
Running head: SULCAL MORPHOLOGY 1

Extending FreeSurfer to estimate sulcal morphology1

Christopher R. Madan2

School of Psychology3

University of Nottingham4

Nottingham, United Kingdom5

6

Corresponding author:7

Christopher R. Madan8

School of Psychology, University of Nottingham9

Nottingham, NG7 2RD, United Kingdom10

christopher.madan@nottingham.ac.uk11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/452789doi: bioRxiv preprint 

https://doi.org/10.1101/452789
http://creativecommons.org/licenses/by/4.0/


SULCAL MORPHOLOGY 2

Abstract12

While it is well established that cortical morphology differs in relation to a variety of13

inter-individual factors, it is often characterized using estimates of volume, thickness,14

surface area, or gyrification. Here I developed a computational approach for estimating15

sulcal width and depth that relies on cortical surface reconstructions output by16

FreeSurfer. While other approaches for estimating sulcal morphology exist, studies17

often are require the use of multiple brain morphology programs that have been18

shown to differ in their approaches to localize sulcal landmarks, yielding19

morphological estimates based on inconsistent boundaries. To demonstrate the20

approach, sulcal morphology was estimated in three large sample of adults across the21

lifespan, in relation to aging. A fourth sample is additionally used to estimate22

test-retest reliability of the approach. This toolbox is now made freely available as23

supplemental to this paper: https://cmadan.github.io/calcSulc/.24

25

Keywords: sulcal width; sulcal depth; age; cortical structure; atrophy; gyrification;26
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SULCAL MORPHOLOGY 3

Extending FreeSurfer to estimate sulcal morphology28

1 Introduction29

Cortical structure differs between individuals. It is well known that cortical thickness30

generally decreases with age (Fjell et al., 2009; Hogstrom et al., 2013; Hutton et al., 2009;31

Lemaitre et al., 2012; Madan & Kensinger, 2016, 2018; McKay et al., 2014; Salat et al.,32

2004; Sowell et al., 2003, 2007); however, a more visually prominent difference is the33

widening of sulci, sometimes described as “sulcal prominence” (Coffey et al., 1992;34

Drayer, 1988; Jacoby et al., 1980; Laffey et al., 1984; Tomlinson et al., 1968; Yue et al.,35

1997). In the literature, this measure has been referred to using a variety of names,36

including sulcal width, span, dilation, and enlargement, as well as fold opening. With37

respect to aging and brain morphology, sulcal width has been assessed qualitatively by38

clinicians as an index of cortical atrophy (Coffey et al., 1992; Drayer, 1988; Laffey et al.,39

1984; Pasquier et al., 1996; Scheltens et al., 1997; Tomlinson et al., 1968). An illustration40

of age-related differences in sulcal morphology is shown in Figure 1.41

Using quantitative approaches, sulcal width has been shown to increase with age42

(Kochunov et al., 2005, 2008; Liu et al., 2010, 2013) likely relating to subsequent43

findings of age-related decreases in cortical gyrification (Cao et al., 2017; Hogstrom et44

al., 2013; Madan & Kensinger, 2016, 2018; Madan, 2018a). Sulcal widening has also45

been shown to be associated with decreases in cognitive abilities (Liu et al., 2011) and46

physical activity (Lamont et al., 2014). With respect to clinical conditions, increased47

sulcal width has been found in dementia patients relative to healthy controls48

(Andersen et al., 2015; Hamelin et al., 2015; Huckman et al., 1975; Liu et al., 2012; Ming49

et al., 2015; Plocharski & Østergaard, 2016; Reiner et al., 2012), as well as with50

schizophrenia patients (Largen et al., 1984; Palaniyappan et al., 2015; Rieder et al., 1979)51

and mood disorders (Elkis et al., 1995).52

One of the most common programs for conducting cortical surface analyses is53

FreeSurfer (Fischl, 2012). Unfortunately, though FreeSurfer reconstructs cortical54

surfaces, it does not estimate sulcal width or depth, leading researchers to use55
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SULCAL MORPHOLOGY 4

Figure 1. Representative coronal slices and cortical surfaces with sulcal identification

for 20- and 80-year-old individuals.

FreeSurfer along with another surface analysis program, BrainVISA (Kochunov et al.,56

2012; Mangin, Rivière, et al., 2004; Mangin, Riviere, et al., 2004; Rivière et al., 2002), to57

characterize cortical thickness along with sulcal morphology (e.g, Cai et al., 2017;58

Lamont et al., 2014; Liu et al., 2011, 2013; Pizzagalli et al., 2017). While this combination59

allows for the estimation of sulcal morphology in addition to standard measures such60

as cortical thickness, FreeSurfer and BrainVISA rely on different anatomical landmarks61

(Mikhael et al., 2018) which can yield differences in their resulting cortical surface62

reconstructions (Lee et al., 2006). Admittedly, determining the boundaries for63

individual sulci and incorporating individual cortical variability is difficult (John et al.,64

2006; Mikhael et al., 2018; Ono et al., 1990; Welker, 1990). While an ennumerate amount65

of other methods have already been proposed to identify and characterize sulcal66

morphology (e.g., Andreasen et al., 1994; Auzias et al., 2015; Beeston & Taylor, 2000;67

Behnke et al., 2003; Eskildsen et al., 2005; Im et al., 2010; Jones et al., 2000; Le Goualher68
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SULCAL MORPHOLOGY 5

et al., 1996, 1998; Li et al., 2008; Lohmann & von Cramon, 2000; Lohmann et al., 2008;69

Nowinski et al., 1996; Oguz et al., 2008; Perrot et al., 2011; Royackkers et al., 1999;70

Thompson et al., 1996; Vaillant & Davatzikos, 1997; Yun et al., 2013), ultimately these71

all are again using different landmarks than FreeSurfer uses for cortical parcellations72

(i.e., volume, thickness, surface area, gyrification). Note that, though FreeSurfer itself73

does compute sulcal maps, these are computed as normalized depths, not in real-world74

units (e.g. Kippenhan et al., 2005), furthermore, these are also independent of sulcal75

width information.76

Here I describe a procedure for estimating sulcal morphology and report77

age-related differences in sulcal width and depth using three large samples of adults78

across the lifespan: two of these datasets are from Western samples, Dallas Lifespan79

Brain Study (DLBS) and Open Access Series of Imaging Studies (OASIS), as well as80

well as one East Asian sample, Southwest University Adult Lifespan (SALD), as81

potential differences between populations have been relatively understudied (Leong et82

al., 2017; Madan, 2017). To further validate the method, test-retest reliability was also83

assessed using a sample of young adults who were scanned ten times within the span84

of a month (Chen et al., 2015; Madan & Kensinger, 2017b). All four of these datasets are85

open-access and have sufficient sample sizes to be suitable for brain morphology86

research (Madan, 2017). This procedure has been implemented as a MATLAB toolbox87

that serves as an extension to FreeSurfer, calcSulc, that calculates sulcal88

morphology–both width and depth–using files generated as part of the standard89

FreeSurfer cortical reconstruction and parcellation pipeline. This toolbox is now made90

freely available as supplemental to this paper:91

https://cmadan.github.io/calcSulc/.92

2 Estimating sulcal morphology93

In this section I will outline the procedure and functionality of the calcSulc toolbox94

that was designed to automate characterization of individual sulci, based on95

intermediate files generated as part of the standard FreeSurfer analysis pipeline.96
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SULCAL MORPHOLOGY 6

For each individual sulci (for each hemisphere and participant), the following97

approach was used to characterize the sulcal morphology. First the pial surface and98

Destrieux et al. (2010) parcellation labels were read into MATLAB by using the99

FreeSurfer-MATLAB toolbox provided alongside FreeSurfer (calcSulc_load).100

Using this, the faces associated with the individual sulci were isolated as a 3D mesh101

(calcSulc_isolate).102

The width of each sulci (calcSulc_width) was calculated by determining103

which vertices lay on the boundary of the sulci and another region. An iterative104

procedure was then used to determine the ‘chain’ of edges that would form a105

contiguous edge-loop that encircle the sulci region (calcSulc_getEdgeLoop). This106

provided an exhaustive list of all vertices that were mid-way between the peak of the107

respective adjacent gyri and depth of the sulci itself. For each vertex in this edge-loop,108

the nearest point in 3D space that was not neighbouring in the loop was determined,109

with the goal of finding the nearest vertex in the edge that was on the opposite side of110

the sulci–i.e., a line between these two vertices would ‘bridge’ across the sulcus. Since111

these nearest vertices in the edge loop are not necessarily the nearest vertex along the112

opposite sulcus wall, an exhaustive search (walk) was performed, moving up to a 4113

edges from the initially determined nearest vertex (defined by114

options.setWidthWalk). The sulci width was then taken as the median of these115

distances that bridged across the sulci.116

The depth of each sulci (calcSulc_depth) additionally used the FreeSurfer117

sulcal maps (?h.sulc) to determine the relative inflections in the surface mesh, which118

would be in alignment with the gyral crown. The deepest points of the sulcus, i.e., the119

sulcal fundus, were taken as the 100 vertices within the sulcus with the lowest values120

in the sulcal map. For these 100 vertices, the shortest distance to the smoothed121

gyrification surface was calculated, and the median of these was then taken as the122

sulcal depth.123

Sulcal morphology, with and depth, was estimated for eight major sulci in each124

hemisphere: central, post-central, superior frontal, inferior frontal, parieto-occipital,125
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SULCAL MORPHOLOGY 7

Figure 2. Illustration of the sulcal morphology method. (A) Cortical surface estimation

and sulcal identification, as output from FreeSurfer. (B) Sulcal width and depth

estimation procedure. Note that the surface mesh and estimation algorithm use many

more vertices than shown here.
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SULCAL MORPHOLOGY 8

occipito-temporal, middle occipital and lunate, and marginal part of the cingulate (see126

Figure 3). Sulcal boundaries were defined based on the Destrieux et al. (2010)127

parcellation atlas (S_central, S_postcentral, S_front_sup, S_front_inf,128

S_parieto_occipital, S_oc-temp_med&Lingual, S_oc_middle&Lunatus,129

S_cingul-Marginalis).130

3 Demonstration131

3.1 Methods132

3.1.1 Datasets133

3.1.1.1 OASIS. This dataset consisted of 314 healthy adults (196 females), aged134

18–94, from the Open Access Series of Imaging Studies (OASIS) cross-sectional dataset135

(http://www.oasis-brains.org) (Marcus et al., 2007). Participants were136

recruited from a database of individuals who had (a) previously participated in MRI137

studies at Washington University, (b) were part of the Washington University138

Community, or (c) were from the longitudinal pool of the Washington University139

Alzheimer Disease Research Center. Participants were screened for neurological and140

psychiatric issues; the Mini-Mental State Examination (MMSE) and Clinical Dementia141

Rating (CDR) were administered to participants aged 60 and older. To only include142

Figure 3. Example cortical surface with estimated sulci identified and labelled.
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SULCAL MORPHOLOGY 9

healthy adults, participants with a CDR above zero were excluded; all remaining143

participants scored 25 or above on the MMSE. Multiple T1 volumes were acquired144

using a Siemens Vision 1.5 T with a MPRAGE sequence; only the first volume was used145

here. Scan parameters were: TR=9.7 ms; TE=4.0 ms; flip angle=10◦;146

voxel size=1.25×1×1 mm. Age-related comparisons for volumetric and fractal147

dimensionality measures from the OASIS dataset were previously reported in Madan148

and Kensinger (2017a), Madan and Kensinger (2018), and Madan (2018b) 1.149

3.1.1.2 DLBS. This dataset consisted of 315 healthy adults (198 females), aged150

20–89, from wave 1 of the Dallas Lifespan Brain Study (DLBS), made available through151

the International Neuroimaging Data-sharing Initiative (INDI) (Mennes et al., 2013)152

and hosted on the Neuroimaging Informatics Tools and Resources Clearinghouse153

(NITRC) (Kennedy et al., 2016)154

(http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html).155

Participants were screened for neurological and psychiatric issues. No participants in156

this dataset were excluded a priori. All participants scored 26 or above on the MMSE.157

T1 volumes were acquired using a Philips Achieva 3 T with a MPRAGE sequence. Scan158

parameters were: TR=8.1 ms; TE=3.7 ms; flip angle=12◦; voxel size=1×1×1 mm. See159

Kennedy et al. (2015) and Chan et al. (2014) for further details about the dataset.160

Age-related comparisons for volumetric and fractal dimensionality measures from the161

DLBS dataset were previously reported in Madan and Kensinger (2017a), Madan and162

Kensinger (2018), and Madan (2018b) 1.163

3.1.1.3 SALD. This dataset consisted of 483 healthy adults (303 females), aged164

19–80, from the Southwest University Adult Lifespan Dataset (SALD) (Wei et al., 2018),165

also made available through INDI and hosted on NITRC166

(http://fcon_1000.projects.nitrc.org/indi/retro/sald.html). No167

participants in this dataset were excluded a priori. T1 volumes were acquired using a168

1Note that analyses reported in these previous papers were based on preprocessing in FreeSurfer

5.3.0, rather than FreeSurfer 6.0.
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SULCAL MORPHOLOGY 10

Siemens Trio 3 T with a MPRAGE sequence. Scan parameters were: TR=1.9 s;169

TE=2.52 ms; flip angle=9◦; voxel size=1×1×1 mm.170

3.1.1.4 CCBD. This dataset consisted of 30 healthy adults (15 females), aged 20–30,171

from the Center for Cognition and Brain Disorders (CCBD) at Hangzhou Normal172

University (Chen et al., 2015). Each participant was scanned for 10 sessions, occurring173

2-3 days apart over a one-month period. No participants in this dataset were excluded174

a priori. T1 volumes were acquired using a SCANNER with a FSPGR sequence. Scan175

parameters were: TR=8.06 ms; TE=3.1 ms; flip angle=8◦; voxel size: 1×1×1 mm. This176

dataset is included as part of the Consortium for Reliability and Reproducibility177

(CoRR) (Zuo et al., 2014) as HNU1. Test-retest comparisons for volumetric and fractal178

dimensionality measures from the CCBD dataset were previously reported in Madan179

and Kensinger (2017b)1.180

3.1.2 Procedure181

3.1.2.1 Preprocessing of MRI data Data were analyzed using FreeSurfer 6.0182

(https://surfer.nmr.mgh.harvard.edu) on a machine running Red Hat183

Enterprise Linux (RHEL) 7.4. FreeSurfer was used to automatically volumetrically184

segment and parcellate cortical and subcortical structures from the T1-weighted185

images (Fischl, 2012; Fischl & Dale, 2000) FreeSurfer’s standard pipeline was used (i.e.,186

recon-all). No manual edits were made to the surface meshes, but surfaces were187

visually inspected. Cortical thickness is calculated as the distance between the white188

matter surface (white-gray interface) and pial surface (gray-CSF interface) .189

Gyrification was also calculated using FreeSurfer, as described in Schaer et al. (2012).190

Cortical regions were parcellated based on the Destrieux et al. (2010) atlas, also part of191

the standard FreeSurfer analysis pipeline.192

3.1.2.2 Estimating sulcal morphology Using the method proposed here, sulcal193

with and depth were estimated for eight major sulci in each hemisphere: central,194

post-central, superior frontal, inferior frontal, parieto-occipital, occipito-temporal,195
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SULCAL MORPHOLOGY 11

middle occipital and lunate, and marginal part of the cingulate (see Figure 3). Sulcal196

boundaries were defined based on the Destrieux et al. (2010) parcellation atlas197

(S_central, S_postcentral, S_front_sup, S_front_inf,198

S_parieto_occipital, S_oc-temp_med&Lingual, S_oc_middle&Lunatus,199

S_cingul-Marginalis).200

Preliminary analyses additionally included superior and inferior temporal sulci201

and intraparietal sulcus but these were removed from further analysis when the sulci202

width estimation was found to fail to determine a closed boundary edge-loop at an203

unacceptable rate (> 10%) for at least one hemisphere. This edge boundary204

determination failed when parcellated regions were labeled by FreeSurfer to comprise205

at least two discontinuous regions, such that they could not be identified using a single206

edge loop. Nonetheless, sulcal measures failed to be estimated for some participants,207

resulting in final samples of 310 adults from the OASIS dataset, 312 adults from the208

DLBS dataset, 481 adults from the SALD dataset, and 30 adults from the CCBD dataset.209

3.1.2.3 Test-retest reliability Test-retest reliability was assessed as intraclass210

correlation coefficient (ICC), which can be used to quantify the relationship between211

multiple measurements (Asendorpf & Wallbott, 1979; Bartko, 1966; Chen et al., 2018;212

Hallgren, 2012; Koo & Li, 2016; Madan & Kensinger, 2017b; Rajaratnam, 1960; Shrout &213

Fleiss, 1979). McGraw and Wong (1996) provide a comprehensive review of the various214

ICC formulas and their applicability to different research questions. ICC was215

calculated as the one-way random effects model for the consistency of single216

measurements, i.e., ICC(1, 1). As a general guideline, ICC values between .75 and217

1.00 are considered ‘excellent,’ .60–.74 is ‘good,’ .40–.59 is ‘fair,’ and below .40 is ‘poor’218

(Cicchetti, 1994).219

3.2 Results & Discussion220

3.2.0.1 Age-related differences in sulcal morphology Scatter plots showing the221

relationships between each individual sulci width and depth and age, for the OASIS222
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SULCAL MORPHOLOGY 12

dataset, are shown in Figure 4; the corresponding correlations for all datasets are223

shown in Tables 1 and 2. The width and depth of the central and post-central sulci224

appear to be particularly correlated with age, with wider and shallower sulci in older225

adults. Age-related differences in sulcal width and depth and generally present in226

other sulci as well, but are generally weaker.227

Age-related relationships for each sulci were relatively consistent between the228

two Western lifespan datasets (OASIS and DLBS), but age-related differences in sulcal229

width (but not depth) were markedly weaker in the East Asian lifespan dataset (SALD).230

This finding will need to be studied further, but may be related to gross differences in231

anatomical structure (Kochunov et al., 2003; Tang et al., 2010). Importantly, test-retest232

reliability, ICC(1, 1), was particularly good for the sulcal depth across individual sulci.233

Figure 4. Relationship between (A) sulcal depth and (B) width for each of the sulci

examined, based on the OASIS dataset.

To obtain a coarse summary measure across sulci, I averaged the sulcal width234

across the 16 individual sulci for each individual, and with each dataset, and examined235

the relationship between mean sulcal width with age. These correlations, shown in236
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OASIS DLBS SALD
Sulci Name FreeSurfer Label† Hemi. r(Age) r(Age) r(Age) ICC(1,1) 95% CI of ICC

Central S_central L .586 .486 .322 .858 [ 0.785, 0.918]
R .632 .523 .294 .842 [ 0.764, 0.908]

Post-central S_postcentral L .413 .391 .198 .764 [ 0.660, 0.858]
R .460 .436 .213 .864 [ 0.794, 0.922]

Superior Frontal S_front_sup L .281 .421 .055 .797 [ 0.703, 0.880]
R .205 .291 .035 .843 [ 0.764, 0.909]

Inferior Frontal S_front_inf L .217 .323 -.037 .775 [ 0.675, 0.865]
R .043 .222 -.036 .831 [ 0.748, 0.901]

Parieto-occipital S_parieto_occipital L .348 .279 .145 .616 [ 0.486, 0.753]
R .257 .357 .213 .682 [ 0.561, 0.802]

Occipito-temporal S_oc-temp_med&Lingual L .227 .270 -.055 .660 [ 0.535, 0.786]
R .168 .189 .017 .692 [ 0.572, 0.808]

Middle occipital and lunate S_oc_middle&Lunatus L .306 .271 .145 .605 [ 0.474, 0.744]
R .212 .177 .023 .625 [ 0.496, 0.760]

Marginal part of cingulate S_cingul-Marginalis L .340 .275 .075 .783 [ 0.685, 0.871]
R .430 .382 .161 .757 [ 0.651, 0.853]

Mean .636 .592 .227 .907 [ 0.856, 0.947]

CCBD

Table 1

Correlations between sulcal width and age for each sulci and hemisphere, for each of the three

lifespan datasets examined. Test-retest reliability, ICC(1, 1), is also included from the CCBD

dataset. †FreeSurfer labels in version 6.0; labels are named slightly different in version 5.3.

OASIS DLBS SALD
Sulci Name FreeSurfer Label† Hemi. r(Age) r(Age) r(Age) ICC(1,1) 95% CI of ICC

Central S_central L -.517 -.205 -.346 .848 [ 0.772, 0.912]
R -.505 -.256 -.348 .860 [ 0.789, 0.919]

Post-central S_postcentral L -.371 -.264 -.268 .965 [ 0.944, 0.981]
R -.436 -.246 -.330 .890 [ 0.831, 0.937]

Superior Frontal S_front_sup L -.523 -.454 -.397 .899 [ 0.844, 0.943]
R -.413 -.465 -.444 .886 [ 0.825, 0.935]

Inferior Frontal S_front_inf L -.517 -.490 -.491 .932 [ 0.893, 0.962]
R -.496 -.480 -.490 .915 [ 0.868, 0.952]

Parieto-occipital S_parieto_occipital L -.145 -.093 -.241 .979 [ 0.966, 0.989]
R -.124 .059 -.229 .970 [ 0.952, 0.984]

Occipito-temporal S_oc-temp_med&Lingual L -.509 -.323 -.263 .953 [ 0.926, 0.974]
R -.404 -.316 -.281 .913 [ 0.864, 0.951]

Middle occipital and lunate S_oc_middle&Lunatus L -.290 -.167 -.150 .949 [ 0.919, 0.972]
R -.288 -.120 -.132 .922 [ 0.879, 0.956]

Marginal part of cingulate S_cingul-Marginalis L -.092 -.035 -.268 .952 [ 0.925, 0.974]
R -.032 -.017 -.156 .918 [ 0.872, 0.954]

Mean -.465 -.645 -.600 .972 [ 0.955, 0.985]

CCBD

Table 2

Correlations between sulcal depth and age for each sulci and hemisphere, for each of the three

lifespan datasets examined. Test-retest reliability, ICC(1, 1), is also included from the CCBD

dataset. †FreeSurfer labels in version 6.0; labels are named slightly different in version 5.3.
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Table 1, indicate that the mean sulcal width was generally a better indicator of237

age-related differences in sulcal morphology than individual sulci, and had increased238

test-retest reliability. Mean sulcal depth was similarly more sensitive to age-related239

differences than individual sulci (e.g., it is unclear why the relationship between age240

and width of the central sulcus differed between samples) and the magnitude of this241

relationship was more consistent across datasets. Reliability was even higher for mean242

sulcal depth than mean sulcal width.243

3.2.0.2 Comparison with other age-related structural differences Within each244

dataset, mean sulcal depth and width correlated with age, as shown in Tables 1 and 2.245

Of course, other measures of brain morphology also differ with age, such as mean246

(global) cortical thickness [OASIS: r(308) = −.793, p < .001; DLBS: r(310) = −.759,247

p < .001; SALD: r(479) = −.642, p < .001]. Additionally, volume of the third ventricle248

(ICV-corrected) has been previously shown to significantly related to age (Madan &249

Kensinger, 2017a; Walhovd et al., 2011), and was found to be true in each of the250

examined lifespan datasets here as well [OASIS: r(308) = .665, p < .001; DLBS:251

r(310) = .677, p < .001; SALD: r(479) = .328, p < .001].252

To test if these mean sulcal measures served as distinct measures of age-related253

differences in brain morphology, beyond those provided by other measures, such as254

mean cortical thickness and volume of the third ventricle, I conducted partial255

correlations that controlled for these two other measures of age-related atrophy. Mean256

sulcal width [OASIS: rp(306) = .188, p < .001; DLBS: rp(308) = .177, p = .002; SALD:257

r(477) = .003, p = .96] and depth [OASIS: rp(306) = −.443, p < .001; DLBS:258

rp(308) = −.397, p < .001; SALD: rp(477) = −.534, p < .001] both explained unique259

variance in relation to age. Thus, even though more established measures of260

age-related differences in brain morphology were replicated here, the additional sulcal261

measures captured aspects of aging that are not accounted for by these extant262

measures, indicating that these sulcal measures are worth pursuing further and are not263

redundant with other measures of brain structure. Providing additional support for264
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this, mean sulcal width and depth were only weakly related to each other [OASIS:265

r(308) = −.192, p < .001; DLBS: r(310) = .092, p = .104; SALD: r(479) = .119, p = .009].266

As with the individual sulci measures, I did observe a difference between267

samples where some age-related measures were less sensitive in the East Asian lifespan268

sample (SALD), here in the ventricle volume correlation and the unsurprisingly269

weaker age relationship in the partial correlation using sulcal width. These sample270

differences are puzzling, though there is a general correspondence between the two271

Western samples. Given that much of the literature is also based on Western samples, I272

think further research with East Asian samples, and particularly comparing samples273

with the same analysis pipeline, is necessary to shed further light on this initial finding.274

4 Conclusion275

Differences in sulcal width and depth are quite visually prominent, but are not often276

quantified when examining individual differences in cortical structure. Here I277

examined age-related differences in both sulcal measures as a proof-of-principle to278

demonstrate the utility of the calcSulc toolbox that accompanies this paper and is279

designed to closely compliments the standard FreeSurfer pipeline. This allows for the280

additional measurement of sulcal morphology, to add to the extant measures of brain281

morphology such as cortical thickness, area, and gyrification. Critically, this approach282

uses the same landmarks and boundaries as in the Destrieux et al. (2010) parcellation283

atlas, in contrast to all previous approaches to characterize sulcal features. This toolbox284

is now made freely available as supplemental to this paper:285

https://cmadan.github.io/calcSulc/.286

Using this approach, here I demonstrate age-related differences in sulcal width287

and depth, as well as high test-retest reliability. Since individual differences in sulcal288

morphology are sufficiently distinct from those characterized by other brain289

morphology measures, this approach should complement extant work of investigating290

factors that influence brain morphology, e.g., see Figure 3 of Madan and Kensinger291

(2018). Given the flexibility in the methodological approach, these measures can be292
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readily applied to other samples after being initially processed with FreeSurfer.293
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