n 
com
man
ds 
exec
uted 

Co
m
ma
nds 
doc
um
ent
ed 

Undo
cume
nted 
com
man
ds 

Automati
c 
installatio
n test 

Instal
latio
n 
time 

Installati
on 
difficulty 

Sampl
e data 
provi
ded 

ID1 Bioconda 1122.60 1 1 0% Pass 5 Easy Y 

ID2 Bioconda 13.83 1 1 0% Pass 5 Easy Y 

38 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2019. ; https://doi.org/10.1101/452532doi: bioRxiv preprint 

https://doi.org/10.1101/452532
http://creativecommons.org/licenses/by-nc-nd/4.0/


ID3 Bioconda 5.14 1 1 0% Pass 5 Easy Y 

ID4 Bioconda 163.20 1 1 0% Pass 5 Easy Y 

ID5 Bioconda 247.40 1 1 0% Pass 15 Easy Y 

ID6 Bioconda 57.20 1 1 0% Pass 5 Easy Y 

ID7 Bioconda 60.30 1 1 0% Pass 5 Easy Y 

ID8 Other 33.45 3 3 0% Pass 5 Easy Y 

ID9 Other 6.83 22 4 82% Fail 30 Complex Y 

ID10 Bioconda 124.00 1 1 0% Pass 30 Complex Y 

ID11 Other 1059.00 10 7 30% Fail 60 Complex Y 

ID12 Bioconductor 159.00 20 2 90% Fail 60 Complex Y 

ID13 pip 73.17 12 10 17% Fail 60 Complex Y 

ID14 BitBucket 36.25 30 10 67% Fail 120 Complex Y 

ID15 Bioconductor 57.83 2 2 0% Pass 5 Easy Y 

ID16 Github 798.40 3 2 33% Fail 5 Easy Y 

ID17 Bioconductor 36.00 23 2 91% Fail 120 Complex Y 

ID18 Other 683.11 2 2 0% Pass 5 Easy Y 

ID19 Github 216.33 12 3 75% Fail 30 Complex Y 

ID20 Github 16.25 8 6 25% Fail 60 Complex Y 

ID21 Other 14.70 13 13 0% Pass 15 Easy Y 

ID22 SourceForge 22.71 190 7 96% Fail 120 Not 
installed 

Y 

ID24 Other 169.22 2 2 0% Pass 5 Easy Y 

ID25 Other 15.63 52 N/
A 

0% Fail 120 Complex N 

ID26 BitBucket 0.71 7 4 43% Fail 30 Complex Y 

ID27 Other 39.10 12 12 0% Pass 15 Easy Y 
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ID28 Other 12.75 4 4 0% Pass 15 Easy Y 

ID29 Other 1.71 4 4 0% Fail 30 Not 
installed 

Y 

ID30 Other 1.00 2 2 0% Pass 15 Easy Y 

ID31 Other 0.29 7 2 71% Fail 5 Not 
installed 

Y 

ID32 Other 2.60 11 4 64% Fail 15 Not 
installed 

Y 

ID33 Other 13.33 5 5 0% Pass 15 Easy Y 

ID34 Other 3.20 5 3 40% Fail 30 Complex Y 

ID35 Other 8.00 4 3 25% Fail 15 Easy Y 

ID36 Other 2.50 7 7 0% Fail 15 Not 
installed 

Y 

ID37 Other 3.00 6 6 0% Pass 15 Easy Y 

ID38 Other 3.25 5 4 20% Fail 15 Easy Y 

ID39 Other 3.00 10 10 0% Fail 30 Not 
installed 

Y 

ID40 Other 2.67 3 3 0% Pass 15 Easy Y 

ID41 Other 1.33 2 2 0% Pass 5 Easy Y 

ID42 Other 124.10 1 1 0% Pass 5 Easy N 

ID43 Other 15.30 1 1 0% Pass 5 Easy Y 

ID44 Other 7.17 2 1 50% Fail 15 Easy N 

ID45 SourceForge 1.83 1 N/
A 

0% Fail 15 Not 
installed 

Y 

ID46 Github 1.50 1 1 0% Pass 15 Easy N 

ID47 Github 1.33 3 3 0% Pass 5 Easy Y 

ID48 Github 2.75 7 7 0% Pass 15 Easy Y 

ID49 Github 3.00 7 7 0% Pass 15 Easy N 
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ID50 Bioconductor 1.00 1 1 0% Pass 5 Easy Y 

ID51 Github 0.67 5 3 40% Fail 30 Not 
installed 

Y 

ID52 Other 39.00 N/A N/
A 

0% Pass 5 Easy Y 

ID53 Bioconductor 26.57 2 1 50% Fail 5 Easy N 

ID54 Other 43.00 5 1 80% Fail 120 Complex Y 

ID55 SourceForge 8.00 1 1 0% Pass 5 Easy N 

ID56 SourceForge 16.00 2 N/
A 

0% Fail 5 Easy N 

ID57 Other 4.67 1 1 0% Pass 5 Easy N 

ID58 Github 13.75 5 N/
A 

0% Fail 30 Complex N 

ID59 Other 2.43 2 N/
A 

0% Fail 5 Easy N 

ID60 SourceForge 1.60 5 N/
A 

0% Fail 30 Complex N 

ID61 Github 1.67 1 1 0% Pass 5 Easy Y 

ID62 Github 5.75 4 3 25% Fail 120 Complex N 

ID63 Github 1450.90 3 3 0% Pass 5 Easy Y 

ID64 Other 30.75 7 3 57% Fail 120 Complex Y 

ID65 Github 3.75 3 2 33% Fail 5 Easy N 

ID66 Other 1.33 1 1 0% Pass 5 Easy N 

ID67 Other 24.00 4 N/
A 

0% Fail 120 Not 
installed 

N 

ID68 Other 15.10 4 2 50% Fail 120 Complex Y 

ID69 Other 4.33 4 N/
A 

0% Fail 120 Not 
installed 

N 
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ID70 SourceForge 13.29 1 1 0% Fail 120 Not 
installed 

N 

ID71 Other 16.29 1 1 0% Pass 5 Easy Y 

ID72 Other 9.56 N/A N/
A 

0% Fail 120 Not 
installed 

Y 

ID73 Other 7.25 N/A 3 0% Fail 120 Not 
installed 

N 

ID74 Other 5.11 N/A N/
A 

0% Fail 120 Not 
installed 

N 

ID75 Other 9.80 N/A 1 0% Fail 120 Not 
installed 

Y 

ID76 Other 7.00 N/A N/
A 

0% Fail 120 Not 
installed 

N 

ID77 Github 4.50 N/A 6 0% Fail 120 Not 
installed 

N 

ID78 SourceForge 3.00 9 9 0% Fail 120 Not 
installed 

Y 

ID79 Other 47.13 N/A 2 0% Fail 5 Not 
installed 

N 

ID80 Other 1.38 N/A N/
A 

0% Fail 5 Not 
installed 

N 

ID81 Other 3.33 N/A N/
A 

0% Fail 120 Not 
installed 

Y 

ID82 Github 3.33 6 6 0% Fail 120 Not 
installed 

Y 

ID83 Other 8.90 14 14 0% Fail 120 Not 
installed 

Y 

ID84 Other 23.60 N/A N/
A 

0% Fail 30 Not 
installed 

Y 

ID85 Other 24.20 N/A 7 0% Fail 120 Not 
installed 

Y 

ID86 Other 28.50 N/A 29 0% Fail 120 Not N 
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installed 

ID87 SourceForge 10.56 N/A N/
A 

0% Pass 5 Easy N 

ID88 SourceForge 12.25 N/A N/
A 

0% Pass 5 Easy N 

ID89 Other 10.43 N/A N/
A 

0% Pass 120 Complex Y 

ID90 Other 12.17 1 1 0% Pass 5 Easy Y 

ID91 Other 2.00 2 2 0% Pass 5 Easy N 

ID92 Github 2.25 12 12 0% Pass 120 Complex Y 

ID93 Other 1.67 3 3 0% Pass 5 Easy N 

ID94 Github 3.25 1 1 0% Pass 5 Easy Y 

ID95 Github 16.89 10 3 70% Fail 120 Not 
installed 

Y 

ID96 BitBucket 9.71 3 3 0% Pass 120 Complex N 

ID97 SourceForge 76.30 1 1 0% Pass 5 Easy Y 

ID98 Github 3.00 9 9 0% Pass 5 Easy Y 

ID99 Github 75.71 1 1 0% Pass 5 Easy N 

 

 

Table S2. Installability of 98 published software tools between 2004 and 2018. 

 

 

Link 

locatio

n Journal name 

pubmed 

id Year Link 

Url 

status 

abstra

ct 

BMC_Bioinform

atics 

1215071

8 2002 

http://sourceforge.net/projects/slritool

s/ 301 

body 

BMC_Bioinform

atics 

1188225

0 2002 http://tacg.sourceforge.net 200 
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body 

BMC_Bioinform

atics 

1249308

0 2002 http://squirrel-sql.sourceforge.net/ 200 

 

 

 

 

Link 

locatio

n Journal name pubmed id Year Link Url status 

body 

BMC_Bioinformati

cs 19732427 2009 

http://github.com/egonw/xw

s-taverna/tree/master 301 

body Bioinformatics 19417059 2009 http://github.com/semin/ulla 301 

 

 

Table S3. List of earliest published software tools and resources stored on 

https://sourceforge.net and https://github.com/ 

 

 

Supplementary Figures 
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Figure S1. Protocol to check the archival stability of a published software tool or resource. 

Numbers are provided for illustrative purposes and correspond to the link presented in the 

abstracts of the published papers considered in this study. 
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Figure S2. Protocol to verify the installability of a published software tool. 
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Figure S3. A box plot showing the time required to install tools that required a single command, 

compared to tools that required multiple (Mann–Whitney U test, p-value=4.7x10-6 ). 
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