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Abstract 
 
Brain rhythms are nearly always analyzed in the spectral domain in terms of their power, phase, 
and frequency. While this conventional approach has uncovered spike-field coupling, as well as 
correlations to normal behaviors and pathological states, emerging work has highlighted the 
physiological and behavioral importance of multiple novel oscillation features. Oscillatory bursts, 
for example, uniquely index a variety of cognitive states, and the nonsinusoidal shape of 
oscillations relate to physiological changes, including Parkinson's disease. Open questions 
remain regarding how bursts and nonsinusoidal features relate to circuit-level processes, and 
how they interrelate. By analyzing unit and local field recordings in the rodent hippocampus, we 
uncover a number of significant relationships between oscillatory bursts, nonsinusoidal 
waveforms, and local inhibitory and excitatory spiking patterns. Bursts of theta oscillations are 
surprisingly related to a decrease in pyramidal neuron synchrony, and have no detectable effect 
on firing sequences, despite significant increases in neuronal firing rates during periods of theta 
bursting. Theta burst duration is predicted by the asymmetries of its first cycle, and cycle 
asymmetries relate to firing rate, synchrony, and sequences of pyramidal neurons and 
interneurons. These results provide compelling physiological evidence that time-domain 
features, of both nonsinusoidal hippocampal theta waveform and the theta bursting state, 
reflects local circuit properties. These results point to the possibility of inferring circuit states 
from local field potential features in the hippocampus and perhaps other brain regions with other 
rhythms.  
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Introduction 
 
Oscillations are one of the most prominent features of neural field potential recordings (Buzsáki 
and Draguhn, 2004; Cohen, 2017). Consequently, they have been extensively studied for 
decades and their features are known to relate to physiological processes, pathologies, and 
behavior (Buzsáki and Wang, 2012; Cohen, 2017; Klimesch, 1999; Uhlhaas and Singer, 2010; 
Ward, 2003; Womelsdorf et al., 2014). Throughout this research, clear evidence has emerged 
showing that local spiking probability is coupled to phases of the oscillatory local field (Li et al., 
1952), resulting in theories about how these oscillations may function to aid communication 
among brain networks (Fries, 2005; Peterson and Voytek, 2018; Roux and Uhlhaas, 2014; 
Voytek and Knight, 2015). Though we have a good understanding of how current sources 
summate and manifest as field potential fluctuations (forward model), interpretations of these 
oscillations is challenging because many different biological processes can yield the same field 
potential fluctuation (inverse model) (Buzsáki et al., 2012; Herreras, 2016; Herreras et al., 2015; 
Pesaran et al., 2018). 
 
There is a general consensus that the prominent contributor to the low frequency component of 
the field potential (<100 Hz) is synaptic activity (Einevoll et al., 2007, 2013; Haider et al., 2016; 
Mazzoni et al., 2015; Mitzdorf, 1985), but interpretation remains complicated because the 
resultant field potential is significantly influenced by anatomical geometry, connectivity, tissue 
electrical properties, and nonsynaptic ionic currents (Buzsáki et al., 2012; Herreras, 2016; 
Lindén et al., 2010, 2011; Ness et al., 2016; Reimann et al., 2013). Though relatively simple 
models can capture certain relationships between the field potential and neuronal activity (Gao 
et al., 2017; Mazzoni et al., 2015; Miller et al., 2009), the details of the relationship between the 
two are mostly unknown. 
 
Beyond the uncertainties of the specific current sources, the commonly used metrics of analysis 
(e.g., narrowband power) are often not specific and can be confounded with many different 
properties of the raw data, beyond that which is being conceptualized. For example, an increase 
in 10 Hz power can be a consequence of an increase in power of a: 1) stationary 10 Hz 
oscillator, 2) transient 10 Hz oscillator, 3) 5 Hz nonsinusoidal oscillator, 4) white noise, 5) a 
sharp transient, and more (Haller et al., 2018). Analyses of oscillations have mainly applied 
techniques based on the Fourier transform, which parametrizes signals as sums of sine waves 
at varying frequencies (Bruns, 2004; Cohen, 2017; Pesaran et al., 2018). 
 
However, after sparse interest in the past (Amzica and Steriade, 1998; Jasper, 1948), recent 
interest has emerged regarding significance of the nonsinusoidal and nonstationary features of 
brain rhythms (Cole and Voytek, 2017; van Ede et al., 2018; Feingold et al., 2015; Fransen et 
al., 2015; Jas et al., 2017; Jones, 2016; Lozano-Soldevilla, 2018; Sweeney-Reed et al., 2018). 
Careful and thorough inspection of the neural signal, in the time-domain, is necessary in order 
to precisely characterize changes in neural oscillations and avoid potential pitfalls of spectral 
representations. By better parametrizing our features of interest, we are better suited to 
disentangle separate neural processes. To improve on conventional techniques, we have 
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recently demonstrated a method of analyzing neural oscillations on a cycle-by-cycle basis, 
wherein we first determine when the oscillator is present, and then measure not only its power 
and frequency, but also its waveform symmetries (see Figure 1) (Cole and Voytek, 2018). 
 
Parameterizing oscillation features on a cycle-by-cycle basis in this manner allows us to 
interrogate novel physiological relationships between neuronal spiking activity and multiple 
oscillatory features heretofore unexplored. It seems reasonable to assume that the properties of 
the oscillatory waveform correlate with the properties of the underlying physiological generators. 
There are several microcircuit motifs that produce oscillations (Womelsdorf et al., 2014), so 
changes of the specific motif or its components should manifest as changes in the waveform. 
 
For example, three alpha rhythms in the gustatory cortex that each have distinct behavioral 
correlations can be differentiated by features of their waveforms (Tort et al., 2010). It is intuitive 
to interpret changes in oscillation amplitude and frequency as changes in the number of active 
neurons, or the time between consecutive activations, respectively (Pesaran et al., 2018). 
However, a conceptual relationship between the oscillatory waveform and neuronal activity is 
less apparent. Previously we hypothesized that the effect of deep brain stimulation treatment of 
Parkinson’s disease on making motor cortical beta oscillations more symmetric resulted from a 
desynchronization effect of the stimulation treatment (Cole et al., 2017). Given spike-field 
coupling, it may be expected that waveform symmetry would reflect the relative activity of 
different neuronal populations—e.g., excitatory and inhibitory ensembles or intra- and 
interlaminar interactions—given that the time windows during which neuron populations are 
active covaries with cycle symmetry. 
 
Leveraging our novel cycle-by-cycle analysis approach, we sought to address several specific 
physiological hypotheses. First, we hypothesize that cycle-by-cycle variability in waveform 
shape can explain variance in neuronal firing rates, synchrony, and sequences. Next, we 
hypothesize that the presence of an oscillation, or burst, will change the statistics of local 
single-unit activity by increasing spiking, and spike synchrony, while stabilizing spike 
sequences. Finally, we hypothesize that the duration of an oscillatory burst can be predicted by 
the features of the very first oscillatory cycle in the burst. 
 
To test these hypotheses, we analyzed a public data set of simultaneous recordings of the 
hippocampal local field potential (LFP) and spiking data from neuron units in region CA1 
(Mizuseki et al., 2014). This data set was chosen because of the physiological properties of the 
hippocampal theta rhythm: its asymmetric waveform is stereotyped yet variable (Amemiya and 
Redish, 2018; Belluscio et al., 2012; Buzsáki et al., 1985; Trimper et al., 2014), there is 
established spike-field coupling with many hippocampal neuronal populations (Belluscio et al., 
2012; Mizuseki et al., 2009, 2011), and the symmetry of the theta waveform has been linked to 
memory and representation (Amemiya and Redish, 2018; Trimper et al., 2014).  
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Methods 
Python code to replicate the figures in this paper are shared at 
https://github.com/voytekresearch/Cole_2018_theta . 
 
Data collection 
 
Local field potentials (LFPs) and neuronal spiking were recorded from the CA1 pyramidal layer 
of the hippocampus in rats, and downloaded from the “hc3” dataset on the Collaborative 
Research in Computational Neuroscience (CRCNS) database (Mizuseki et al., 2014; Teeters et 
al., 2008). Briefly, extracellular recordings were made using multichannel silicon probes with 8 
channels per shank (vertical distance: 20 μm) and either 4 or 8 shanks (200 μm spacing). 
Spikes were sorted at the original sampling rate (20 kHz or 32.552 kHz) and labeled as putative 
pyramidal neurons or putative interneurons based on their action potential waveforms and 
cross-correlations. LFP recordings were downsampled to 1250 Hz or 1252 Hz. Nine rats in this 
database had recordings from CA1. Recordings were downloaded from 3 sessions for each rat 
on 3 different days, if possible (27 total recordings sessions). Recordings were roughly chosen 
to maximize the number of simultaneously recorded pairs of interneurons. 
 
The LFP recordings analyzed were taken from the deepest contacts on each shank. Normally, 
the traces from all recording contacts looked very similar due to their close proximity, but if the 
deepest contact significantly deviated from the other contacts, the next deepest contact was 
chosen. Recordings were collected from between 2 and 11 shanks in CA1 during each session. 
Shanks were analyzed independently (152 total shanks), and neurons were referenced to the 
theta recordings from the shank on which it was detected. 
 
Five recordings analyzed also had simultaneous tracking data of the rat’s position. The speed 
during a theta cycle was computed as the distance traveled between the two peaks divided by 
the period. In order to analyze changes in hippocampal theta patterns during movement (Figure 
3), theta cycles were conservatively classified as “moving” if the speed during that cycle was 
above the 90th percentile, and “stationary” if the speed was below the 10th percentile. 
 
Theta cycle analysis 
 
The presence and features of hippocampal theta oscillations were analyzed using our 
previously described cycle-by-cycle analysis approach (Cole and Voytek, 2018). Briefly, a broad 
bandpass filter (1-25 Hz) was applied and then peaks and troughs were localized (Figure 1A, 
dots) in order to segment the signal into theta (4-10 Hz) cycles. Note this broad bandpass filter 
did not substantially affect the theta oscillation asymmetry of interest (compare gray and black 
traces in Figure 1A). A peak-to-peak segmentation was chosen because spiking was 
concentrated around the trough (Figure 4D,E) and so bursts of spiking around the trough would 
be analyzed in a single cycle (rather than 2 cycles if a trough-to-trough segmentation was used). 
For each cycle, four features were computed as shown in Figure 1B: amplitude, period, 
rise-decay symmetry, and peak-trough symmetry. Rise and decay midpoints were defined as 
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the time points at which the voltage was halfway between the adjacent peak and trough 
voltages. These midpoints were used to represent the boundaries between peak and trough 
segments. Rise-decay symmetry is defined as the fraction of the period that is comprised of the 
rise phase. Peak-trough symmetry is similarly defined as the fraction of the period comprised of 
the peak phase, but the period in this case is bounded by consecutive rise midpoints instead of 
consecutive peaks. 
 
It is important to appreciate that the neural oscillations are not present during the entire 
recording (Feingold et al., 2015; Jones, 2016; Lundqvist et al., 2016). Therefore, it is useful to 
determine the segments of the signal in which the oscillation is present because measuring 
theta features of a signal segment without a prominent theta oscillation will add noise to the 
analysis (Cole and Voytek, 2018). Therefore, only cycles that are determined to be part of a 
theta oscillatory burst were analyzed. However, the task of identifying the segments of the 
signal with oscillatory components is challenging and currently unsolved (Kosciessa et al., 
2018). It is unclear if there are discrete times in which an oscillator is on and off, so perhaps 
there is no objective solution. 
 
The approach for burst detection has been thoroughly described previously (Cole and Voytek, 
2018), but briefly, a segment (cycle) of the signal was determined to be part of an oscillatory 
burst if its amplitude and period were comparable to adjacent cycles, and if its rise and decay 
flanks were mainly monotonic. Like with any burst detection algorithm, it relies on thresholds 
that must be semi-arbitrarily defined (Feingold et al., 2015; Hughes et al., 2012). In order to 
address this limitation, we ran our analysis with a range of burst detection parameters to assure 
that results were not simply dependent on one specific choice of settings. For the results shown 
in the main paper, the parameters were chosen as those that optimized the F1 score (equally 
weighted precision and recall) of a simulated signal with a signal-to-noise ratio that appears 
roughly similar to the hippocampal theta rhythm (Cole and Voytek, 2018). Thresholds were set 
such that adjacent cycles’ amplitudes and periods could be no more than 60% and 45% 
different, respectively, and the cycle flanks must be at least 80% monotonic. With these 
settings, theta oscillations were detected to be present 50-85% of the time across recordings. 
 
Neuronal spiking analysis 
 
Spikes were previously sorted using KlustaKwik (Harris et al., 2000) and clustering was 
manually adjusted using autocorrelograms, cross-correlograms, and spike waveform shape 
(Mizuseki et al., 2014). Spikes were compared to the LFP recorded from the same shank. 
Neurons with fewer than 100 spikes during putative theta oscillations were excluded from 
analysis, resulting in a data set of 119 putative interneurons and 760 putative pyramidal 
neurons. 
 
A measure of spike-field coupling (SFC) was computed for each neuron. The instantaneous 
phase of the LFP was estimated by interpolating between peaks (phase 0), troughs (𝝅,-𝝅), rise 
midpoints (-𝝅/2), and decay midpoints (𝝅/2), and the phase was determined at each spike time 
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(Siapas et al., 2005). The distribution of these spike phases (50 circular bins, each of width 
𝝅/25) was normalized by the distribution of phases in the recording in order to compute a firing 
rate in each phase bin. This normalization is critical because the consistent rise-decay 
asymmetry of the theta waveform results in more timepoints having positive phases compared 
to negative phases. SFC was then parametrized by the magnitude and phase of the mean 
vector, defined by summing each spike as a unit vector at the phase of firing. In the main 
manuscript, only spikes during theta bursts were included, as the theta phase is only reliable 
during these periods. In Supplementary Figure 1, these SFC estimates are compared to not 
having this theta burst requirement, as well as estimating the phase using the more 
conventional Hilbert transform-based approach, which has been shown to be systematically 
biased by waveform shape (Dvorak and Fenton, 2014). 
 
In order to compare neuronal activity to hippocampal theta features (e.g., symmetry), firing rate 
was computed for each cycle by dividing the number of spikes in the cycle by the period. The 
correlation between firing rate and each theta feature was quantified by fitting a general linear 
model (GLM) to predict the firing rate from the cycle features. A one-sample Wilcoxon signed 
rank test was then used to assess if there is a significant bias in these model coefficients. 
 
In supplementary analyses, we assessed if a cycle’s rise-decay symmetry was related to a 
neuron’s spike timing (Figure S2). However, there is no objectively correct reference frame by 
which to compute the time of a spike in a cycle, so three different ones were used in order to 
obtain a more holistic picture. For Figure S2A-D, the time for each cycle was normalized such 
that 0 corresponded to the former peak, and 1 corresponded to the latter peak. For Figure 
S2E-H, spike time was referenced to the trough of the cycle. For Figure S2I-L, phase was 
analyzed instead of spike time. In all cases, the modal spike time/phase was calculated for 
asymmetric and symmetric cycles, separately. Each cycle was classified as “asymmetric” (short 
rise, long decay) or “symmetric” using a threshold on the rise-decay symmetry (rdsym < 0.4: 
asymmetric; rdsym > 0.4, symmetric). A threshold of 0.4 rather than 0.5 was used because 
theta cycles were systematically more asymmetric with a shorter rise (rdsym < 0.4). To compute 
modal spike times, first spikes were binned (bin sizes: S2A-D: 5% of the cycle, S2E-H: 10 ms, 
S2I-L: 𝝅/10), and then this histogram was smoothed by convolving with a Gaussian (standard 
deviations: S2A-D: 5% of the cycle, S2E-H: 5ms, S2I-L: 𝝅/10). The spike time/phase with the 
highest firing rate (mode) was then determined for each neuron. This complicated method of 
binning and smoothing was designed to obtain a reasonable estimate of “average” since the 
mean and median do not have an intuitive interpretation when analyzing a circular process 
(periodic firing). 
 
Neuron synchrony and sequence analysis 
 
Spike timing relationships between simultaneously recorded pairs of neurons were analyzed in 
order to test if the theta rhythm contained information about the firing patterns of the CA1 
population. All simultaneously recorded pairs of neurons on the same shank were analyzed to 
identify events in which the two neurons fired within 20 ms of one another (a synchronous 
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event). The neuron with fewer spikes was used as the reference neuron, and if the other neuron 
did not fire within 20 ms of a spike, that spike was labelled as a nonsynchronous event. If two 
synchronous events occurred in the same cycle, only one was maintained. If a synchronous and 
nonsynchronous event occurred in the same cycle, all events in that cycle were excluded. A 
neuron pair was analyzed if at least 100 synchronous events occurred during the theta rhythm 
(431 putative pyramidal neuron pairs, 46 putative interneuron pairs). The mean symmetries of 
cycles were calculated separately for synchronous and nonsynchronous events, and the 
difference was recorded for analysis across all neuron pairs (Figure 6A-D). 
 
The fraction of spikes that were synchronous with the other neuron in the pair was computed 
separately during and not during theta bursts. The effect of the theta rhythm on synchrony was 
measured as the difference between these fractions (Figure 7F,G). This analysis of fractions 
necessitated sufficient samples in order to prevent one or a few events from significantly biasing 
results. Therefore, at least 25 synchronous and nonsynchronous events were required for both 
theta and non-theta periods (496 putative pyramidal neurons pairs, 45 putative interneurons 
pairs). Note that this is more neurons than were available for analysis with the aforementioned 
restriction of 100 synchronous events during the theta rhythm, because this requirement could 
be as few as 50 (25 pre + 25 post) synchronous events during the theta rhythm.  
 
Synchronous events between neuron pairs (see above) were further analyzed to assess the 
neuron sequence. Synchronous events were defined as “pre” or “post” if the reference neuron 
fired before or after the other neuron. However, there are important cases in which a 
synchronous event should be excluded from synchrony analysis. For example, if the reference 
neuron fires a burst of 5 spikes, followed by a spike from the other neuron, this should not count 
as 5 “pre” sequences when doing statistics because these samples are not independent. In this 
case, in which multiple reference spikes occur within 20 ms, only the reference spike that is 
closest to the other neuron’s spike is kept for analysis. Additionally, If two reference spikes are 
recorded within 40 ms and are assigned opposite sequences, both events are removed from 
analysis. The ratio of “pre” and “post” sequences was computed, such that the ratio was always 
greater than 1, since the identity of the reference neuron was arbitrary. Thus, this “sequence 
ratio” corresponds to the relative bias of the neuron pair to fire among the two sequences. For 
example, a neuron pair in which neuron 1 fires before neuron 2 (1→2) 50 times and neuron 1 
fires after neuron 2 (2→1) 75 times would have a sequence ratio of 1.5 (75:50 = 1.5:1). 
 
Results 
 
Cycle-by-cycle theta oscillation characterization 
 
Field potential recordings from all shanks in CA1 were analyzed to characterize their 
hippocampal theta waveforms. A broad bandpass filter (1-25 Hz) was applied to the raw data in 
order to improve extrema localization while preserving the general shape of the theta rhythm 
(compare the gray and black traces in Figure 1A). After peaks, troughs, and flank midpoints 
were identified (see Methods), four features of each theta cycle were quantified (Figure 1B): 1) 
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amplitude, 2) period, 3) rise-decay symmetry (“rdsym”), and 4) peak-trough symmetry (“ptsym”). 
Distributions of the cycle features are shown for an example recording. Note that the theta 
amplitude tended to be 2-3 mV (Figure 1C) and its period ranged between roughly 100 and 150 
ms (7 - 10 Hz, Figure 1D). Notably, the theta cycles exhibited consistent symmetry biases. 
Specifically, the rise segment tended to be shorter than the decay (rdsym < 0.5, Figure 1E), and 
the peak segment tended to be shorter than the trough (ptsym < 0.5, Figure 1F). 
 
We analyzed the consistency of these theta features across recordings. Recordings from most 
rats yielded cycle amplitudes around 2 mV, but recordings from 3 rats exhibited average 
amplitudes of 4-7 mV (Figure 1G). The average theta period was generally consistent across 
different recordings from the same rat (Figure 1H) and ranged roughly between 110 ms to 
135ms (7.5-9 Hz). Rise-decay symmetry and peak-trough symmetry were below 0.5 in the vast 
majority of recordings (rdsym: 93%, ptsym: 95%), representing that the stereotyped theta 
waveform with short rises and short peaks is reliable across rats (Figure 1I-J). 
 

 
Figure 1.  Cycle-by-cycle characterization of the rodent hippocampal theta rhythm.  
(A) Example trace of the local field potential recorded in the pyramidal layer of hippocampal 
CA1. The raw signal is plotted in light gray, and the black line shows the result of a broad 
bandpass filter (1-25 Hz). This broad bandpass filter reduces the high frequency noise that 
complicates extrema localization while still largely preserving the shape of the theta waveform. 
Identified peaks and troughs are denoted as black dots. 
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(B) Illustration of how four features of the theta cycle are computed. Black dots in the middle of 
the rise and decay flanks denote the flank midpoints, which demarcate the boundary between 
peak and trough phases. Amplitude is computed by averaging the rise voltage (dark blue line) 
and decay voltage (light blue line). The period is the time between consecutive peaks (red and 
orange lines together). Rise-decay symmetry is defined as the fraction of the period in the rise 
phase (orange line). Peak-trough symmetry is defined as the relative length of time of the last 
peak (light green line) compared to the central trough (dark green line). 
(C-F) Distributions of (C) amplitude, (D) period, (E) rise-decay symmetry, and (F) peak-trough 
symmetry across all theta cycles in the example recording. Note that both symmetry measures 
are mostly below 0.5, indicating that these are non-sinusoidal, asymmetric oscillations wherein 
the rise tends to be shorter than the decay, and the peak tends to be shorter than the trough. 
(G-J) Distributions of the average (G) amplitude, (H) period, (I) rise-decay symmetry, and (J) 
peak-trough symmetry across all CA1 recordings in 9 different rats (each color). Note in (G) that 
3 rats (f01, g01, and i01) have larger measured theta rhythms and in (H) that the recordings 
from the same rat tend to have consistent periods (i.e., steady theta frequency across 
recordings). Almost all recordings have, on average, relatively short (I) rise phases and (J) peak 
phases. 
 
Correlations between cycle features 
 
When analyzing the significance of a single cycle feature, it is important to also account for the 
other cycle features if they are correlated with one another. Therefore, we characterized how 
the different cycle features correlated to one another. In Figures 2A-C, we explore in a single 
recording how each other cycle feature relates to rise-decay symmetry. Note that these 
distributions have significant structure that indicates mutual information (i.e., dependence) 
between these features. In order to identify a consistency in this structure, we summarized each 
pairwise relationship with a nonparametric Spearman correlation coefficient (𝜌) for each 
recording, and compared these 𝜌 values across recordings. We observed that theta oscillations 
that were more rise-decay asymmetric (shorter, or faster, rise) had a larger amplitude (Figure 
2D, Wilcoxon signed rank test, N = 152, W = 2740, p < 10 -7), shorter period (higher frequency, 
Figure 2E, W = 2835, p < 10 -7), and had relatively longer peaks (Figure 2F, W = 28, p < 10 -25). 
 
Additionally, there were significant autocorrelations for each of the cycle features (Figure 2G). 
Theta amplitude (black line) is the most autocorrelated in the nearest cycles, followed by cycle 
period, and finally the cycle symmetries. Note that the dip in autocorrelation between periods of 
adjacent cycles reflects noise in peak localization, such that when a peak is detected artificially 
later, the latter cycle is artificially shorter and the former cycle is artificially longer. The relatively 
weak autocorrelations of rise-decay symmetry and peak-trough symmetry could reflect that 
these symmetry measures are inherently more noisy than estimates of amplitude and period 
and/or that oscillation asymmetry can better temporally resolve changes in physiology or 
behavior compared to amplitude and frequency. 
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Figure 2.  Correlations between features of hippocampal theta cycles. 
(A-C) For an example recording (same as in Figure 1A-F), there are significant correlations 
between the different cycle features. Each dot represents a single theta cycle. The rise-decay 
symmetry is slightly correlated to the cycle (A) amplitude, (B) period, and (C) peak-trough 
symmetry. 
(D-F) Distributions of Spearman correlation coefficients (ρ) across hippocampal recordings that 
relate the theta rise-decay symmetry on each cycle to its (D) amplitude, (E) period, and (F) 
peak-trough symmetry. Note that cycles that have a relatively short rise (rdsym < 0.5) tend to 
(D) have greater amplitude, (E) shorter periods, and (F) longer peaks (generally more 
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peak-trough symmetric). Gaussian outlines are centered at zero with a variance  equal to the 
distribution of the data, to visually compare results against the null hypothesis. 
(G) Lines show the correlation of features between cycles separated by increasing temporal 
distance (x-axis). The autocorrelations plotted are the averages across all 9 rats. Note that 
autocorrelations slowly decay over time, but remain consistently positive for several seconds 
(average cycle ~130ms). Amplitude (black) is the most autocorrelated, followed by the period 
(red), and the symmetries (blue: rise-decay, green: peak-trough) suggesting that there is more 
cycle-by-cycle independence of the symmetry metrics compared to amplitude or period. 
 
Rat movement and theta cycle features 
 
For five sessions between two rats, spatial position data was available, and periods of fast 
movement and nonmovement were identified by computing the rat’s speed during each theta 
cycle (see Methods). Average theta cycle features were computed during these two types of 
periods, and significant differences were observed in all of them (Figure 3). Specifically, relative 
to nonmovement, while the rat was moving, the hippocampal theta oscillation was larger in 
amplitude (Figure 3A, N = 35, W = 78, p < 10 -3), had a shorter period (faster frequency, Figure 
3B, W = 0, p < 10 -6), was more rise-decay asymmetric (Figure 3C, W = 4, p < 10 -6), and was 
more peak-trough asymmetric (Figure 3D, W = 0, p < 10 -6). Note these p-values should be 
interpreted with caution because the data come from only 2 different rats, so they do not 
necessarily generalize across the population. That said, these results are consistent with past 
reports of large, asymmetric, and relatively fast theta oscillations during running (Amemiya and 
Redish, 2018; Belluscio et al., 2012; Buzsáki et al., 1985; Hentschke et al., 2007). 
 
In addition to these univariate statistics, we also fit a general linear model (GLM) to predict the 
rat’s speed during a theta cycle based on the four cycle features. This complementary approach 
is necessary because the cycle features are correlated to one another (Figure 2). Across 
sessions, the coefficients for period, rise-decay symmetry, and peak-trough symmetry were 
consistently negative, but the predictive sign of amplitude was not consistent (Figure 3E). 
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Figure 3. Comparison of hippocampal theta cycle features between movement and 
nonmovement. 
(A-D) Average properties of the decile of cycles in which the rat moved the most (x-axis, 
“Moving”) compared to the decile of cycles in which the rat moved the least (y-axis, 
“Stationary”). Each dot represents the recording from one shank in CA1, and each color 
represents a unique recording session for which position tracking was available from two rats. 
Note that in (A), the points mostly lie below unity (black line), indicating that theta amplitude is, 
on average, greater when the rat is moving. Additionally, while the rat is moving, (B) the theta 
period tends to be shorter, and (C) the cycles become both more rise-decay asymmetric 
(shorter rise) and (D) peak-trough asymmetric (shorter peak). 
(E) For each recording, a linear model was fit to predict the rat’s speed from the 4 cycle 
features. The bars show the average coefficient for each feature across all CA1 shanks 
simultaneously recorded in a session (error bars represent 95% confidence interval). Note that 
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the amplitude feature does not consistently predict speed, but faster movement in all sessions 
was predicted by shorter periods and asymmetry values (i.e., more asymmetric with shorter 
rises and shorter peaks). 
 
Spike-field coupling between CA1 neurons and hippocampal theta 
 
We now shift focus to how the features of the hippocampal theta rhythm relate to the network 
activity of neurons in hippocampal region CA1. Individual units were previously sorted and 
classified as putative pyramidal neurons and interneurons (Mizuseki et al., 2014) (see Methods). 
Figure 4A shows an example simultaneous recording of the theta oscillation (black) and spiking 
of a putative pyramidal neuron (red). As expected, the pyramidal neurons have significantly 
lower firing rates (Figure 4B, generally below 2 Hz) than the interneurons (Figure 4C, generally 
20-40 Hz).  
 
The correlation between neuron firing and the phase of the theta rhythm (i.e., spike-field 
coupling, SFC) has been well established in hippocampal neurons (Mizuseki et al., 2009, 2011). 
Figure 4A shows an example of this correlation for a pyramidal neuron with particularly strong 
SFC. This neuron consistently fires during the rise phase of the field potential (-𝝅/2). Indeed, 
most pyramidal neurons fire at higher rates in the rise phase compared to the decay phase. 
Figure 4D shows the magnitude and phase of coupling as a black vector for each neuron, and 
the mean vector (red, 0.11 e-0.77𝝅) shows that the preferred phase for pyramidal neuron activity is 
in the rise period soon after the trough. In contrast, interneurons tend to fire in the decay phase 
prior to the trough (Figure 4E, mean vector 0.14 e0.85𝝅). 
 
In our analysis, we estimated SFC using the waveform-based phase estimate (see Methods) 
and only during periods of the signal in which theta was bursting. However, conventional SFC 
analysis uses portions of the signal in which the oscillation is not present, which negatively 
biases the coupling magnitude estimate (Supplementary Figure 1). Additionally, conventional 
approaches use a phase estimate based on the Hilbert Transform, which biases the phase 
estimate due to its narrowband filtering requirement and the nonsinusoidal nature of the theta 
rhythm (Supplementary Figure 1). In other words, burst detection and cycle-by-cycle 
parametrization enhances instantaneous phase and SFC estimates. 
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Figure 4.  Spike-field coupling of CA1 neurons to the hippocampal theta rhythm. 
(A) Example CA1 field potential recording (black) and spike times (red) for a putative pyramidal 
neuron that tends to fire during the rise phase of theta oscillations. 
(B-C) Distributions of firing rates for all putative (B) pyramidal neurons, and (C) interneurons in 
the data set. Most pyramidal neurons have a firing rate below 2 Hz, and most interneurons fire 
between 20 and 40 Hz. 
(D-E) Distributions of spike-field coupling for putative (D) pyramidal neurons, and (E) 
interneurons. Each black line represents the coupling of a single neuron. The direction of the 
line reflects the phase at which the neuron is most likely to fire (phase 0 is the peak), and the 
magnitude of the line reflects the strength of the coupling. The red line shows the mean vector. 
Note that pyramidal neurons are most likely to fire after the trough (phase 𝝅/-𝝅), while 
interneurons most likely fire before the trough. 
 
Neuronal firing rate covaries with theta cycle features 
 
As a complement to the well-known SFC effects, we analyzed the data in order to further 
identify relationships between neuronal firing and the LFP. GLMs were fit to predict the firing 
rate of neurons during each cycle from their normalized (z-scored) cycle features: amplitude, 
period, rise-decay symmetry (rdsym), and peak-trough symmetry (ptsym). The model 
coefficients (𝜷) were recorded for each model and distributions of model coefficients across all 
neurons are shown in Figure 5A (pyramidal neurons) and 5B (interneurons). Both neuron types 
had higher firing rates during theta cycles with higher amplitude (pyramidal: N=760, W = 74416, 
p < 10 -30, 𝜷avg = 0.06, interneuron: W = 1072, p < 10 -10, 𝜷avg = 2.04), shorter periods (pyramidal: 
W = 66820, p < 10 -37, 𝜷avg = -0.08, interneuron: W = 337, p < 10 -16, 𝜷avg = -2.42), relatively short 
rise phases (rdsym, pyramidal: W = 117298, p < 10 -5, 𝜷avg = -0.04, interneuron: W = 613, p < 
10 -14, 𝜷avg = -1.41), and relatively short peak phases (ptsym, W = 97066, p < 10 -14, 𝜷avg = -0.04, 
interneuron: W = 1366, p < 10 -8, 𝜷avg = -0.96). Not only is neuronal firing rate reflected by the 
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commonly analyzed amplitude and frequency features, but it is also reflected significantly in the 
waveform symmetry. 
 
We noticed that the cycle features that correlated to increased movement (larger, faster, more 
asymmetric) were in the same direction as those correlated to increased firing rate (Figure 3). 
Therefore, for the five sessions for which position tracking data was available, we tested if the 
symmetry features were still significant predictors of firing rate after the speed of the rat was 
accounted for. The GLM coefficients for these symmetry features remained consistently 
negative for both pyramidal neurons (N=760, rdsym: W = 19523, p < 10 -94; ptsym: W = 14535, p 
< 10 -102) and interneurons (N=119, rdsym: W = 50, p < 10 -19; ptsym: W = 90, p < 10 -19). 
 
Note that the coefficient magnitude was largest for period and amplitude and smaller for the 
symmetry features, potentially indicating that the former features are generally more informative 
than the latter. Also note that the coefficients were an order of magnitude higher for the firing 
rate of interneurons, and the GLM’s average explained variance was 21% for interneurons 
compared to only 2.9% for pyramidal neurons. This difference can largely be attributed to the 
differences in firing rates between these neuron types, i.e., there will be high variance in the 
firing rate of a pyramidal neuron between theta bursts simply because these neurons fire more 
sparsely. This can be confirmed by noting a high correlation between a neuron’s firing rate and 
the GLM’s explained variance (Pearson r = 0.74). 
 
When exploring univariate relationships, we noticed that effect sizes increased substantially if 
analysis was done with the basic unit of a burst as opposed to a single cycle. This is visualized 
for the relationship between firing rate and rise-decay symmetry for an example neuron. 
Rise-decay symmetry explains greater variance in firing rate when the fundamental unit is a 
burst (Figure 5D, 𝜌 =-0.49) compared to if the fundamental unit is a cycle (Figure 5C, 𝜌 =-0.17). 
 
One potential explanation for a correlation between a neuron’s firing rate and theta asymmetry 
is that a neuron will fire at a higher rate if more time is spent in its preferred firing phase. In other 
words, if a single cycle of an oscillation has a very fast decay time, then each phase in that 
decay will last for less time than a more sinusoidal oscillation of the same frequency. Therefore, 
a neuron that prefers to fire during the decay phase will have a negative correlation between 
firing rate and rise decay symmetry (shorter rise, longer decay: increased firing). Therefore, we 
computed the circular-linear correlation (Berens, 2009) between a neuron’s preferred phase and 
this correlation coefficient and found that this distribution was significantly nonuniform (𝜌 = 0.20, 
p < 10 -7). Specifically, there was a significant negative correlation between this correlation 
coefficient (firing rate ~ rdsym) and the difference between a neuron’s preferred phase and the 
theoretical rise midpoint phase (-𝝅/2) (Figure 5E, Spearman correlation, 𝜌 = -0.14, p < 10 -4). 
These statistics support the aforementioned hypothesis that a neuron will fire at a higher rate if 
a longer part of the theta cycle is spent in its preferred phase. 
 
This is extended by exploring the correlation between a neuron’s firing rate and theta 
peak-trough symmetry. Again, the circular-linear correlation found a nonuniform distribution in 
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the neuron’s preferred phase and the correlation coefficient between firing rate and peak-trough 
symmetry (𝜌 = 0.22, p < 10 -9). Analogous to rise-decay symmetry, there was a significant 
negative correlation between this correlation coefficient (firing rate ~ ptsym) and the difference 
between a neuron’s preferred phase and the peak (Figure 5F, Spearman correlation, 𝜌 = -0.13, 
p < 10 -3). Given these results, the nonsinusoidal waveform shape of the hippocampal theta 
rhythm seems to index the degree to which different neuronal populations are active, depending 
on their preferred firing phase. 
 

 
Figure 5.  Theta cycle features are correlated to neuronal firing rate. 
(A-B) Linear models were fit to predict the firing rate of each neuron during a theta burst based 
on the average features of the component cycles. Each dot denotes the GLM coefficient for the 
model of the firing rate of an individual (A) pyramidal neuron or (B) interneuron. Increased theta 
amplitude and decreased theta period are associated with increased firing rates in both 
pyramidal neurons and interneurons. More rise-decay asymmetric (shorter rise) oscillations are 
also associated with faster firing rates in both pyramidal neurons and interneurons. More 
peak-trough asymmetric (shorter peak) oscillations are associated with faster firing rates in both 
pyramidal neurons and interneurons. 
(C-D) Visualization for a single putative interneuron that fires at a higher rate during cycles that 
are more rise-decay asymmetric (shorter rise), emphasizing the overall trend across all 
interneurons. Each dot represents one cycle in (C), or one burst in (D). Note that this correlation 
is even clearer when firing rate and rise-decay symmetry are averaged over a burst of cycles 
(D) compared to a single cycle (C). 
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(E) The correlation between each neuron’s firing rate and rise-decay symmetry is compared to 
its preferred firing phase. Specifically, the x-axis shows the difference between the preferred 
firing phase and the rise midpoint (-𝝅/2). Notice the negative correlation, indicating that the more 
that neurons prefer the decay phase, the more their firing rates tend to be stronger when the 
decay period is longer. 
(F) Similar to (E) but comparing the difference between a neuron’s preferred phase and the 
peak to the correlation coefficient between firing rate and peak-trough symmetry. This negative 
correlation indicates that if a neuron’s preferred phase is the trough, its firing rate is stronger 
when the trough period is longer. 
 
Theta oscillation features reflect neuronal synchrony and sequence 
 
In addition to the firing rates of individual neurons, the coordinated activation of a population of 
neurons is thought to be important for neural computation. In particular, it is theorized that 
neurons transmit information more efficiently when they fire synchronously as opposed to 
asynchronously (König et al., 1996; Roy and Alloway, 2001; Salinas and Sejnowski, 2000; 
Stevens and Zador, 1998). We first attempted to analyze how differences in waveform 
symmetry related to differences in neuronal spike timing (Supplementary Figure 2), but this 
analysis proved to be prone to significant confounds (Supplementary Figure 3). Therefore, we 
investigated how features of the theta rhythm may correlate to synchrony between pairs of 
neurons. If these features differentiate degrees of synchrony, this would suggest that these 
oscillatory features contain important information about the function of the underlying neural 
oscillator. 
 
Pairs of neurons were defined as firing synchronous when they fired within 20 ms of one 
another (see Methods). Compared to nonsynchronous spiking, during synchronous events, 
theta oscillations had increased amplitudes (pyramidal: N = 431 pairs, W = 24119, p < 10 -17, 
2.1% average amplitude increase; interneuron: N = 46 pairs, W = 179, p < 10 -4, 4.2% average 
amplitude increase) and shorter periods (pyramidal: W = 30573, p < 10 -9, 0.9% average period 
decrease; interneuron: W = 26, p < 10 -7, 3.0% average period decrease). Additionally, 
synchronous interneuronal spiking tends to occur during both more rise-decay asymmetric 
(Figure 6A, W = 123, p < 10 -5, 3.2% average decrease) and peak-trough asymmetric cycles 
(Figure 6B, W = 358, p = 0.046, 0.8% average decrease). The relationship between pyramidal 
neuron synchrony and asymmetry was weaker, if at all present (Figure 6C, rdsym: W = 43440, p 
= 0.23, 0.3% average decrease; Figure 6D, ptsym: W = 39459, p = 0.006, 0.5% average 
decrease). Together, these results show that theta cycle features contain some information 
about neuronal synchrony. 
 
We further investigated if synchrony between a simultaneously recorded pyramidal neuron and 
interneuron correlated to theta cycle features. We found similar trends as for pairs of 
interneurons such that pyramidal-inhibitory synchrony was related to higher amplitude, faster 
period, and more asymmetric theta cycles (N = 517 pairs; amplitude: W = 32508, p < 10 -23, 2.7% 
average amplitude increase; period: W = 25841, p < 10 -32, 1.8% average period decrease; 
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rise-decay symmetry: W = 51641, p < 10 -5, 0.8% average decrease; peak-trough symmetry: W = 
47218, p < 10 -8, 1.0% average decrease). 
 
In addition to the importance of neuronal synchrony, the relative timing between neuron 
activations (sequence) is also theorized to reflect meaningful aspects of neural computation 
(Pastalkova et al., 2008; Skaggs and McNaughton, 1996; Wehr and Laurent, 1996; Yu and 
Margoliash, 1996). For example, neural circuit activation may be qualitatively different when 
neuron 1 (N1) fires before neuron 2 (N2) compared to when N1 fires after N2. Similarly, two 
oscillatory processes may be considered qualitatively different if in one, N1 and N2 have a 
regular sequence while in the second, N1 and N2 do not have a consistent firing sequence. 
Because the designation of N1 versus N2 is arbitrary, we measured sequence consistency as a 
“sequence ratio”, which was the ratio of synchronous instances in which N1 fired before N2 to 
when N1 fired after N2 (see Methods).  
 
This allows us to analyze if the theta cycle features contained information about the underlying 
neuronal sequences. This could indicate that the symmetry of cycles may reflect differences in 
the state of the neuronal network and its computational roles. This would help explain a recent 
result in which neuronal activity could be used to decode current position better during more 
asymmetric (shorter rise) hippocampal theta cycles, and future position better during more 
symmetric cycles (Amemiya and Redish, 2018). In an example pair of neurons, the theta 
oscillation is mostly asymmetric (short rise) when N1 fires after N2, but more symmetric when 
N1 fires before N2 (Figure 6E, U = 950, p = 0.028). In another example neuron pair, the theta 
oscillation is more peak-trough asymmetric (short peak) when N1 fires before N2, but the 
oscillation is more symmetric when N1 fires after N2 (Figure 6F, U = 1098, p = 0.001). 
 
We tested the significance of these sorts of effects across all eligible neuron pairs in our data 
set (see Methods). For each neuron pair, the distribution of cycle features was determined 
separately for the two sequences (N1 before N2, and N1 after N2), and a nonparametric, 
unpaired two-sample test (Mann-Whitney U) was applied to test if there was a significant 
difference in the cycle feature distribution between the two sequence events. The number of 
neuron pairs with a significant difference in cycle feature distribution (p < 0.05) was then 
compared to the number of neuron pairs expected by chance to have a significant effect (5%) 
using a binomial test (Figure 6G). It is notable that each cycle feature significantly correlated 
with firing sequence for both pyramidal neurons (amplitude: 41/278 pairs, p < 10 -9, period: 
53/278 pairs, p < 10 -16, rdsym: 26/278 pairs, p = 0.002, ptsym: 34/278 pairs, p < 10 -5) and 
interneurons (amplitude: 17/45 pairs, p < 10 -10, period: 23/45 pairs, p < 10 -17, rdsym: 8/45 pairs, 
p = 0.002, ptsym: 8/45 pairs, p = 0.002). Because spike order is arbitrary, we cannot 
overinterpret the results, though we can say there are consistent cycle feature differences for 
different spike sequences. These results were qualitatively similar when the time window of a 
“synchronous event” was varied between 10 ms and 50 ms. Furthermore, results were similar 
when investigating the sequence of neuron pairs consisting of one pyramidal neuron and one 
interneuron, and all tests withstood controls for multiple hypothesis testing by false discovery 
rate (FDR) correction (Benjamini and Hochberg, 1995). 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452987doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=263708,84098,557119,557347&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
http://f1000.com/work/citation?ids=263708,84098,557119,557347&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
http://f1000.com/work/citation?ids=5052623&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5890384&pre=&suf=&sa=0
https://doi.org/10.1101/452987
http://creativecommons.org/licenses/by-nc/4.0/


 

 
Figure 6.  Neuronal synchrony and sequence are correlated with theta cycle features. 
(A-B) Distributions of the difference in (A) rise-decay symmetry and (B) peak-trough symmetry 
between synchronous events compared to nonsynchronous events for putative pairs of 
interneurons. Gaussian outlines are mean of 0 and std equal to the distribution of the data, to 
visually compare results against the null hypothesis. 
(C-D) Same as (A-B) but for pyramidal neurons, which do not have a strong relationship 
between their synchrony and the (C) rise-decay symmetry and (D) peak-trough symmetry of the 
ongoing hippocampal theta rhythm 
(E-F) Example pairs of putative pyramidal neurons showing significantly different distributions of 
(E) rise-decay symmetry or (F) peak-trough symmetry during cycles with one sequence 
compared to the opposite sequence. 
(G) Fraction of neuron pairs with a significant relation (One-sample Wilcoxon signed rank test, p 
< 0.05) between the sequence of firing and the theta cycle features. Note that the firing 
sequence of neuron pairs significantly relates to all four theta cycle features, and the effect is 
stronger for pairs of putative interneurons. Error bars denote the 95% binomial confidence 
interval for the number of significant neuron pairs. The dotted line denotes 5% of neurons that, 
by chance, would have a significant result. 
 
Relationship between theta bursting and cycle features  
 
It is important to acknowledge that oscillations are not present in the signal at all points in time 
(Jones, 2016). This holds true for the hippocampal theta rhythm, perhaps the most stationary 
neural oscillation recorded in awake, behaving mammals, yet there are still periods in which it is 
clearly absent from the LFP. We used a burst detection algorithm (see Methods) to determine 
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the time periods in which the theta oscillation was present. Figure 7A shows the distribution of 
burst duration throughout the data set. There was a minimum requirement of 3 cycles for an 
oscillatory period to be considered as a burst. 
 
We used the burst detection method to test if there is a systematic (perhaps causal) relationship 
between the features of the first cycle in a burst and the burst duration. This could be the case if 
the properties of a specific physiological process that is related to oscillatory stability is 
detectable in the cycle features. For each recording, we fit a GLM to predict the burst duration 
from the amplitude, period, and symmetries of the first cycle. Features were normalized using a 
z-score relative to all cycles in that recording. We then assessed the consistency in the GLM 
coefficients by computing the coefficient distributions across recordings (Figure 7B). 
 
Hippocampal theta bursts tended to be longer when the first cycle has a larger amplitude (N = 
152, W = 2886, p < 10 -7, average coefficient = 0.67), shorter period (W = 1262, p < 10 -16, 
average coefficient = -0.78), is more rise-decay asymmetric (shorter rise, W = 2924, p < 10 -6, 
average coefficient = -0.33), or is more peak-trough asymmetric (shorter peak, W = 3250, p < 
10 -5, average coefficient = -0.33). Therefore, all four cycle features are significantly predictive of 
the duration of the theta burst and together explain 4.9% of the variance in burst duration. 
Coefficients were qualitatively similar when speed was added as an additional predictor to the 
model for the neuronal firing rate during the sessions that contained position information (Figure 
3). This suggests that these specific cycle features (high amplitude, short period, asymmetric) 
are indicative of a neural state in which the theta oscillation is more stable in time. 
 
Segmenting the recordings into bursts also allows for comparing consecutive bursts. It is 
feasible that adjacent bursts would have similar features to one another, or for the cycle 
features to be relatively independent. The latter scenario would suggest that each burst of a 
theta oscillation is like an independent event that is unrelated to the previous burst of theta, 
which would have significant functional implications. To analyze this, we computed the average 
cycle features across all cycles in each burst. In most cases, we observe a positive correlation 
between the cycle features of adjacent bursts (Figure 7C). However, it is important to note that 
this is not always the case. There is not a significant correlation between adjacent bursts for 
average: amplitude in 22% of recordings, period for 30% of recordings, rise-decay symmetry for 
47% of recordings, and peak-trough symmetry for 36% of recordings. Therefore, the 
dependence between adjacent theta bursts may depend on the specific context of the recording 
and local physiology. 
 
Theta oscillation presence relates to the firing rate, synchrony, and sequence of neuronal 
activity 
 
Analysis of theta bursts on this dataset additionally allowed us to examine how CA1 neuronal 
network activity differed between periods of the recording with and without theta oscillations. For 
instance, both pyramidal neurons and inhibitory neurons tend to fire more during periods of the 
signal in which theta oscillations were detected (Figure 7D,E). This result was expected 
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because of the established correlation between running and both increased firing rate and 
presence of theta activity (McNaughton et al. 1983). The presence of a theta oscillation is 
associated with an average 11% increase in pyramidal neurons (N=760, W=67682, p < 10 -36), 
and 15% increase in interneuron, firing rates (N=119, W=569, p < 10 -14). Again, we also studied 
synchrony between neurons. On average, synchronous events in a pair of pyramidal neurons 
had a 7% decreased likelihood during a theta oscillation burst (Figure 7F, N = 496 pairs, W = 
23829, p < 10 -31) despite the increase in pyramidal neuron firing rate during theta oscillations. In 
contrast, synchronous events were on average 9% more likely during a theta oscillation for pairs 
of interneurons (Figure 7G, N = 45 pairs, W = 43, p < 10 -7). 
  
We next analyzed if there was a difference in the relative consistency of neuron sequences 
between recording segments with and without theta oscillations. We hypothesized there to be a 
more consistent firing pattern during time periods with a prominent oscillation, with the idea that 
the oscillatory process is regularly firing a sequence of neurons. However, across all neuron 
pairs with a sufficient number of sequence observations (see Methods), there was no difference 
in the sequence consistency during segments with and without a theta oscillation (Figure 7H,I, 
pyramidal: N = 133, W = 4188, p = 0.55, interneuron: N = 44, W = 487, p = 0.93). This result 
was robust when varying the time window of sequence analysis between 10 ms and 50 ms. 
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Figure 7.  Characteristics of theta bursts and their relationship to cycle features and 
neuronal firing. 
(A) Distribution of durations of all theta bursts in the data set. The minimum burst duration was 
set to 3 cycles. 
(B) General linear models were fit to predict the duration of a theta burst based on the features 
of the first cycle. One model was computed for each hippocampal theta recording, and the 
distribution of coefficients across all recordings are shown. Note that theta bursts tend to be 
longer when cycles have higher amplitudes, shorter periods, and are more asymmetric (shorter 
rises and shorter peaks). 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452987doi: bioRxiv preprint 

https://doi.org/10.1101/452987
http://creativecommons.org/licenses/by-nc/4.0/


(C) Correlation between average cycle features in adjacent bursts. Histograms show the 
distribution of Spearman correlation coefficients across all recordings. As indicated by 
distributions shifted to the right of zero, adjacent bursts tend to have more similar amplitudes, 
periods, and symmetries. 
(D-E) Distributions of the normalized difference in neuronal firing rate between periods of theta 
oscillation and no theta oscillation for putative (D) pyramidal neurons and (E) interneurons. Note 
that the distributions are shifted to the right of zero, reflecting that putative excitatory and 
inhibitory neurons fire more when a theta oscillation is present. Gaussian outlines are mean of 0 
and std equal to the distribution of the data, to visually compare results against the null 
hypothesis. 
(F-G) Distributions of the normalized difference in neuronal synchrony between periods of theta 
oscillation and no theta oscillation for putative (F) pairs of pyramidal neurons or (G) pairs of 
interneurons. Note that during a theta oscillation, synchronous events between pyramidal 
neurons were less likely to occur (average 7% decrease), but more likely for interneuron pairs 
(average 9% increase). 
(H-I) Comparison of putative (H) pyramidal neuron and (I) interneuron sequence ratio during 
periods of theta oscillation and no theta oscillation. The “sequence ratio” measures the 
consistency in firing between a pair of neurons (neuron 1 and neuron 2, i.e., 1→2, or 2→1). 
Therefore, a sequence ratio of 1 represents both sequences occurred an equal number of 
times, and a sequence ratio of x means that one order was x times as common as the opposite 
order. Each dot represents a pair of neurons. The crosshare represents the mean and s.e.m. 
along each axis. Note for both neuron types, there is no significant difference in sequence ratio 
between periods with and without theta oscillations. 
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Figure 8. Schematized summary of observed relationships between theta oscillation 
bursting, waveform shape, and local neuronal firing patterns. 
A field potential (top) was simulated to show three different regimes of a hippocampal recording: 
a burst of asymmetric theta cycles (left), non-oscillatory activity (center), and a burst of 
symmetric theta waves. The asymmetric period would be most associated with the rat running, 
given its higher amplitudes, shorter periods, and relatively short rises and peaks compared to 
the latter symmetric theta burst (c.f. Figure 3). The rise-decay symmetry and peak-trough 
symmetry of asymmetric cycles are negatively correlated (c.f. Figure 2C,F). Additionally, the 
theta burst with more asymmetric cycles lasts longer than the symmetric burst (c.f. Figure 7B). 
Below the field potential is schematized firing of 3 pyramidal neurons (PY1, PY2, PY3) and 3 
interneurons (IN1, IN2, IN3). Vertical lines indicate spikes from each neuron. The pyramidal 
neurons are coupled to the rise period after the trough, whereas the interneurons are coupled to 
the decay period before the trough (c.f. Figure 4). These neurons fire most when their preferred 
phase of firing is longest (c.f. Figure 5E,F) as well as firing most during the asymmetric burst 
(c.f. Figure 5, Figure 7D,E). During the asymmetric burst, interneurons are most synchronous 
(thick spikes) with one another (c.f. Figure 6B, Figure 7G). Pyramidal neurons are most 
synchronous when no theta rhythm is present (c.f. Figure 7F). The relative sequence of a pair of 
pyramidal neurons (PY1, PY2) and a pair of interneurons (IN1, IN2) are systematically different 
between the asymmetric and symmetric theta bursts (c.f. Figure 6E-G). Arrows are drawn and 
spikes are colored to clearly indicate the sequence of these neuron pairs (blue spikes are the 
sequence 2→1, red spikes are 1→2), though note that the sequences are arbitrary. However, 
when collapsing across both periods of theta oscillations, the sequence is no more stereotyped 
than during the time between theta bursts (c.f. Figure 7H,I). 
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Discussion 
 
This study provides a unique perspective on the rodent hippocampal theta oscillation by 
segmenting theta into individual cycles and analyzing how local spiking relates to nonsinusoidal 
cycle features and theta oscillation presence, as summarized in Figure 8. Such analyses are 
only possible using analytics based in the time domain, such as the cycle-by-cycle framework. 
 
Specifically, we uncover several novel characteristics of the nonsinusoidal theta oscillation and 
its relationship to putative excitatory and inhibitory firing rates, spike synchrony, and spike 
sequences. For one, the peak-trough asymmetry of the theta rhythm has not previously been 
parameterized or studied, but here we find that it has a characteristic asymmetry that 
systematically relates to both rat movement and neuron sequence. Our analysis of rise-decay 
symmetry extends significantly on the previous, mostly qualitative, reports of the sawtooth-like 
nature of the hippocampal theta rhythm (Amemiya and Redish, 2018; Belluscio et al., 2012; 
Buzsáki et al., 1985; Hentschke et al., 2007). 
 
Recent work has shown that the theta rise-decay symmetry correlates with the ability to decode 
present or future position from place cell firing (Amemiya and Redish, 2018). Specifically, 
current position was more accurately decoded during asymmetric theta cycles, and future 
position was better decoded during symmetric cycles. Here we extend this result by 
demonstrating that this rise-decay symmetry correlates with local pyramidal neuron and 
interneuron firing patterns. Therefore, the higher firing rates, greater synchrony, and specific 
pairwise sequences in CA1 during asymmetric cycles may be important neural computational 
elements for representing current position, while representing future position is supported by 
lower firing rates and synchrony and alternative neuronal sequences. 
 
Non-independence between cycle features and adjacent cycles 
 
During analysis, awareness that the cycle features are not independent of one another (Figure 
2A-F) is critical. Nonsinusoidal waveform shape is complex, with many possible features for 
parametrization. Additionally, it is important to recognize that features are not independent 
across cycles (Figure 2G). The observations that all cycle features are significantly correlated, 
not only in adjacent cycles but also with nearby cycles, indicates the speed at which the 
oscillatory dynamics can change. Concretely, neural activity is more similar in two theta cycles 
within a few seconds compared to two theta cycles that are minutes apart. Because of this lack 
of independence across cycles, the p-values for statistical tests within a recording should be 
cautiously interpreted. Therefore, in this paper, we instead computed a single statistic for each 
recording (e.g., correlation coefficient between firing rate and rise-decay symmetry) and tested if 
the statistics are randomly distributed around zero. 
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Burst detection and analysis of oscillatory time periods 
 
Algorithmic determination of theta burst periods allowed us to study how cycle features vary 
across bursts of theta oscillations. Across cycles, we observed that the theta features were 
consistently autocorrelated (Figure 2G). It is possible this autocorrelation does not extend 
across distinct theta bursts but only exists within a burst. However, Figure 7C showed that the 
average cycle features of adjacent bursts are generally positively correlated. This could allow us 
to conclude that the neural dynamics that periodically occur during theta cycles slowly change 
over time. However, as mentioned in Methods, burst detection algorithms are not perfect, so this 
result should not be considered definitive. Autocorrelation of cycle features between bursts 
could potentially be an artifact of the algorithm artificially splitting a single burst into multiple 
bursts due to noise from aperiodic components of neural activity. In this scenario, the truth may 
be that when a theta burst ends and a new one begins, their oscillatory dynamics are essentially 
independent of one another. This interpretation still is possible for the minority of the recordings 
in which no correlation was observed between features in adjacent bursts (Figure 7C). 
 
This prediction of burst duration based on cycle features (Figure 7B) reflects an interesting 
aspect of the underlying physiology, in which oscillatory network dynamics that produce more 
asymmetric field potentials are more stable than those that produce more symmetric waveforms. 
This is reminiscent of previous modeling studies that showed that more asymmetric oscillators 
synchronize more quickly than more sinusoidal oscillators (Somers and Kopell, 1993). Note that 
theta is generally faster and more asymmetric during running periods (Figure 3), and it is 
generally known that hippocampal theta is persistent during running periods (McFarland et al., 
1975; Teitelbaum and McFarland, 1971; Vannderwolf, 1964). Therefore, this observed 
correlation between cycle features and stationarity is likely partly a consequence of analyzing 
periods of movement and non-movement together. That said, as stated in the Results, these 
trends held when accounting for speed in the linear model to predict burst duration from the 
cycle features. Future analysis using data with thorough behavioral tracking and annotation can 
tease apart this result in more detail. 
 
Relationship between theta oscillation and neuronal activity 
 
In addition to analyzing trends within the LFP, a burst detection algorithm also opens the 
possibility for comparing neuronal activity between periods with and without a theta oscillation. 
We observed that, in general, both putative pyramidal neurons and interneurons increase in 
firing rate during a theta oscillation (Figure 7A,B). From this result, it would be expected that 
there would be more synchrony between neurons (i.e., pairs of neurons would more likely fire 
together within a short time window). Indeed, this was observed for interneurons (Figure 7B), 
but surprisingly the opposite trend was observed in general for pyramidal neurons (Figure 7A). 
That is, pyramidal neurons were less synchronous with one another during theta oscillations. 
From this, we conclude that theta oscillations do no necessarily enhance synchrony between 
neurons in a local population, which may not be expected given the widespread idea that 
oscillations synchronize neurons (Engel et al., 1990, 1997, 2001; Fries, 2005; Livingstone, 
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1996; Singer, 1999). This idea should be further explored regarding the relative synchronization 
of neurons between regions, or in higher frequency (beta and gamma) bands. 
 
We find that neurons fire at higher rates if a longer part of the theta cycle is spent in its preferred 
phase. That is, when an individual theta cycle, for example, rises too quickly, a neuron that 
prefers a rise phase will have less time to fire at its preferred phase because the oscillation 
cycled too quickly out of that preferred phase window. However, if that cycle rises more slowly, 
the neuron will have a longer temporal window in which to fire, as that cycle spends more time 
in its preferred phase. One potential consequence of this observation is that asymmetries in 
individual cycles may be a means for controlling representation and/or computation, wherein 
specific subnetworks of neurons with different preferred phases can be selected for by specific 
cycle asymmetries. That is, this introduces the notion of neuronal networks that are controlled 
by the temporal duration of nonsinusoidal waveform features. 
 
Similarly, there is also the idea that during a neural oscillation, neurons fire in a particular 
sequence that is not present in the absence of the oscillation (Mehta et al., 2002; Roux and 
Uhlhaas, 2014; Wehr and Laurent, 1996). However, we find no evidence of this in the 
hippocampal theta rhythm, as the firing sequence in neuron pairs was no more consistent 
during theta oscillations compared to periods without theta oscillations (Figure E-F). This may 
indicate that neuronal sequences are independent of the presence of the theta rhythm. It is still 
theoretically possible that higher order sequences (3+ neurons) are more consistent during 
theta oscillations, but more complex methods are required to assess this scenario. Even then, it 
is rather strange to consider a scenario in which theta oscillations coordinate longer sequences 
while having no effect on pairwise sequence consistency. 
 
Future directions 
 
This manuscript serves as the first work to systematically relate nonsinusoidal waveform 
features of a neural oscillation to local neuronal spiking patterns. We showed that neuronal 
activation patterns correlate with the waveform shape of the theta oscillation, suggesting that 
changes in the symmetry of an oscillation may reflect qualitative changes in the function of the 
oscillation. This established relationship to spiking may help motivate and inform applications of 
nonsinusoidal features as predictive features for brain-machine interfaces or biomarkers for 
disease. 
 
This work can be extended in several ways to further explore the potential significance and 
interpretations of oscillatory waveform asymmetries. It may be advantageous to study spatial 
patterns of the field potential (Agarwal et al., 2014). Additionally, studying simultaneous 
intracellular voltage and extracellular recordings may elucidate how fluctuations in the field 
potential relate to excitatory and inhibitory synaptic input. Since the field potential is not 
generated simply from the local spiking patterns (Herreras, 2016) neuronal activity from different 
brain regions may account for significant variance in the field potential recordings. 
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In addition to the rodent hippocampal theta rhythm, the relationship between the LFP waveform 
and local spiking patterns should be conducted in different frequency bands, brain regions, and 
species. Furthermore, new techniques may be developed to capture important features of 
oscillatory dynamics. For example, the “smoothness” of the oscillation was not studied here, and 
state-of-the-art deep learning methods could provide some informative, though less intuitive, 
features. Ultimately, this work only scratches the surface of future efforts to better understand 
the physiological, behavioral, and functional significance of neural oscillation waveform shape. 
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Supplementary Text 
 
Different strategies of estimating spike-field coupling of CA1 neurons to hippocampal theta 
 
One goal in analyzing neural oscillations is towards determining how they reflect underlying 
physiological changes. The “spike-field coupling” phenomenon in which neurons are more likely 
to fire at a particular oscillatory phase has been previously reported in the theta rhythm 
(Mizuseki et al., 2009, 2011). Because phase is commonly computed using a sinusoidal 
decomposition, or by relying on a filter parametrized using the Fourier Transform, previous 
studies have used the theta waveform to obtain a more accurate estimate of instantaneous 
phase (Belluscio et al., 2012; Siapas et al., 2005). 
 
This choice is important, as we show that the coupling estimate is biased by the chosen method 
(Figure S1A-B). For pyramidal neurons coupled to the end of the rise phase, applying the 
conventional technique for phase estimation based on the Hilbert transform (Le Van Quyen et 
al., 2001; Lee et al., 2005) results in the estimated coupling magnitude to be relatively higher 
than the waveform-based phase estimate (Figure S1C, Spearman correlation, 𝝆 = 0.48, p < 
10 -137). However, this Hilbert transform method relatively underestimated coupling for neurons 
coupled to the beginning of the rise phase. For interneurons, the Hilbert transform method gives 
a higher estimated coupling magnitude during the rise phase and a lower estimated coupling 
magnitude for neurons coupled to the decay phase (Figure S1D, 𝝆 = 0.56, p < 10 -39). 
Additionally, the coupling phase is biased by the chosen estimation technique. Figure S1E 
shows that the estimated preferred phase in pyramidal neurons is later when using the Hilbert 
transform technique compared to the waveform-based phase estimate (W = 795532, p < 10 -81). 
For interneurons, the preferred phase estimate difference is phase-dependent (Figure S1F). 
These trends are likely due to the artificial symmetry enforced onto the asymmetric theta 
waveform when a theta bandpass filter (4-10 Hz) is applied. We further show that the coupling 
magnitude is underestimated when a burst detection algorithm is not used (Figure S1G-I, W = 
1144140, p < 10 -111). 
 
Assessing changes in spike timing with rise-decay symmetry changes 
 
The first way that we attempted to test if theta symmetry reflects a change in the local network 
activity was by looking at changes in spike timing. The idea was that, if theta cycle rise-decay 
symmetry reflects differences in neural circuit activation, then neurons may fire at relatively 
different times within the cycle during asymmetric compared to symmetric cycles. First, we 
normalized time such that 0 corresponded to the former peak and 1 corresponded to the latter 
peak and analyzed these distributions of spike times. We observed that both pyramidal neurons 
and interneurons fired at earlier normalized times in the cycle (Figure S2A-D). However, the 
phase progression over normalized time systematically differs between asymmetric and 
symmetric cycles, which could lead to a confounding result. Therefore, we also studied changes 
in spike timing with two other reference schemes. When time-locking to the trough of the cycle, 
spikes occurred later during asymmetric cycles (Figure S2E-H). This was also the observation 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/452987doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=285919,906298&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=83658,275268&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=83887,82935&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=83887,82935&pre=&pre=&suf=&suf=&sa=0,0
https://doi.org/10.1101/452987
http://creativecommons.org/licenses/by-nc/4.0/


when spike phase was used (Figure S2I-L). Together, these data suggested a complex change 
in spike timing as a function of cycle symmetry. 
 
However, we wondered if these timing trends could be more simply accounted for by imperfect 
extrema localization. We tested this in a simulation by generating a stationary oscillator with 
added brown noise (Figure S3A-C) so that the cycle-by-cycle characterization would not be able 
to exactly detect the “true” peaks and troughs of the underlying oscillatory generator, as is the 
case with experimental recordings. Spikes were generated randomly using a fixed spike-field 
coupling (phase-to-firing rate) mapping. Because of this noise, measured locations of extrema 
and cycle symmetries did not always match the ground truth. By analyzing spike timing in the 
same manner as described in the previous paragraph, we observed the same qualitative trends 
between spike timing and cycle asymmetry (Figure S3D-F), despite no differences in the 
spike-field coupling generator between asymmetric and symmetric cycles. Therefore, based on 
our results in Figure S2, we could not conclude that the symmetry of cycles indexes a change in 
neuronal spike timing, and we are not aware of a way to accurately assess the extent of the 
contribution of extrema localization noise. However, we have included a description of the 
analysis here to heed a warning to those who may explore similar analysis between waveform 
symmetry and spike timing. 
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Figure S1. Differences in spike-field coupling estimates between techniques. 
(A-B) Differences in spike-field coupling estimates when using the conventional Hilbert 
transform phase estimate (circles) versus the cycle-by-cycle waveform estimate (ends of line). A 
sample of 100 pyramidal neurons are shown in (A), and all putative interneurons are plotted in 
(B). Red lines denote comparatively higher SFC magnitude when using the Hilbert phase 
estimate. A lighter dot represents a later preferred phase estimate when using the Hilbert 
transform technique. 
(C-D) SFC magnitude estimates differ between the Hilbert transform and waveform estimates 
depending on the phase of coupling. The x-axis corresponds to the phase estimate using the 
waveform approach. For putative pyramidal neurons (C) coupled to the trough (-𝝅/𝝅), the 
estimate of SFC magnitude is higher using the waveform phase estimate compared to the 
Hilbert estimate. However, the SFC magnitude is comparatively lower using the waveform 
estimate when the neuron is coupled to the theta peak. For interneurons (D) coupled to the rise 
period (-𝝅, 0), the SFC magnitude is higher using the waveform phase estimate, but the 
estimated SFC magnitude is comparatively lower for neurons coupled to the decay period (0, 𝝅). 
(E) Difference between estimates of putative pyramidal neuronal preferred firing phase. The 
Hilbert transform-based estimate results in a preferred phase that is consistently later in the 
cycle than the waveform phase estimate. The Gaussian outline is centered at zero with a 
variance  equal to the distribution of the data, to visually compare results against the null 
hypothesis. 
(F) For putative interneurons, the difference between preferred phase estimates is heavily 
correlated with the preferred phase. During the decay period, the Hilbert transform-based 
preferred phase estimate is comparatively earlier in the cycle, but if the neuron is coupled to the 
rise period, the Hilbert transform-based preferred phase estimate is comparatively later in the 
cycle. 
(G-H) Spike-field coupling estimate difference between using the whole time series (circles) or 
only the cycles that were defined as during a theta oscillation (end of line). A sample of 100 
putative pyramidal neurons are shown in (G), and all interneurons are plotted in (H). Note that in 
most cases (black dots and lines) that the estimate of SFC magnitude is lower when the whole 
signal is used for estimating spike-field coupling, rather than only the time periods identified as 
theta oscillations. Otherwise, the samples are colored red. 
(I) The distribution of SFC magnitude differences shown in G & H showing a consistently higher 
SFC magnitude when computed only during theta bursts compared to computed over the whole 
recording. 
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Figure S2. Analysis of spike timing changes with rise-decay symmetry. 
(A) Distributions of modal spike times across neurons. Time for each cycle was normalized such 
that 0 corresponded to the former peak, and 1 corresponded to the latter peak. Normalized 
spike times were collected during each cycle, and each cycle was defined as “asymmetric” or 
“symmetric” using a threshold on the rise-decay symmetry, and the modal spike time was 
computed (see Methods). The distribution shows the modal spike times across all putative 
pyramidal neurons during asymmetric cycles (black) and symmetric cycles (red). Note that the 
black distribution is shifted to the right of the red one, representing that neurons tended to fire at 
later normalized times during asymmetric cycles. 
(B) Distribution of the differences in modal normalized spike time between asymmetric and 
symmetric cycles for each neuron. Note that the distribution is shifted to the right of zero, 
showing that normalized spike times were systematically later during asymmetric cycles 
compared to symmetric cycles. 
(C-D) Same as A-B but for putative interneurons instead of pyramidal neurons. 
(E-H) Same as A-D but spike time was not normalized in each cycle, but rather referenced to 
the trough of the cycle. Note in (E) and (G) that the black (asymmetric cycles) distributions are 
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shifted earlier in time, representing that neurons fire earlier relative to the trough during 
asymmetric cycles. This is also shown by the distributions in (F) and (H) that are shifted to the 
left of zero. 
(I-L) Same as A-D but spike phase was analyzed instead of spike time. Note in (I) and (K) that 
the black (asymmetric cycles) distributions are shifted earlier in the cycle, representing that 
neurons fire earlier in the cycle during asymmetric cycles. This is also shown by the distributions 
in (J) and (K) that are shifted to the left of zero. 
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Figure S3. Spike timing and rise-decay symmetry correlations are an artifact of noise in 
extrema localization. 
(A-C) Simulating a noisy oscillation. (A) A stationary oscillation was simulated with a constant 
period and rise-decay symmetry which were the mean cycle features for an example 
hippocampal theta recording. (B) A brown noise process was generated and highpass filtered at 
2Hz. (C) The components from (A) and (B) were summed together to generate a simulated 
signal containing an oscillation and noise. Note that the “ground truth” oscillator has a constant 
period and symmetry, but the cycle-by-cycle properties measured in the composite signal will 
have some variance due to the noise. 
(D-F) Spurious relationships between cycle symmetry and spike timing of a neuron that was 
simulated to spike with a stationary spike-field coupling relationship with respect to the 
ground-truth oscillation (A). These spurious relationships are due to uncertainties in the peak 
and trough localization caused by the noise process (B). Note in (D) that the asymmetric cycles 
have later normalized spike times compared to symmetric cycles (c.f. Figure S2 A,C). Note in 
(E) that the asymmetric cycles have earlier trough-relative spike times compared to symmetric 
cycles (c.f. Figure S2 E,G). Note in (F) that the asymmetric cycles have earlier spike phases 
compared to symmetric cycles (c.f. to Figure S2 I,K). 
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