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SULCAL MORPHOLOGY 2

Abstract12

While it is well established that cortical morphology differs in relation to a variety of13

inter-individual factors, it is often characterized using estimates of volume, thickness,14

surface area, or gyrification. Here we developed a computational approach for15

estimating sulcal width and depth that relies on cortical surface reconstructions output16

by FreeSurfer. While other approaches for estimating sulcal morphology exist, studies17

often require the use of multiple brain morphology programs that have been shown to18

differ in their approaches to localize sulcal landmarks, yielding morphological19

estimates based on inconsistent boundaries. To demonstrate the approach, sulcal20

morphology was estimated in three large sample of adults across the lifespan, in21

relation to aging. A fourth sample is additionally used to estimate test-retest reliability22

of the approach. This toolbox is now made freely available as supplemental to this23

paper: https://cmadan.github.io/calcSulc/.24

25

Keywords: sulcal width; sulcal depth; age; cortical structure; atrophy; gyrification;26
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SULCAL MORPHOLOGY 3

Robust estimation of sulcal morphology28

1 Introduction29

Cortical structure differs between individuals. It is well known that cortical thickness30

generally decreases with age (Fjell et al., 2009; Hogstrom et al., 2013; Hutton et al., 2009;31

Lemaitre et al., 2012; Madan & Kensinger, 2016, 2018; McKay et al., 2014; Salat et al.,32

2004; Sowell et al., 2003, 2007); however, a more visually prominent difference is the33

widening of sulci, sometimes described as “sulcal prominence” (Coffey et al., 1992;34

Drayer, 1988; Jacoby et al., 1980; Laffey et al., 1984; Tomlinson et al., 1968; Yue et al.,35

1997). In the literature, this measure has been referred to using a variety of names,36

including sulcal width, span, dilation, and enlargement, as well as fold opening. With37

respect to aging and brain morphology, sulcal width has been assessed qualitatively by38

clinicians as an index of cortical atrophy (Coffey et al., 1992; Drayer, 1988; Laffey et al.,39

1984; Pasquier et al., 1996; Scheltens et al., 1997; Tomlinson et al., 1968). An illustration40

of age-related differences in sulcal morphology is shown in Figure 1.41

Using quantitative approaches, sulcal width has been shown to increase with age42

(Kochunov et al., 2005, 2008; Liu et al., 2010, 2013) likely relating to subsequent43

findings of age-related decreases in cortical gyrification (Cao et al., 2017; Hogstrom et44

al., 2013; Madan & Kensinger, 2016, 2018; Madan, 2018a). Sulcal widening has also45

been shown to be associated with decreases in cognitive abilities (Liu et al., 2011) and46

physical activity (Lamont et al., 2014). With respect to clinical conditions, increased47

sulcal width has been found in dementia patients relative to healthy controls48

(Andersen et al., 2015; Hamelin et al., 2015; Huckman et al., 1975; Liu et al., 2012; Ming49

et al., 2015; Plocharski & Østergaard, 2016; Reiner et al., 2012), as well as with50

schizophrenia patients (Largen et al., 1984; Palaniyappan et al., 2015; Rieder et al., 1979)51

and mood disorders (Elkis et al., 1995).52

One of the most common programs for conducting cortical surface analyses is53

FreeSurfer (Fischl, 2012). Unfortunately, though FreeSurfer reconstructs cortical54

surfaces, it does not estimate sulcal width or depth, leading researchers to use55
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SULCAL MORPHOLOGY 4

Figure 1. Representative coronal slices and cortical surfaces with sulcal identification

for 20- and 80-year-old individuals.

FreeSurfer along with another surface analysis program, BrainVISA (Kochunov et al.,56

2012; Mangin, Rivière, et al., 2004; Mangin, Riviere, et al., 2004; Rivière et al., 2002), to57

characterize cortical thickness along with sulcal morphology (e.g, Cai et al., 2017;58

Lamont et al., 2014; Liu et al., 2011, 2013; Pizzagalli et al., 2017). While this combination59

allows for the estimation of sulcal morphology in addition to standard measures such60

as cortical thickness, FreeSurfer and BrainVISA rely on different anatomical landmarks61

(Mikhael et al., 2018) which can yield differences in their resulting cortical surface62

reconstructions (Lee et al., 2006). Admittedly, determining the boundaries for an63

individual sulcus and incorporating individual cortical variability is difficult (John et64

al., 2006; Mikhael et al., 2018; Ono et al., 1990; Welker, 1990). While an ennumerate65

amount of other methods have already been proposed to identify and characterize66

sulcal morphology (e.g., Andreasen et al., 1994; Auzias et al., 2015; Beeston & Taylor,67

2000; Behnke et al., 2003; Eskildsen et al., 2005; Im et al., 2010; Jones et al., 2000; Le68
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SULCAL MORPHOLOGY 5

Goualher et al., 1996, 1998; Li et al., 2008; Lohmann & von Cramon, 2000; Lohmann et69

al., 2008; Nowinski et al., 1996; Oguz et al., 2008; Perrot et al., 2011; Royackkers et al.,70

1999; Thompson et al., 1996; Vaillant & Davatzikos, 1997; Yun et al., 2013), ultimately71

these all are again using different landmarks than FreeSurfer uses for cortical72

parcellations (i.e., volume, thickness, surface area, gyrification). Note that, though73

FreeSurfer itself does compute sulcal maps, these are computed as normalized depths,74

not in real-world units (e.g. Kippenhan et al., 2005), furthermore, these are also75

independent of sulcal width information.76

Here we describe a procedure for estimating sulcal morphology and report77

age-related differences in sulcal width and depth using three large samples of adults78

across the lifespan: two of these datasets are from Western samples, Dallas Lifespan79

Brain Study (DLBS) and Open Access Series of Imaging Studies (OASIS), as well as one80

East Asian sample, Southwest University Adult Lifespan (SALD), as potential81

differences between populations have been relatively understudied (Leong et al., 2017;82

Madan, 2017). To further validate the method, test-retest reliability was also assessed83

using a sample of young adults who were scanned ten times within the span of a84

month (Chen et al., 2015; Madan & Kensinger, 2017b). All four of these datasets are85

open-access and have sufficient sample sizes to be suitable for brain morphology86

research (Madan, 2017). This procedure has been implemented as a MATLAB toolbox,87

calcSulc, that calculates sulcal morphology–both width and depth–using files88

generated as part of the standard FreeSurfer cortical reconstruction and parcellation89

pipeline. This toolbox is now made freely available as supplemental to this paper:90

https://cmadan.github.io/calcSulc/.91

2 Materials and Methods92

2.1 Datasets93

OASIS. This dataset consisted of 314 healthy adults (196 females), aged 18–94, from94

the Open Access Series of Imaging Studies (OASIS) cross-sectional dataset95
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SULCAL MORPHOLOGY 6

(http://www.oasis-brains.org) (Marcus et al., 2007). Participants were96

recruited from a database of individuals who had (a) previously participated in MRI97

studies at Washington University, (b) were part of the Washington University98

Community, or (c) were from the longitudinal pool of the Washington University99

Alzheimer Disease Research Center. Participants were screened for neurological and100

psychiatric issues; the Mini-Mental State Examination (MMSE) and Clinical Dementia101

Rating (CDR) were administered to participants aged 60 and older. To only include102

healthy adults, participants with a CDR above zero were excluded; all remaining103

participants scored 25 or above on the MMSE. Multiple T1 volumes were acquired104

using a Siemens Vision 1.5 T with a MPRAGE sequence; only the first volume was used105

here. Scan parameters were: TR=9.7 ms; TE=4.0 ms; flip angle=10◦;106

voxel size=1.25×1×1 mm. Age-related comparisons for volumetric and fractal107

dimensionality measures from the OASIS dataset were previously reported in Madan108

and Kensinger (2017a), Madan and Kensinger (2018), and Madan (2018b) 1.109

DLBS. This dataset consisted of 315 healthy adults (198 females), aged 20–89, from110

wave 1 of the Dallas Lifespan Brain Study (DLBS), made available through the111

International Neuroimaging Data-sharing Initiative (INDI) (Mennes et al., 2013) and112

hosted on the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC)113

(Kennedy et al., 2016)114

(http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html).115

Participants were screened for neurological and psychiatric issues. No participants in116

this dataset were excluded a priori. All participants scored 26 or above on the MMSE.117

T1 volumes were acquired using a Philips Achieva 3 T with a MPRAGE sequence. Scan118

parameters were: TR=8.1 ms; TE=3.7 ms; flip angle=12◦; voxel size=1×1×1 mm. See119

Kennedy et al. (2015) and Chan et al. (2014) for further details about the dataset.120

Age-related comparisons for volumetric and fractal dimensionality measures from the121

DLBS dataset were previously reported in Madan and Kensinger (2017a), Madan and122

1Note that analyses reported in these previous papers were based on preprocessing in FreeSurfer

5.3.0, rather than FreeSurfer 6.0.
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SULCAL MORPHOLOGY 7

Kensinger (2018), and Madan (2018b) 1.123

SALD. This dataset consisted of 483 healthy adults (303 females), aged 19–80, from124

the Southwest University Adult Lifespan Dataset (SALD) (Wei et al., 2018), also made125

available through INDI and hosted on NITRC126

(http://fcon_1000.projects.nitrc.org/indi/retro/sald.html). No127

participants in this dataset were excluded a priori. T1 volumes were acquired using a128

Siemens Trio 3 T with a MPRAGE sequence. Scan parameters were: TR=1.9 s;129

TE=2.52 ms; flip angle=9◦; voxel size=1×1×1 mm.130

CCBD. This dataset consisted of 30 healthy adults (15 females), aged 20–30, from the131

Center for Cognition and Brain Disorders (CCBD) at Hangzhou Normal University132

(Chen et al., 2015). Each participant was scanned for 10 sessions, occurring 2-3 days133

apart over a one-month period. No participants in this dataset were excluded a priori.134

T1 volumes were acquired using a SCANNER with a FSPGR sequence. Scan135

parameters were: TR=8.06 ms; TE=3.1 ms; flip angle=8◦; voxel size: 1×1×1 mm. This136

dataset is included as part of the Consortium for Reliability and Reproducibility137

(CoRR) (Zuo et al., 2014) as HNU1. Test-retest comparisons for volumetric and fractal138

dimensionality measures from the CCBD dataset were previously reported in Madan139

and Kensinger (2017b)1.140

2.2 Procedure141

Data were analyzed using FreeSurfer 6.0142

(https://surfer.nmr.mgh.harvard.edu) on a machine running Red Hat143

Enterprise Linux (RHEL) 7.4. FreeSurfer was used to automatically volumetrically144

segment and parcellate cortical and subcortical structures from the T1-weighted145

images (Fischl, 2012; Fischl & Dale, 2000) FreeSurfer’s standard pipeline was used (i.e.,146

recon-all). No manual edits were made to the surface meshes, but surfaces were147

visually inspected. Cortical thickness is calculated as the distance between the white148
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SULCAL MORPHOLOGY 8

matter surface (white-gray interface) and pial surface (gray-CSF interface) .149

Gyrification was also calculated using FreeSurfer, as described in Schaer et al. (2012).150

Cortical regions were parcellated based on the Destrieux et al. (2010) atlas, also part of151

the standard FreeSurfer analysis pipeline.152

3 Calculation153

Here we outline a novel, simple yet robust, automated approach for estimating sulcal154

width and depth, based on intermediate files generated as part of the standard155

FreeSurfer analysis pipeline. This procedure and functionality has been implemented156

in an accompanying MATLAB toolbox, calcSulc. The toolbox is supplemental157

material to this paper and is made freely available:158

https://cmadan.github.io/calcSulc/.159

For each individual sulcus (for each hemisphere and participant), the following160

approach was used to characterize the sulcal morphology. The procedure has been161

validated and is supported for the following sulci: central, post-central, superior162

frontal, inferior frontal, parieto-occipital, occipito-temporal, middle occipital and163

lunate, and marginal part of the cingulate (S_central, S_postcentral,164

S_front_sup, S_front_inf, S_parieto_occipital,165

S_oc-temp_med&Lingual, S_oc_middle&Lunatus, S_cingul-Marginalis).166

All of the sulci are labeled in Figure 2.167

First the pial surface and Destrieux et al. (2010) parcellation labels were read into168

MATLAB by using the FreeSurfer-MATLAB toolbox provided alongside FreeSurfer169

(calcSulc_load), this consists of the ?h.pial (FreeSurfer cortical surface mesh)170

?h.aparc.a2009s.annot (FreeSurfer parcellation annotation) files. Using this, the171

faces associated with the individual sulcus were isolated as a 3D mesh172

(calcSulc_isolate).173

The width of each sulcus (calcSulc_width) was calculated by determining174

which vertices lay on the boundary of the sulcus and the adjacent gyrus. An iterative175

procedure was then used to determine the ‘chain’ of edges that would form a176

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 2, 2019. ; https://doi.org/10.1101/452789doi: bioRxiv preprint 

https://cmadan.github.io/calcSulc/
https://doi.org/10.1101/452789
http://creativecommons.org/licenses/by/4.0/


SULCAL MORPHOLOGY 9

contiguous edge-loop that encircle the sulcal region (calcSulc_getEdgeLoop). This177

provided an exhaustive list of all vertices that were mid-way between the peak of the178

respective adjacent gyri and depth of the sulcus itself. For each vertex in this edge-loop,179

the nearest point in 3D space that was not neighbouring in the loop was determined,180

with the goal of finding the nearest vertex in the edge that was on the opposite side of181

the sulcus–i.e., a line between these two vertices would ‘bridge’ across the sulcus. Since182

these nearest vertices in the edge loop are not necessarily the nearest vertex along the183

opposite sulcus wall, an exhaustive search (walk) was performed, moving up to a 4184

edges from the initially determined nearest vertex (configurable as185

options.setWidthWalk). The sulcal width was then taken as the median of these186

distances that bridged across the sulcus.187

The depth of each sulcus (calcSulc_depth) additionally used FreeSurfer’s188

sulcal maps (?h.sulc) to determine the relative inflections in the surface mesh, which189

would be in alignment with the gyral crown. The deepest points of the sulcus, i.e., the190

sulcal fundus, were taken as the 100 vertices within the sulcus with the lowest values191

in the sulcal map. For these 100 vertices, the shortest distance to the smoothed192

enclosing surface was calculated (generated by FreeSurfer’s built-in gyrification193

analysis [?h.pial-outer-smoothed], Schaer et al., 2012), and the median of these194

was then taken as the sulcal depth.195

Figure 2. Example cortical surface with estimated sulci identified and labelled.
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SULCAL MORPHOLOGY 10

Figure 3. Illustration of the sulcal morphology method. (A) Cortical surface estimation

and sulcal identification, as output from FreeSurfer. (B) Sulcal width and depth

estimation procedure. Note that the surface mesh and estimation algorithm use many

more vertices than shown here.
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SULCAL MORPHOLOGY 11

Sulcal morphology, with and depth, was estimated for eight major sulci in each196

hemisphere: central, post-central, superior frontal, inferior frontal, parieto-occipital,197

occipito-temporal, middle occipital and lunate, and marginal part of the cingulate198

(S_central, S_postcentral, S_front_sup, S_front_inf,199

S_parieto_occipital, S_oc-temp_med&Lingual, S_oc_middle&Lunatus,200

S_cingul-Marginalis). Preliminary analyses additionally included superior and201

inferior temporal sulci and intraparietal sulcus but these were removed from further202

analysis when the sulci width estimation was found to fail to determine a closed203

boundary edge-loop at an unacceptable rate (> 10%) for at least one hemisphere. This204

edge boundary determination failed when parcellated regions were labeled by205

FreeSurfer to comprise at least two discontinuous regions, such that they could not be206

identified using a single edge loop. Nonetheless, sulcal measures failed to be estimated207

for some participants, resulting in final samples of 310 adults from the OASIS dataset,208

312 adults from the DLBS dataset, 481 adults from the SALD dataset, and 30 adults209

from the CCBD dataset.210

3.1 Test-retest reliability211

Test-retest reliability was assessed as intraclass correlation coefficient (ICC), which can212

be used to quantify the relationship between multiple measurements (Asendorpf &213

Wallbott, 1979; Bartko, 1966; Chen et al., 2018; Hallgren, 2012; Koo & Li, 2016; Madan &214

Kensinger, 2017b; Rajaratnam, 1960; Shrout & Fleiss, 1979). McGraw and Wong (1996)215

provide a comprehensive review of the various ICC formulas and their applicability to216

different research questions. ICC was calculated as the one-way random effects model217

for the consistency of single measurements, i.e., ICC(1, 1). As a general guideline,218

ICC values between .75 and 1.00 are considered ‘excellent,’ .60–.74 is ‘good,’ .40–.59 is219

‘fair,’ and below .40 is ‘poor’ (Cicchetti, 1994).220
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SULCAL MORPHOLOGY 12

4 Results & Discussion221

4.1 Age-related differences in sulcal morphology222

Scatter plots showing the relationships between each individual sulcal width and223

depth and age, for the OASIS dataset, are shown in Figure 4; the corresponding224

correlations for all datasets are shown in Tables 1 and 2. The width and depth of the225

central and post-central sulci appear to be particularly correlated with age, with wider226

and shallower sulci in older adults. Age-related differences in sulcal width and depth227

and generally present in other sulci as well, but are generally weaker.228

Age-related relationships for each sulcus were relatively consistent between the229

two Western lifespan datasets (OASIS and DLBS), but age-related differences in sulcal230

width (but not depth) were markedly weaker in the East Asian lifespan dataset (SALD).231

This finding will need to be studied further, but may be related to gross differences in232

anatomical structure (Kochunov et al., 2003; Tang et al., 2010). Importantly, test-retest233

reliability, ICC(1, 1), was particularly good for the sulcal depth across individual sulci.234

OASIS DLBS SALD
Sulci Name FreeSurfer Label† Hemi. r(Age) r(Age) r(Age) ICC(1,1) 95% CI of ICC

Central S_central L .586 .486 .322 .858 [ 0.785, 0.918]
R .632 .523 .294 .842 [ 0.764, 0.908]

Post-central S_postcentral L .413 .391 .198 .764 [ 0.660, 0.858]
R .460 .436 .213 .864 [ 0.794, 0.922]

Superior Frontal S_front_sup L .281 .421 .055 .797 [ 0.703, 0.880]
R .205 .291 .035 .843 [ 0.764, 0.909]

Inferior Frontal S_front_inf L .217 .323 -.037 .775 [ 0.675, 0.865]
R .043 .222 -.036 .831 [ 0.748, 0.901]

Parieto-occipital S_parieto_occipital L .348 .279 .145 .616 [ 0.486, 0.753]
R .257 .357 .213 .682 [ 0.561, 0.802]

Occipito-temporal S_oc-temp_med&Lingual L .227 .270 -.055 .660 [ 0.535, 0.786]
R .168 .189 .017 .692 [ 0.572, 0.808]

Middle occipital and lunate S_oc_middle&Lunatus L .306 .271 .145 .605 [ 0.474, 0.744]
R .212 .177 .023 .625 [ 0.496, 0.760]

Marginal part of cingulate S_cingul-Marginalis L .340 .275 .075 .783 [ 0.685, 0.871]
R .430 .382 .161 .757 [ 0.651, 0.853]

Mean .636 .592 .227 .907 [ 0.856, 0.947]

CCBD

Table 1

Correlations between sulcal width and age for each sulci and hemisphere, for each of the three

lifespan datasets examined. Test-retest reliability, ICC(1, 1), is also included from the CCBD

dataset. †FreeSurfer labels in version 6.0; labels are named slightly different in version 5.3.
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SULCAL MORPHOLOGY 13

Figure 4. Relationship between (A) sulcal depth and (B) width for each of the sulci

examined, based on the OASIS dataset.

OASIS DLBS SALD
Sulci Name FreeSurfer Label† Hemi. r(Age) r(Age) r(Age) ICC(1,1) 95% CI of ICC

Central S_central L -.517 -.205 -.346 .848 [ 0.772, 0.912]
R -.505 -.256 -.348 .860 [ 0.789, 0.919]

Post-central S_postcentral L -.371 -.264 -.268 .965 [ 0.944, 0.981]
R -.436 -.246 -.330 .890 [ 0.831, 0.937]

Superior Frontal S_front_sup L -.523 -.454 -.397 .899 [ 0.844, 0.943]
R -.413 -.465 -.444 .886 [ 0.825, 0.935]

Inferior Frontal S_front_inf L -.517 -.490 -.491 .932 [ 0.893, 0.962]
R -.496 -.480 -.490 .915 [ 0.868, 0.952]

Parieto-occipital S_parieto_occipital L -.145 -.093 -.241 .979 [ 0.966, 0.989]
R -.124 .059 -.229 .970 [ 0.952, 0.984]

Occipito-temporal S_oc-temp_med&Lingual L -.509 -.323 -.263 .953 [ 0.926, 0.974]
R -.404 -.316 -.281 .913 [ 0.864, 0.951]

Middle occipital and lunate S_oc_middle&Lunatus L -.290 -.167 -.150 .949 [ 0.919, 0.972]
R -.288 -.120 -.132 .922 [ 0.879, 0.956]

Marginal part of cingulate S_cingul-Marginalis L -.092 -.035 -.268 .952 [ 0.925, 0.974]
R -.032 -.017 -.156 .918 [ 0.872, 0.954]

Mean -.465 -.645 -.600 .972 [ 0.955, 0.985]

CCBD

Table 2

Correlations between sulcal depth and age for each sulci and hemisphere, for each of the three

lifespan datasets examined. Test-retest reliability, ICC(1, 1), is also included from the CCBD

dataset. †FreeSurfer labels in version 6.0; labels are named slightly different in version 5.3.
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To obtain a coarse summary measure across sulci, we averaged the sulcal width235

across the 16 individual sulci for each individual, and with each dataset, and examined236

the relationship between mean sulcal width with age. These correlations, shown in237

Table 1, indicate that the mean sulcal width was generally a better indicator of238

age-related differences in sulcal morphology than individual sulci, and had increased239

test-retest reliability. Mean sulcal depth was similarly more sensitive to age-related240

differences than for an individual sulcus (e.g., it is unclear why the relationship241

between age and width of the central sulcus differed between samples) and the242

magnitude of this relationship was more consistent across datasets. Reliability was243

even higher for mean sulcal depth than mean sulcal width.244

4.2 Comparison with other age-related structural differences245

Within each dataset, mean sulcal depth and width correlated with age, as shown in246

Tables 1 and 2. Of course, other measures of brain morphology also differ with age,247

such as mean (global) cortical thickness [OASIS: r(308) = −.793, p < .001; DLBS:248

r(310) = −.759, p < .001; SALD: r(479) = −.642, p < .001]. Additionally, volume of the249

third ventricle (ICV-corrected) has been previously shown to significantly related to250

age (Madan & Kensinger, 2017a; Walhovd et al., 2011), and was found to be true in251

each of the examined lifespan datasets here as well [OASIS: r(308) = .665, p < .001;252

DLBS: r(310) = .677, p < .001; SALD: r(479) = .328, p < .001]. Previous studies have253

demonstrated that both of these measures are robust estimates of age-related254

differences in brain structure.255

To test if these mean sulcal measures served as distinct measures of age-related256

differences in brain morphology, beyond those provided by other measures, such as257

mean cortical thickness and volume of the third ventricle, we conducted partial258

correlations that controlled for these two other measures of age-related atrophy. Mean259

sulcal width [OASIS: rp(306) = .188, p < .001; DLBS: rp(308) = .177, p = .002; SALD:260

r(477) = .003, p = .96] and depth [OASIS: rp(306) = −.443, p < .001; DLBS:261

rp(308) = −.397, p < .001; SALD: rp(477) = −.534, p < .001] both explained unique262
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variance in relation to age. Thus, even though more established measures of263

age-related differences in brain morphology were replicated here, the additional sulcal264

measures captured aspects of aging that are not accounted for by these extant265

measures, indicating that these sulcal measures are worth pursuing further and are not266

redundant with other measures of brain structure. Providing additional support for267

this, mean sulcal width and depth were only weakly related to each other [OASIS:268

r(308) = −.192, p < .001; DLBS: r(310) = .092, p = .104; SALD: r(479) = .119, p = .009].269

As with the individual sulci measures, we did observe a difference between270

samples where some age-related measures were less sensitive in the East Asian lifespan271

sample (SALD), here in the ventricle volume correlation and the unsurprisingly weaker272

age relationship in the partial correlation using sulcal width. These sample differences273

are puzzling, though there is a general correspondence between the two Western274

samples. Given that much of the literature is also based on Western samples, we think275

further research with East Asian samples, and particularly comparing samples with the276

same analysis pipeline, is necessary to shed further light on this initial finding.277

5 Conclusion278

Differences in sulcal width and depth are quite visually prominent, but are not often279

quantified when examining individual differences in cortical structure. Here we280

examined age-related differences in both sulcal measures as a proof-of-principle to281

demonstrate the utility of the calcSulc toolbox that accompanies this paper and is282

designed to closely compliments the standard FreeSurfer pipeline. This allows for the283

additional measurement of sulcal morphology, to add to the extant measures of brain284

morphology such as cortical thickness, area, and gyrification. Critically, this approach285

uses the same landmarks and boundaries as in the Destrieux et al. (2010) parcellation286

atlas, in contrast to all previous approaches to characterize sulcal features. This toolbox287

is now made freely available as supplemental to this paper:288

https://cmadan.github.io/calcSulc/.289

Using this approach, here we demonstrate age-related differences in sulcal width290
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and depth, as well as high test-retest reliability. Since individual differences in sulcal291

morphology are sufficiently distinct from those characterized by other brain292

morphology measures, this approach should complement extant work of investigating293

factors that influence brain morphology, e.g., see Figure 3 of Madan and Kensinger294

(2018). Given the flexibility in the methodological approach, these measures can be295

readily applied to other samples after being initially processed with FreeSurfer.296
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