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Abstract

Detailed modeling of a species’ history is of prime importance for understanding how
natural selection operates over time. Most methods designed to detect positive selection along
sequenced genomes, however, use simplified representations of past histories as null models
of genetic drift. Here, we present the first method that can detect signatures of strong local
adaptation across the genome using arbitrarily complex admixture graphs, which are typically
used to describe the history of past divergence and admixture events among any number of
populations. The method—called Graph-aware Retrieval of Selective Sweeps (GRoSS)—has
good power to detect loci in the genome with strong evidence for past selective sweeps and
can also identify which branch of the graph was most affected by the sweep. As evidence
of its utility, we apply the method to bovine, codfish and human population genomic data
containing multiple population panels related in complex ways. We find new candidate genes
for important adaptive functions, including immunity and metabolism in under-studied human
populations, as well as muscle mass, milk production and tameness in particular bovine breeds.
We are also able to pinpoint the emergence of large regions of differentiation due to inversions
in the history of Atlantic codfish.

Introduction
One of the main goals of population genomics is to understand how adaptation affects patterns of
variation across the genome and to find ways to analyze these patterns. In order to identify loci
that have been affected by positive selection in the past, geneticists have developed methods that
can scan a set of genomes for signals that are characteristic of this process. These signals may be
based on patterns of haplotype homozygosity [1, 2], the site frequency spectrum [3, 4] or allelic
differentiation between populations [5, 6].

Population differentiation-based methods have proven particularly successful in recent years, as
they make few assumptions about the underlying demographic process that may have generated
a selection signal, and are generally more robust and scalable to large population-wide datasets.
The oldest of these are based on computing pairwise FST [7, 8] or similar measures of population
differentiation between two population panels across SNPs or windows of the genome [9, 10]. More
recent methods have allowed researchers to efficiently detect which populations are affected by a
sweep, by computing branch-specific differentiation on 3-population trees [6, 11, 12], 4-population
trees [13], or arbitrarily large population trees [14–16], or by looking for strong locus-specific
differentiation or environmental correlations, using the genome-wide population-covariance matrix
as a null model of genetic drift [17–21].

Although some of these methods for detecting selection implicitly handle past episodes of admix-
ture, none of them uses “admixture graphs” that explicitly model both divergence and admixture
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in an easily interpretable framework [22, 23]. This makes it difficult to understand the signa-
tures of selection when working with sets of multiple populations that may be related to each
other in complex ways. Here, we introduce a method to efficiently detect selective sweeps across
the genome when using many populations that are related via an arbitrarily complex history of
population splits and mergers. We modified the QB statistic [24] which was originally meant to
detect polygenic adaptation using admixture graphs. Unlike QB , our new statistic—which we call
SB—does not need gene-trait association data and works with allele frequency data alone. It can
be used to both scan the genome for regions under strong single-locus positive selection, and to
pinpoint where in the population graph the selective event most likely took place. We demonstrate
the usefulness of this statistic by performing selection scans on human, bovine and codfish data,
recovering existing and new candidate loci, while obtaining a clear picture of which populations
were most affected by positive selection in the past.

Methods

Theory
We modified the previously-developed QB statistic [24] to detect strong branch-specific deviations
in single-locus allele frequencies, but without having to use effect size estimates from an association
study. We assume that the topology of the admixture graph relating a set of populations is known
and that we have allele frequency data for all the populations we are studying. For a single SNP,
let p be the vector of allele frequencies across populations. We then make a multivariate normal
approximation to obtain a distribution with which we can model these frequencies [17, 25]:

p ∼ MVN (e, e(1− e)F) (1)

where F is the neutral covariance matrix and e is the ancestral allele frequency of all populations.
We use the genome-wide covariance matrix as an estimate of the neutral covariance matrix. In
practice, the ancestral allele frequency is unknown, so we use the mean allele frequency among
populations as an approximate stand-in. We can obtain a mean-centered version of the vector p,
which we call y:

y = p − e ∼ MVN (0, e(1− e)F) (2)

For an arbitrarily-defined, mean-centered vector b with the same number of elements as there are
populations:

yTb ∼ N(0, e(1− e)bTFb) (3)

Our test statistic—which we call SB—is then defined as:

SB =
(yTb)2

e(1− e)bTFb
∼ χ2

1 (4)

The key is to choose a vector b that represents a particular branch of our graph. Essentially,
for a particular branch j, the elements of its corresponding branch vector bj are the ancestry
contributions of that branch to each of the populations in the leaves of the graph. For a more
detailed description of how to construct this vector, see Racimo, Berg and Pickrell [24].

If we choose b to be the vector corresponding to branch j when computing the statistic in
equation 4, then significant values of the statistic SB(j) will capture deviations from neutrality in
the graph that are attributable to a disruption that occurred along branch j.

If we only have a few genomes per population, the true population allele frequencies will be
poorly estimated by our sample allele frequencies, potentially decreasing power. However, we can
increase power at the cost of spatial genomic resolution and rigorous statistical interpretation, by
combining information from several SNPs into windows, as was done, for example, in Skoglund et
al. [26]. We can compute the average χ2 statistic over all SNPs in each window and provide a
new P-value for that averaged statistic. As the chi-squared distributional assumption only holds
for low amounts of drift, it may be useful to standardize the scores using the mean and variance of
the genome-wide distribution, especially when working with populations that diverged from each
other a long time ago.
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Implementation
We implemented the SB statistic in a program called GRoSS (Graph-aware Retrieval of Selective
Sweeps), which is freely available on GitHub: https://github.com/FerRacimo/GRoSS. The pro-
gram runs on R and makes use of the admixturegraph R library [27]. We also wrote a module that
allows one to input a file specifying the admixture graph topology directly.

Figure 1 shows a schematic workflow for GRoSS. The user begins by estimating an admixture
graph using genome-wide data, via a program like TreeMix [23], MixMapper [28] or qpGraph [22].
Then, the user writes the topology of the graph to a text file. The format of this file can be either
the dot-format or the input file format for qpGraph, so it can be skipped if the initial step was
run using qpGraph. Then, the user inputs the graph topology, and a file with major/minor allele
counts for each SNP into GRoSS. The allele counts can also be polarized as ancestral/derived or
reference/alternative. GRoSS will compute the genome-wide covariance matrix and the b vectors
for each branch, and then calculate the SB scores and corresponding P-values, which can then be
plotted.

Simulations
We used SLiM 2 [29] to simulate genomic data and test how our method performs at detecting
positive selection, with sample sizes of 100, 50, 25 and 4 diploid genomes per population (Figures
2, S1, S2 and S3, respectively). We simulated a genomic region of length 10Mb, a constant effective
population size (Ne) of 10,000, a mutation rate of 10−8 per base-pair per generation and a uniform
recombination rate of 10−8 per base-pair per generation. We placed the beneficial mutation in the
middle of the region, at position 5Mb. We used a burn-in period of 100,000 generations to generate
steady-state neutral variation. For each demographic scenario that we tested, we simulated under
neutrality and two selective regimes, with selection coefficients (s) of 0.1 and 0.01. We considered
two types of selection scenarios for each demographic scenario: one in which we condition on the
beneficial mutation reaching > 1% frequency at the final generation of the branch in which we
simulated the positive selection event, and one in which we condition the mutation reaching > 5%
frequency. We discarded simulations that did not fulfill these conditions. We set the time intervals
between population splits at 2,000 generations for all branches of the population graph in the 3-
population and 6-population graphs, and at 500 generations in the 16-population graph. To speed
up the simulations, we scaled the values of the population size and of time by a factor of 1/10
and, consequently, the mutation rate, recombination rate and selection coefficients by a factor of
10 [29].

Human data
We used data from Phase 3 of the 1000 Genomes Project [30] and a SNP chip dataset of present-
day humans from 203 populations genotyped with the Human Origins array [22, 31]. The SNP
chip dataset was imputed using SHAPEIT [32] on the Michigan Imputation Server [33] with the
1000 Genomes data as the reference panel [24]. We used inferred admixture graphs that were
fitted to this panel using MixMapper (v1.02) [28] in a previous publication [24]. For the 1000
Genomes dataset, the inferred graph was a tree where the leaves are composed of panels from
7 populations: Southern Han (CDX), Han Chinese from Beijing (CHB), Japanese from Tuscany
(JPT), Toscani (TSI), Utah Residents (CEPH) with Northern and Western European Ancestry
(CEU), Mende from Sierra Leone (MSL) and Esan from Nigeria (ESN) (Figure 3). For the Human
Origins dataset, the inferred graph was a 7-leaf admixture graph that includes Native Americans,
East Asians, Oceanians, Mandenka, Yoruba, Sardinians and Europeans with high ancient-steppe
(Yamnaya) ancestry (Figure 3). This graph contains an admixture event from a sister branch
to Native Americans and a sister branch to Sardinians into Europeans, representing the ancient
steppe ancestry known to be present in almost all present-day Europeans (but largely absent in
present-day Sardinians).

We removed sites with < 1% minor allele frequency or where at least one population had no
coverage. We then ran GRoSS on the resulting SNPs in each of the two datasets (Tables S1 and
S2). We selected SNPs with −log10(P ) larger than 7, and merged SNPs into regions if they were
within 100kb of each other. Finally, we retrieved all HGNC protein-coding genes that overlap each
region, using biomaRt [34].
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Bovine data
We assembled a population genomic dataset (Table S3) containing different breeds of Bos taurus
using: a) SNP array data from ref. [35], corresponding to the Illumina BovineHD Genotyping
BeadChip (http://dx.doi.org/10.5061/dryad.f2d1q); b) whole-genome shotgun data from 10 indi-
viduals from the indigenous African breed ND́ama [36] (Bioproject ID: PRJNA312138); c) shotgun
data from two commercial cattle breeds (Holstein and Jersey; Bioproject IDs: PRJNA210521 and
PRJNA318089, respectively); d) shotgun data for 8 Iberian cattle breeds [37].

We used TreeMix [23] to infer an admixture graph (Figure S4) using allele counts for 512,358
SNPs in positions that were unambiguously assigned to the autosomes in the cattle reference
genome version UMD_3.1.1 [38] using SNPchiMp [39]. For shotgun data, allele counts were ob-
tained from allele frequencies calculated in ANGSD [40] for positions covered in at least three
individuals. We removed SNPs for which at least one panel had no coverage or in which the minor
allele frequency was less than 1%.

We applied the statistic to the TreeMix -fitted graph model in Figure 4. We performed the
scan in two ways: in one we computed a per-SNP chi-squared statistic, from which we obtained a
P-value (Table S4), and in the other we combined the chi-squared statistics in windows of 10 SNPs
(Table S5), with a step size of 1 SNP, obtaining a P-value for a particular window using its average
SB score (Figure 4). We used this windowing scheme because of concerns about small sample sizes
in some of the populations, and aimed to pool information across SNPs within a region. After both
scans, we combined windows that were within 100kb of each other into larger regions, and retrieved
HGNC and VGNC genes within a +/- 100kb window around the boundaries of each region using
biomaRt [34] with the April 2018 version of Ensembl.

Codfish data
Codfish were randomly sampled from a large tissue sample database [41] and the J. Mork collections
from populations covering a wide distribution from the western Atlantic to the northern and eastern
Atlantic (Figure S5 and Table S6). The populations differ in various life-history and other biological
traits [42, 43], and their local environment ranges from shallow coastal water (e.g. western Atlantic
and North Sea) to waters of great depth (e.g. parts of Iceland and Barents Sea). They also differ
in temperature and salinity (e.g. brackish water in the Baltic).

We isolated genomic DNA from gill tissue and fin clips stored in ethanol using the E.Z.N.A. R©

Tissue DNA Kit (Omega biotek) following the manufacturer’s protocol. Libraries were prepared
and individually indexed for sequencing using the Nextera R© DNA Library Preparation Kit (Il-
lumina, FC-121-1031). Pooled libraries were sequenced on the HiSeq 2500 in rapid run mode
(paired-end, 2×250 cycles) at the Bauer Core Facility at Harvard University. We aligned fastq
files to the gadmor2 assembly [44] using bwa mem [45], merged and deduplicated using picard
(http://broadinstitute.github.io/picard) and GATK [46] in accordance with GATK best
practices [47]. Details of the molecular and analysis methods are given in [48, 49]. We ran ANGSD
[40] on the genome sequences from all populations, computed base-alignment quality [50], adjusted
mapping quality for excessive mismatches, and filtered for mapping quality (≥ 30) and base quality
(≥ 20). We then estimated the allele frequencies in each population at segregating sites using the
−sites option of ANGSD.

We applied the statistic to the graph model in Figure 5, estimated using TreeMix [23] allowing
for 3 migration events (Figure S6). We removed SNPs where at least 1 panel had no coverage or in
which the minor allele frequency was less than 1%, and we only selected sites in which all panels
had 2 or more diploid individuals covered. We performed the scan by combining the per-SNP
chi-squared statistics in windows of 10 SNPs, with a step size of 5 SNPs, obtaining a P-value for a
particular window using its average SB score (Figures S7,S8,S9,S10). In a preliminary analysis, we
identified 4 large regions of high differentiation related to structural variants, which span several
mega-bases (see Results and Discussion below). In our final analysis, we excluded sites lying
within linkage groups that contain these regions from the TreeMix -fitting and covariance matrix
estimation, so as to prevent them from biasing our null genome-wide model.

Selection of candidate regions
Given the myriad of plausible violations of our null multivariate-Normal model (see Discussion),
we do not expect the P-values of the SB statistic to truly reflect the probability one has of rejecting
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a neutral model of evolution. We therefore see these P-values as a guideline for selecting regions
as candidates for positive selection, rather than a way for rigorously determining the probability
that a region has been evolving neutrally. In all applications below, we used arbitrary P-value
cutoffs to select the top candidate regions based on visual inspection of the Manhattan plots of the
genome-wide distribution of SB P-values. These empirical cutoffs vary across study species and
also depend on the particular scheme we use to calculate the SB statistic (per-SNP or averaged
over a window) and we do not claim these cutoffs to have any statistical motivation beyond being
convenient ways to separate regions that lie at the tails of our empirical distribution.

Alternative approaches could involve using a randomization scheme or generating simulations
based on a fitted demographic model to obtain a neutral distribution of loci and derive a P-
value from that. While any of those approaches could be pursued with the SB framework, we do
not pursue any of those approaches in this particular paper. We think that the chosen mode of
randomization or the fitted demographic parameters will also necessarily rely on assumptions about
unknown or unmodeled parameters, and may provide unmerited confidence to the cutoff that we
could end up choosing. Instead, we recommend that the reader take our chi-squared-distributed
P-values with a grain of salt, and merely use them as a way to prioritize regions for more extensive
downstream modeling and validation (for example, using methods like those described in refs. [51–
53]).

Results

Simulations
We performed simulations on SLiM 2 [29], and used ROC and precision-recall curves to evaluate the
performance of our method under different demographic scenarios, and to compare the behavior of
our scores under selection and neutrality. For each demographic scenario, we tested four selective
sweep modes: comparing simulations under two different selection coefficients (s=0.1 and s=0.01)
against a set of neutral simulations (s=0), and, for each of these, conditioning on establishment of
the beneficial mutation at more than 5% frequency or at more than 1% frequency. Each branch of
each graph had a diploid population size (Ne) of 10,000.

First, we simulated an episode of positive selection occurring on a branch of a three-population
tree with no admixture. Each branch of the tree lasted for 2,000 generations. We sampled 100
individuals from each population. Unsurprisingly, the performance of the method under both
selection coefficients is higher when we condition on a higher frequency of establishment of the
beneficial allele, and is also better under strong selection (Figures 2). We also kept track of which
branch in each simulation had the highest score in a region of 100kb centered on the beneficial
mutation. As shown in Figure 2, the highest values typically correspond to the population in which
selection was simulated.

We then simulated more complex demographic histories including a 6-population graph with
admixture. Each branch of the graph lasted for 2,000 generations. We explored two different selec-
tion scenarios. In one scenario, the selective sweep was introduced in one of the internal branches
whereas in another scenario, it was introduced in one of the external branches. Interestingly, the
performance under this graph appears to improve relative to the three-population scenario (Figure
2). The reason is that the SB statistic depends on having an accurate estimate of the ancestral
allele frequency (e). This estimate is calculated by taking the average of all allele frequencies in
the leaf populations, so the more leaf populations we have, the more accurate this estimate will
be.

In Figure 2, we also show the maximum scores for each branch in a 100kb region around the
beneficial allele under both scenarios. We find that the branch where the selective sweep was
simulated also tends to have the highest SB scores. We also explored a larger population tree with
sixteen leaf populations. In this case, each branch of the graph lasted for 500 generations. ROC
and recall curves show a similar performance to the ones from the 6-population admixture graph
(Figure 2).

Finally, we explored the performance of the method when the number of diploid individuals
per population was smaller than 100. Figure S1 shows the performance of the method with 50
diploid individuals per population, figure S2 shows the performance with 20 individuals and figure
S3 shows the performance with 4 individuals. Even when the number of individuals is this small,
we can still recover most of the simulated sweeps, especially when selection is strong.
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Positive selection in human populations across the world
Applying our method to both the 1000 Genomes and the Human Origins population graphs, we
observe many candidate loci that have been identified in previous world-wide positive selection
scans (some of them due to archaic adaptive introgression). Previously reported selection candi-
dates that we recover include the LCT/MCM6, BNC2, OCA2/HERC2, TLR and SLC24A5 regions
in northern Europeans, the CHMP1A/ZNF276/FANCA, ABCC11 and POU2F3 regions in East
Asians, and the SLC45A2 and SLC12A1 genes in an ancestral European population [1, 11, 12,
54–59] (Tables S1, S2).

We find that the IGH immune gene cluster (also containing gene KIAA0125) is the strongest
candidate for selection in the 1000 Genomes scan, and the signal is concentrated on the Chinese
Dai branch. This cluster has been recently reported as being under selection in a large Chinese
cohort of over 140,000 genomes [60]. Our results suggest that the selective pressures may have
existed somewhere in southern China, as we do not see such a strong signal in other parts of the
East Asian portion of the graph.

A region containing TARBP1 was the strongest candidate for selection in the Human Origins
scan (East Asian terminal branch). The gene codes for an HIV-binding protein and has been
previously reported to be under balancing selection [61]. The top SNP (rs2175591) lies in an
H3K27Ac regulatory mark upstream of the gene. The derived allele at this SNP is at more than
50% frequency in all 1000 Genomes East Asian panels but at less than 2% frequency in all the
other worldwide panels, except for South Asians where it reaches frequencies of around 10%.
Interestingly, the TARBP1 gene has been identified as a target for positive selection in milk-
producing cattle [62] and in sheep breeds [63, 64]. It has also been associated with resistance to
gastrointestinal nematodes in sheep [65]. Our results suggest it may have also played an important
role during human evolution in eastern Eurasia, possibly as a response to local pathogens.

Another candidate for selection is the NFAM1 gene in East Asians, which codes for a membrane
receptor that is involved in development and signaling of B-cells [66]. This gene was also found
to be under positive selection in the Sheko cattle of Ethiopia, along with other genes related to
immunity [67].

In the Native American terminal branch of the Human Origins scan, we find a candidate region
containing two genes: GPR156 and GSK3B. GPR156 codes for a G protein-coupled receptor, while
GSK3B codes for a kinase that plays important roles in neuronal development, energy metabolism,
and body pattern formation [68]. We also find a candidate region in the same branch in the
protamine gene cluster (PRM1, PRM2, PRM3, TNP2), involved in spermatogenesis [69, 70], and
another region overlapping MDGA2, which is specifically expressed in the nervous system [71].

Cattle breeding: morphology, tameness and milk yield
We performed two scans on the bovine data, one in which computed the SB statistic per SNP
(Table S4), and one in which we computed it in 10-SNP windows (Table S5). The window-based
scan retrieved 12 top candidate regions, 10 of which overlap with regions previously detected to
be under selection in cattle (reviewed in [72]). Additionally, 28 of the 43 top candidate SNPs from
the single-SNP scan are also in regions that have been previously reported as selection candidates.

The two top scoring regions from the 10-SNP scan are both in chromosome 7, and include
regions that have been detected to be under selection in both taurine and zebu cattle (the latter
not represented in our sample), and are potentially associated with cattle traits of general interest
in domesticated species. The region located between 30 and 33 Mb of chromosome 7 appears
as a top candidate in both the 1-SNP and 10-SNP scan, on the terminal branch leading to the
Maremmana (MA) breed. It includes genes related to variation in body shape, such as CEP120
whose mutations have been linked to a type of skeletal dysplasia that results in thoracic cage and
extra-skeletal abnormalities [73], and PRDM6, a histone modifier that can induce various smooth
muscle phenotypes [74].

The region located between 50 and 55 Mb contains members of the three protocadherin (Pcdha,
Pcdhb and Pcdhg) gene clusters. It is identified by GRoSS to be under selection in Romanian
Grey cattle (RO), which is well-known for its docile disposition. Protocadherins are cell-adhesion
molecules that are differentially expressed in individual neurons [75]. They have been implicated
in mental retardation and epilepsy in humans [76] and in fear-conditioning and memory in mice
[77], and have also been shown to be under selection in cats [78]. Genes of the protocadherin
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family have also been detected to have expression and allele frequency differences consistent with
adaptation in an analysis of tame and aggressive foxes [79].

The largest window (4.4 Mb) detected by GRoSS corresponds to the branch leading to the
Holstein (HOL) breed. This window overlaps regions found to be under selection in Holstein using
various tests (reviewed in [72]). Some of the outlier genes that were also identified in an earlier
XP-EHH scan [80] include VPS18, implicated in neurodegeneration [81] and CAPN3, associated
with muscle dystrophy. The window also contains genes that are differentially expressed between
high and low milk yield cows (PLCB2 and CCDC9B). [82].

Large regions of extreme differentiation in Atlantic codfish
When running GRoSS on the Atlantic codfish data, we found 4 large genomic regions of high
differentiation spanning several mega-bases, on 4 different linkage groups: LG01, LG02, LG07, and
LG12 (Figure 5, Table S7). These regions were previously detected by pairwise FST analyses [48, 83,
84]. They are associated with inversions that suppress recombination in heterozygous individuals,
and have thereby favored dramatic increases in differentiation between haplotypes. The signals in
the LG01, LG02 and LG07 regions are strongest among north Atlantic populations. The LG01
signal is particularly concentrated in the terminal branches leading to the Icelandic and Barents
Sea branches. The LG02 signal is concentrated in the Icelandic terminal branch and the parent
branches of the east Atlantic / north European. This region also contains a low-differentiation
region inside it, suggesting it may be composed of two contiguous structural variants, as the LG01
region is known to be [85]. The LG07 signal is concentrated in nearly the same branches as the
LG02 signal, and also in the Faroe plateau terminal branch. In contrast, the highly differentiated
region in LG12 is particularly concentrated among more downstream branches of the east Atlantic
/ north European populations, including the Celtic Sea terminal branch (Figure 5). Notably, none
of the highly differentiated regions appears to show strong signs of high differentiation in the west
Atlantic / North American populations.

Discussion
We have developed a method for detecting positive selection when working with species with
complex histories. The method is fast—it only took 486 seconds to run the bovine scan (including
512,358 SNPs and 36 populations) on a MacBook Air with a 1.8 GHz Intel Core i5 processor and 8
Gb of memory. Assuming a null model of genetic drift based on a multivariate Normal distribution,
the SB statistic is chi-squared distributed with 1 degree of freedom. This is accurate as long as
the graph topology is accurate and the branches in the graph do not contain high amounts of
drift. In an admixture graph with K branches, there are K possible versions of the SB statistic.
If the differences in allele frequencies at a SNP can be explained by an allele frequency shift that
occurred along branch k, then SB(k) will be large, and a P-value based on the null drift model can
be calculated from it. By design, branches whose parent are the root node and branches that have
the same descendant nodes have the same SB scores, so selective events on these branches are not
distinguishable from each other under this scheme.

The SB statistic is most accurate when a large number of individuals have been sampled from
each population. If this is not the case, then one can average the scores over windows of SNPs to
obtain power from correlated allele frequency shifts in a region (for example, as in ref. [26]), at the
expense of losing spatial resolution across the genome due to larger test regions, as we did here in
the bovine dataset example. The statistic, however, does not account for the structure of linkage
disequilibrium within or between windows.

We have found the method performs best when there are many leaves in a graph because it uses
a population-averaged allele frequency to estimate the ancestral allele frequency in the graph. We
therefore recommend using this method when working with more than a few populations at a time,
to make this estimate as accurate as possible. A possible future improvement of the method could
be the incorporation of a model-based ancestral allele frequency estimation scheme, to address this
issue.

Another critical issue is that the more branches one tests, the more of a multiple-testing burden
there will be when defining significance cutoffs. In a way, our method improves on previous
approaches to this problem, because—given a particular admixture graph—one does not need to
perform a test for all possible triplets or pairs of populations, as one would need to do when
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applying the PBS statistic or pairwise FST methods, respectively. Instead, our method performs
one test per branch. For example, if the graph is a rooted tree with m leaves and no admixture,
the number of branches will be equal to 2m− 2, while the number of possible triplets will be equal
to

(
m
3

)
, and the number of pairs will be equal to

(
m
2

)
, both of which grow much faster with larger

m than does 2m− 2.
While the SB statistic is fast and easy to compute, it is not as principled as other approaches

for multi-population selection that rely on explicit models of positive selection (e.g. [86]). This
means that it only detects significant deviations from a neutral null model and does not provide
likelihoods or posterior probabilities supporting particular selection models. We recommend that,
once a locus with high SB has been detected in a particular branch of a graph, biologists should
perform further work to disentangle exactly what type of phenomenon would cause this value to
be so high and test among competing selection hypotheses.

Among the genes that emerge when applying our method to human data, we found several
known candidates, like LCT/MCM6, SLC45A2, SLC24A5, POU2F3, OCA2/HERC2 and BNC2.
We also found several new candidate regions, containing genes involved in the immune response,
like the TARBP1 and NFAM1 genes in East Asians. Additionally, we found new candidate regions
in Native Americans, like GSK3B and the protamine gene cluster.

Analysis of the bovine dataset yielded numerous regions that may be implicated in the breeding
process. One of the strongest candidate regions contains genes involved in muscoskeletal morphol-
ogy, including CEP120 and PRDM6, and GRoSS narrows this signal down to the branch leading
to the Maremmana breed. This is an Italian beef cattle breed that inhabits the Maremma region
in Central Italy, and has evolved a massive body structure well adapted to draft use in the marshy
land that characterizes the region [87]. Interestingly, when comparing muscle samples between
Maremmana and the closely-related Chianina breed (CH), gene ontology categories related to
muscle structural proteins and regulation of muscle contraction have been reported to be enriched
for differentially expressed genes. Additionally, the Maremmana is enriched for over-expressed
genes related to hypertrophic cardiomyopathy pathways [87].

Another strong candidate region is the protocadherin gene cluster, associated with neuronal
functions in humans and mice [75–77], and shown to be under positive selection in domesticated
cats and foxes [78, 79]. GRoSS identifies this region as under selection in the Romanian Grey
breed terminal branch. Given that this breed is popularly known to be very docile, it is plausible
that this gene cluster might have been a target for selection on behavior during the recent breeding
process.

Additionally, GRoSS detects a very large 4.4-Mb region as a selection candidate in the Holstein
breed, currently the world’s highest-production dairy animal. This region overlaps several candi-
date genes earlier identified to be under selection in Holstein using other methods (see [72] for an
extensive review). These genes are related to several traits usually targeted by breeding practices,
such as behaviour, muscle development and milk yield.

Our method also recovered previously reported regions of high differentiation among Atlantic
codfish populations and served to pinpoint where in the history of this species the inversions may
have arisen, or at least where they have most strongly undergone the process of differentiation
between haplotypes. The largest of these regions is in LG01 and is composed of two adjacent
inversions covering 17.4 Mb [85], which suppress recombination in heterozygous individuals and
promote differentiation between haplotypes. The inversions effectively lock together a super-gene
of alleles at multiple loci [85]. Two behavioral ecotypes—a deep-sea frontal (migratory) ecotype
and a shallow-water coastal (stationary) ecotype—have been associated with inversion alleles in the
region [88–90]. Several putative candidate selected genes are located within the LG01 inversions
[85, 91, 92] that may be of adaptive value for deep sea as well as long-distance migration.

Similarly, the other large inversions observed on linkage groups LG02, LG07 and LG12 (5,
9.5, and 13 Mb respectively) also suppress recombination [93, 94]. Allele frequency differences
observed between individuals living offshore and inshore environments are suggestive of ecologi-
cal adaptation driving differentiation in these regions [93–95]. Previously, a pairwise FST outlier
analysis of populations in the north (Greenland, Iceland, and Barents Sea localities combined)
vs. populations in the south (Faroe Islands, North Sea, and Celtic Sea combined) showed clear
evidence of selection in these regions [48]. However, in comparisons of West (Sable Bank, Western
Bank, Trinity Bay, and Southern Grand Banks combined) with either North or South localities
only some of these regions displayed signatures of high differentiation [48], indicating these inver-
sions had different spatiotemporal origins. By modeling all these populations together in a single

8

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/453092doi: bioRxiv preprint 

https://doi.org/10.1101/453092
http://creativecommons.org/licenses/by-nc/4.0/


framework, our method provides a way to more rigorously determine in which parts of the graph
these inversions may have originated (Figure 5), and suggests they were largely restricted to East
Atlantic populations.

In conclusion, GRoSS is a freely-available, fast and intuitive approach to testing for positive
selection when the populations under study are related via a history of multiple population splits
and admixture events. It can identify signals of adaptation in a species by accounting for the
complexity of this history, while also providing a readily interpretable score. This method will help
evolutionary biologists and ecologists pinpoint when and where adaptive events occurred in the
past, facilitating the study of natural selection and its biological consequences.
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Figures

Figure 1: Schematic of GRoSS workflow

10

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/453092doi: bioRxiv preprint 

https://doi.org/10.1101/453092
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2: Evaluation of GRoSS performance using simulations in SLiM 2, with 100 diploid indi-
viduals per population panel. We simulated different selective sweeps under strong (s=0.1) and
intermediate (s=0.01) selection coefficients for a 3-population tree, a 6-population graph with a
60%/40% admixture event and a 16-population tree. We then produced precision-recall and ROC
curves comparing simulations under selection to simulations under neutrality. We also obtained
the maximum branch score within 100kb of the selected site, and computed the number of sim-
ulations (out of 100) in which the branch of this score corresponded to the true selected branch.
"cond = 5%": Simulations conditional on the beneficial mutation reaching 5% frequency or more.
"cond = 1%": Simulations conditional on the beneficial mutation reaching 1% frequency or more.
"Pop": population branch.
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Figure 3: Results from running GRoSS on human genomic data. A) Population tree including
panels from phase 3 of the 1000 Genomes project. B) Population graph including imputed panels
from the Human Origins SNP chip data from Lazaridis et al. (2014).
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Figure 4: Results from running GRoSS on a population graph of bovine breeds. P-values were ob-
tained by either computing chi-squared statistics per SNP, or after averaging the per-SNP statistics
in 10-SNP windows with a 1-SNP step size, and obtaining a P-value from the averaged statistic.
Holstein and Maremmana cattle photos obtained from Wikimedia Commons (authors: Verum;
giovanni bidi). Romanian Grey cattle screen-shot obtained from a CC BY YouTube video (author:
Paolo Caddeo).

13

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/453092doi: bioRxiv preprint 

https://doi.org/10.1101/453092
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5: Large regions of high differentiation in the codfish data. Branches colored in orange are
branches whose corresponding SB scores evince the high-differentiation region. Branches colored
in red are branches whose corresponding SB scores evince the high-differentiation region and have
at least one SNP with −log10(P ) > 5 inside the region.
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Supplementary Figures

Figure S1: Evaluation of GRoSS performance using simulations in SLiM 2, with 50 diploid invi-
diduals per population panel. We simulated different selective sweeps under strong (s=0.1) and
intermediate (s=0.01) selection coefficients for a 3-population tree, a 6-population graph with a
60%/40% admixture event and a 16-population tree. We then produced precision-recall and ROC
curves comparing simulations under selection to simulations under neutrality. We also obtained
the maximum branch score within 100kb of the selected site, and computed the number of sim-
ulations (out of 100) in which the branch of this score corresponded to the true selected branch.
"cond = 5%": Simulations conditional on the beneficial mutation reaching 5% frequency or more.
"cond = 1%": Simulations conditional on the beneficial mutation reaching 1% frequency or more.
"Pop": population branch.

20

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/453092doi: bioRxiv preprint 

https://doi.org/10.1101/453092
http://creativecommons.org/licenses/by-nc/4.0/


Figure S2: Evaluation of GRoSS performance using simulations in SLiM 2, with 25 diploid indi-
viduals per population panel. We simulated different selective sweeps under strong (s=0.1) and
intermediate (s=0.01) selection coefficients for a 3-population tree, a 6-population graph with a
60%/40% admixture event and a 16-population tree. We then produced precision-recall and ROC
curves comparing simulations under selection to simulations under neutrality. We also obtained
the maximum branch score within 100kb of the selected site, and computed the number of sim-
ulations (out of 100) in which the branch of this score corresponded to the true selected branch.
"cond = 5%": Simulations conditional on the beneficial mutation reaching 5% frequency or more.
"cond = 1%": Simulations conditional on the beneficial mutation reaching 1% frequency or more.
"Pop": population branch.
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Figure S3: Evaluation of GRoSS performance using simulations in SLiM 2, with 4 diploid indi-
viduals per population panel. We simulated different selective sweeps under strong (s=0.1) and
intermediate (s=0.01) selection coefficients for a 3-population tree, a 6-population graph with a
60%/40% admixture event and a 16-population tree. We then produced precision-recall and ROC
curves comparing simulations under selection to simulations under neutrality. We also obtained
the maximum branch score within 100kb of the selected site, and computed the number of sim-
ulations (out of 100) in which the branch of this score corresponded to the true selected branch.
"cond = 5%": Simulations conditional on the beneficial mutation reaching 5% frequency or more.
"cond = 1%": Simulations conditional on the beneficial mutation reaching 1% frequency or more.
"Pop": population branch.
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Figure S4: TreeMix -fitted maximum likelihood admixture graph with 3 admixture events, depicting
the relationships between the taurine cattle breeds analyzed in this study (grey: Illumina BovineHD
SNP data; black: whole genome data).
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Figure S5: Sample localities of Atlantic cod samples on a map of the North Atlantic.
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Figure S6: Treemix -fitted maximum likelihood admixture graph with 3 admixture events, depicting
the relationships between the Atlantic codfish populations.
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Figure S7: SB scores for LG01 - LG06 in the Codfish data.
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Figure S8: SB scores for LG07 - LG12 in the Codfish data.
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Figure S9: SB scores for LG13 - LG18 in the Codfish data.

28

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/453092doi: bioRxiv preprint 

https://doi.org/10.1101/453092
http://creativecommons.org/licenses/by-nc/4.0/


Figure S10: SB scores for LG19 - LG22 in the Codfish data.
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Supplementary Tables

Table S1: Top candidate regions from 1000 Genomes scan.

BRANCH(ES) CHR START END BEST
POSITION(S)

MAXIMUM
SCORE GENES (+/-100kb)

CDX-t 14 106143847 106389176 106243847 13.109 KIAA0125

CEU-v 2 135272951 137305495 136707982 13.033
MGAT5,TMEM163,ACMSD,CCNT2,
MAP3K19,RAB3GAP1,ZRANB3,R3HDM1,
UBXN4,LCT,MCM6,DARS,CXCR4

CDX-t 14 105864438 106093254 105967202 9.396 BRF1,PACS2,TEX22,MTA1,CRIP2,
CRIP1,C14orf80,TMEM121

CEU-v 15 28256859 28595956 28365618;
28356859 9.111 OCA2,HERC2,GOLGA8F

v-q 5 33851116 34051693 33951693 9.067 ADAMTS12,RXFP3,SLC45A2,
AMACR,C1QTNF3

CEU-v 5 33851116 34051693 33951693 8.676 ADAMTS12,RXFP3,SLC45A2,
AMACR,C1QTNF3

v-q 15 48292165 48585926 48426484 8.673 SLC24A5,MYEF2,CTXN2,SLC12A1,DUT

TSI-v 5 33851116 34051693 33951693 8.644 ADAMTS12,RXFP3,SLC45A2,
AMACR,C1QTNF3

TSI-v 15 48292165 48585926 48426484 8.356 SLC24A5,MYEF2,CTXN2,SLC12A1,DUT

CEU-v 15 48292165 48585926 48426484 8.214 SLC24A5,MYEF2,CTXN2,SLC12A1,DUT

v-q 17 4300392 4500392 4400392 7.912 UBE2G1,SPNS3,SPNS2,MYBBP1A,GGT6,
SMTNL2,ALOX15,PELP1

CEU-v 4 38698648 38898648 38798648 7.815 KLF3,TLR10,TLR1,TLR6,FAM114A1,TMEM156

TSI-v 17 4300392 4500392 4400392 7.734 UBE2G1,SPNS3,SPNS2,MYBBP1A,GGT6,
SMTNL2,ALOX15,PELP1

CEU-v 9 16692200 16902118 16800341 7.598 BNC2

CEU-v 17 4300392 4500392 4400392 7.389 UBE2G1,SPNS3,SPNS2,MYBBP1A,GGT6,
SMTNL2,ALOX15,PELP1

TSI-v 17 18823818 19023818 18923818 7.382 PRPSAP2,SLC5A10,FAM83G,GRAP,GRAPL,EPN2

TSI-v 17 19074874 19399144 19239432 7.35 GRAPL,EPN2,B9D1,MAPK7,MFAP4,
RNF112,SLC47A1

v-q 17 18823818 19023818 18923818 7.326 PRPSAP2,SLC5A10,FAM83G,GRAP,GRAPL,EPN2

v-q 17 19053175 19399144 19174874 7.323 GRAPL,EPN2,B9D1,MAPK7,MFAP4,
RNF112,SLC47A1

TSI-v 20 31031309 31252094 31152094 7.113 ASXL1,C20orf112,COMMD7,DNMT3B

CDX-t 4 17713761 17913762 17813761;
17813762 7.027 MED28,FAM184B,DCAF16,NCAPG,LCORL
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Table S2: Top candidate regions from Human Origins scan.

BRANCH(ES) CHR START END BEST
POSITION(S)

MAXIMUM
SCORE GENES (+/- 100kb)

EastAsian-v 1 234527890 234735790 234635790 8.712 SLC35F3,COA6,TARBP1,IRF2BP2

EastAsian-v 11 119993920 120272688

120164246;
120164903;
120164954;
120165302

8.625 TRIM29,OAF,POU2F3,TMEM136,
ARHGEF12

EastAsian-v 17 72925996 73163811 73063811 8.238

SUMO2,NUP85,GGA3,TMEM104,
GRIN2C,FDXR,MRPS7,FADS6,
USH1G,OTOP2,MIF4GD,OTOP3,HID1,
CDR2L,ICT1,KCTD2,ATP5H,
SLC16A5,ARMC7,NT5C,HN1

EastAsian-v 16 89576635 89847265 89694907;
89695266 7.905

ANKRD11,SPG7,RPL13,CPNE7,
DPEP1,CHMP1A,SPATA33,CDK10,
SPATA2L,VPS9D1,ZNF276,FANCA,
SPIRE2,TCF25

w-y; w-x; European-w 4 38645482 38865720 38745482 7.869 KLF3,TLR10,TLR1,TLR6,FAM114A1

w-y; w-x; European-w 2 136879530 137129668 136981210;
136979530 7.868 CXCR4

w-y; w-x; European-w 5 33851693 34051693 33951693 7.8 ADAMTS12,RXFP3,SLC45A2,AMACR,
C1QTNF3

NativeAmerican-x 3 119728374 120083940 119881691;
119887721 7.658 GSK3B,GPR156,LRRC58,FSTL1

NativeAmerican-x 16 11260583 11572138 11360583 7.658 CLEC16A,RMI2,SOCS1,TNP2,PRM3,
PRM2,PRM1,LITAF

EastAsian-v 13 74026534 74264642
74136907;
74136940;
74137131

7.616 KLF12

EastAsian-v 22 42776791 42978831 42876791;
42878831 7.605 TCF20,NFAM1,RRP7A,SERHL2,

POLDIP3,CYB5R3,ATP5L2

x-v 3 119728374 120083940
119881691;
119887721;
119983940

7.437 GSK3B,GPR156,LRRC58,FSTL1

x-v 16 11260583 11513302 11360583 7.437 CLEC16A,RMI2,SOCS1,TNP2,
PRM3,PRM2,PRM1

NativeAmerican-x 12 30976944 31176944 31076944 7.358 CAPRIN2,TSPAN11,DDX11

w-y; w-x; European-w 15 48326484 48526484 48426484 7.332 SLC24A5,MYEF2,CTXN2,SLC12A1,DUT

y-q 15 48326484 48526484 48426484 7.323 SLC24A5,MYEF2,CTXN2,SLC12A1,DUT

NativeAmerican-x 14 21538319 21747765 21638319;
21647765 7.306

METTL17,SLC39A2,NDRG2,TPPP2,
RNASE13,RNASE7,RNASE8,ARHGEF40,
ZNF219,TMEM253,OR5AU1,HNRNPC,
RPGRIP1,SUPT16H

NativeAmerican-x 14 47633244 47870258 47733244 7.263 MDGA2

x-v 14 47633244 47870258 47733244 7.257 MDGA2

EastAsian-v 2 48123015 48337869 48237869 7.251 MSH6,FBXO11

EastAsian-v 3 138824073 139070998 138969652;
138970998 7.232 PRR23A,MRPS22,PRR23B,PRR23C,COPB2

x-v 12 30976944 31176944 31076944 7.145 CAPRIN2,TSPAN11,DDX11

x-v 14 21538319 21747765 21638319;
21647765 7.122

METTL17,SLC39A2,NDRG2,TPPP2,
RNASE13,RNASE7,RNASE8,ARHGEF40,
ZNF219,TMEM253,OR5AU1,HNRNPC,
RPGRIP1,SUPT16H

EastAsian-v 16 11265643 11466258 11365643 7.106 CLEC16A,RMI2,SOCS1,TNP2,PRM3,
PRM2,PRM1

EastAsian-v 16 48275777 48482522 48375777;
48382522 7.045 ABCC12,ABCC11,LONP2,SIAH1,N4BP1

NativeAmerican-x 14 77516061 77719186 77619186 7.034 IRF2BPL,CIPC,TMEM63C,ZDHHC22,
NGB,POMT2,GSTZ1,TMED8
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Table S3: Country, sample sizes and data type for panels of cattle breeds analyzed in this study.

Abbreviation Breed name Country or region Sample size Data type Reference
ALT Alentejana Portugal 6 shotgun da Fonseca et al. (submitted)
ARO Arouquesa Portugal 6 shotgun da Fonseca et al. (submitted)
BAR Barrosã Portugal 6 shotgun da Fonseca et al. (submitted)
BC Berrenda en colorado Spain 3 777K chip Upadhyay et al. 2017
BK Boskarin Hungary 4 777K chip Shaheen et al. 2015
BN Berrenda en negro Spain 3 777K chip Upadhyay et al. 2017
BRA Brava de Lide Portugal 6 shotgun da Fonseca et al. (submitted)
BS Brown Swiss Switzerland 4 777K chip Upadhyay et al. 2017
BU Busha Balkan region 6 777K chip Upadhyay et al. 2017
CA Cachena Portugal 3 777K chip Upadhyay et al. 2017
CCIBR Cardena Spain 5 777K chip Upadhyay et al. 2017
CH Chianina Italy 3 777K chip Upadhyay et al. 2017
DAM N’Dama Africa 10 shotgun Kim et al. 2017
DB Dutch Belted The Netherlands 2 777K chip Upadhyay et al. 2017
DF Dutch Friesian The Netherlands 4 777K chip Upadhyay et al. 2017
EL English Longhorn England 4 777K chip Upadhyay et al. 2017
FL Fleckvieh Switzerland 4 777K chip Upadhyay et al. 2017
GA Galloway Scotland 5 777K chip Upadhyay et al. 2017
GW Groningen Whiteheaded The Netherlands 5 777K chip Upadhyay et al. 2017
HE Heck Germany 5 777K chip Upadhyay et al. 2017
HOL Holstein The Netherlands 10 shotgun Kim et al. 2017
JER Jersey Jersey Island 9 shotgun Kim et al. 2017
KC Kerry Cattle Ireland 4 777K chip Upadhyay et al. 2017
LI Lidia Spain 3 777K chip Upadhyay et al. 2017
LM Limia Spain 4 777K chip Upadhyay et al. 2017
MA Maremmana Italy 5 777K chip Upadhyay et al. 2017
MER Mertolenga Portugal 6 shotgun da Fonseca et al. (submitted)
MIR Mirandesa Portugal 6 shotgun da Fonseca et al. (submitted)
MR Meuse-Rhine-Yssel The Netherlands 4 777K chip Upadhyay et al. 2017
MRO Maronesa Portugal 6 shotgun da Fonseca et al. (submitted)
MT Maltese Malta 4 777K chip Upadhyay et al. 2017
PA Pajuna Spain 6 777K chip Upadhyay et al. 2017
PRE Preta Portugal 6 shotgun this study
RO Romanian grey Romania 4 777K chip Upadhyay et al. 2017
SA Sayaguesa Spain 5 777K chip Upadhyay et al. 2017
WP White Park England 3 777K chip Upadhyay et al. 2017
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Table S4: Top candidate regions from bovine selection scan, computing 1 score per SNP. Gene annotations were
extracted from the Human Gene Nomenclature Committee (HGNC) and the Vertebrate Gene Nomenclature Com-
mittee (VGNC). We labeled windows with particularly low coverage in the target population, as the signal of selection
may be inflated in those windows for that reason.

BRANCH(ES) CHR START END BEST
POSITION(S)

MAXIMUM
SCORE GENES (HGNC) GENES (VGNC) NOTES

MA-B 7 31139786 31656058 31239786 15.955 N/A CSNK1G3,CEP120
BK-C 16 68131085 68331085 68231085 15.955 N/A HMCN1

HOL-P 10 38352236 38552236 38452236 15.955 N/A UBR1,TMEM62,
CCNDBP1,EPB42

BU-E 4 90338939 90538939 90438939 15.955 N/A N/A
BRA-AA 14 43030034 43230034 43130034 15.654 N/A N/A
FL-I 6 89409731 89609731 89509731 13.564 N/A ADAMTS3
EL-O 21 13575619 13775619 13675619 13.322 N/A N/A low coverage
MIR-CC 1 22756273 22956273 22856273 12.643 N/A N/A
BU-E 6 39795259 39995259 39895259 12.327 N/A N/A
S-Q 16 32083264 32283264 32183264 12.095 KIF26B SMYD3

DF-RR 13 39876995 40076995 39976995 11.932 N/A RIN2,CRNKL1,
CFAP61

LM-EEE 6 12117949 12317949 12217949 11.91 N/A UGT8
MT-CCC 2 10248519 10448519 10348519 11.852 N/A N/A
KC-M 1 29992983 30192983 30092983 11.766 N/A N/A
DF-RR 24 10629225 10829225 10729225 11.708 N/A N/A
MA-B 15 43161704 43361704 43261704 11.52 N/A SBF2,
MER-EE 16 10597064 10797064 10697064 11.365 N/A N/A
EEE-CC 6 12117949 12317949 12217949 11.257 N/A UGT8
MER-EE 1 74866383 75066383 74966383 11.199 N/A ATP13A5,HRASLS
KC-M 2 110048350 110248350 110148350 11.103 N/A N/A
CCIBR-II 18 19615837 19815837 19715837 11.073 N/A SALL1
RO-F 17 38455167 38655167 38555167 10.932 N/A N/A
GW-S 16 20402906 20602906 20502906 10.924 N/A USH2A,ESRRG

BK-C 15 45459239 45659239 45559239 10.834 OVCH2,
PPFIBP2 CYB5R2

BS-I 12 46363654 46563654 46463654 10.811 N/A N/A
GW-S 16 32083264 32283264 32183264 10.804 KIF26B SMYD3

MA-B 8 53567800 53882133 53667800;
53782133 10.757 N/A GNA14,GNAQ

MT-CCC 8 71550088 71750088 71650088 10.736 ENTPD4,
SLC25A37 NKX3-1,NKX2-6

CH-A 26 35786475 35986475 35886475 10.725 ATRNL1 TRUB1

EL-O 1 130658644 130858644 130758644 10.638 N/A KPNA6,RBP1,TXLNA,
RBP2,COPB2,MRPS22

DAM-AAA 10 78830979 79030979 78930979 10.63 N/A GPHN
RO-F 8 86936023 87136023 87036023 10.613 N/A ZNF169,SPTLC1

MR-S 16 72485715 72685715 72585715 10.595 N/A
RPS6KC1,ANGEL2,
VASH2,SPATA45,
TATDN3,NSL1,BATF3

MIR-CC 21 53764830 53964830 53864830 10.491 N/A N/A
CCC-D 2 10248519 10448519 10348519 10.452 N/A N/A
BK-C 15 43569293 43769293 43669293 10.385 N/A SBF2,WEE1,IPO7
MR-S 4 38360883 38560883 38460883 10.325 N/A N/A
MT-CCC 26 27532931 27732931 27632931 10.289 N/A SORCS1
GW-S 5 11395138 11595138 11495138 10.279 N/A N/A low coverage
BRA-AA 2 44270382 44470382 44370382 10.271 N/A ARL5A,NEB
BU-E 4 30182568 30382568 30282568 10.24 DNAH11 SP4
AA-Z 14 43030034 43230034 43130034 10.194 N/A N/A

MT-CCC 7 25472570 25672570 25572570 10.131 N/A CHSY3,KIAA1024L,
ADAMTS19

DAM-AAA 9 32434348 32634348 32534348 10.088 N/A FAM184A,MCM9,
ASF1A

WP-O 14 48680437 48880437 48780437 10.079 N/A EXT1,MED30
CCIBR-II 5 6754684 6954684 6854684 10.001 N/A N/A

33

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/453092doi: bioRxiv preprint 

https://doi.org/10.1101/453092
http://creativecommons.org/licenses/by-nc/4.0/


Table S5: Top candidate regions from bovine selection scan, computing score in windows of 10 SNPs with a step
size of 1 SNP. Gene annotations were extracted from the Human Gene Nomenclature Committee (HGNC) and the
Vertebrate Gene Nomenclature Committee (VGNC).

BRANCH(ES) CHR START END BEST
POSITION(S)

MAXIMUM
SCORE GENES (HGNC) GENES (VGNC)

RO-F 7 50851861 55066221 52810086 4.665

FAM13B,BRD8,SMIM33,
NRG2,PCDHA3,PCDHA6,
PCDHA11,PCDHB1,PCDHB4,
PCDHB6,PCDHB7,PCDHB16,
PCDHB14,PCDHGA3,PCDHGB1,
PCDHGB2,PCDHGA5,PCDHGA7,
ARAP3

KLHL3,HNRNPA0,PKD2L2,
WNT8A,NME5,KIF20A,
CDC23,GFRA3,CDC25C,
FAM53C,KDM3B,REEP2,
EGR1,ETF1,HSPA9,
CTNNA1,LRRTM2,SIL1,
PAIP2,SLC23A1,
MZB1,PROB1,DNAJC18,
TMEM173,UBE2D2,CXXC5,
PSD2,PURA,
CYSTM1,PFDN1,HBEGF,
SLC4A9,SRA1,APBB3,
SLC35A4,CD14,TMCO6,
IK,WDR55,DND1,
HARS,HARS2,ZMAT2,
TAF7,RELL2,PCDH1,
DELE1,RNF14,
GNPDA1,NDFIP1

MA-B 7 30014797 32458116 31691420 4.511 N/A
ZNF608,CSNK1G3,CEP120,
PRDM6,PPIC,SNX24,
SNX2

MT-CCC 14 51034878 52622208 51623748 3.641 N/A TRPS1

HE-G 3 94028894 97100382 95726532 3.461 N/A

SCP2,ZYG11A,ZYG11B,
COA7,SHISAL2A,GPX7,
ZCCHC11,PRPF38A,ORC1,
CC2D1B,ZFYVE9,
ZFYVE9,BTF3L4,BTF3L4,
TXNDC12,RAB3B,NRDC,
OSBPL9,EPS15,TTC39A,
RNF11,CDKN2C,FAF1,
DMRTA2,ELAVL4

DAM-AAA 8 57274558 59955508 57999794 3.379 TLE1 PHF24,VCP,FANCG,
PIGO,STOML2,FAM214B

BU-E 4 89770514 91520720 90278376 3.263 N/A GPR37,POT1
CCC-D 14 51034878 52277825 51623748 3.231 N/A TRPS1
MT-CCC 2 10211900 11248899 10730400 3.185 FSIP2 N/A
LM-EEE 6 11322043 12843517 11882822 3.156 N/A NDST4,UGT8,ARSJ

HOL-P 10 35129080 39547706 37761286 3.131 CCDC9B,C15orf62,PLA2G4E

THBS1,FSIP1,GPR176,
EIF2AK4,SRP14,BMF,
BUB1B,ANKRD63,PLCB2,
DISP2,KNSTRN,
IVD,BAHD1,CHST14,
CCDC32,RPUSD2,RAD51,
RMDN3,GCHFR,DNAJC17,
ZFYVE19,SPINT1,VPS18,
DLL4,CHAC1,INO80,
EXD1,CHP1,OIP5,
NUSAP1,NDUFAF1,RTF1,
ITPKA,RPAP1,TYRO3,
MGA,MAPKBP1,SPTBN5,
SPTBN5,EHD4,PLA2G4D,
PLA2G4F,VPS39,TMEM87A,
GANC,CAPN3,
ZNF106,SNAP23,HAUS2,
CDAN1,TTBK2,
UBR1,TMEM62,CCNDBP1,
EPB42

FL-I 11 56815844 57798139 57361016 3.127 N/A N/A
EEE-CC 6 11322043 12589046 11819996 3.004 N/A NDST4,UGT8
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Table S6: Area of sampling and sample sizes of Atlantic cod population panels analyzed in this
study (see Figure S5).

Area Population Abbreviation Sample size
US Cape Cod Cco 6
Nova Scotia Western Bank Web 5
Nova Scotia Sable Bank Sab 5
Newfoundland Trinity Bay Tri 4
Newfoundland Southern Grand Banks Sgb 4
Greenland Greenland Gre 11
Iceland Iceland Ice 61
Norway Barents Sea Bar 8
Faroes Faroe Plateau FarP 8
Faroes Faroe Bank FarB 5
Celtic Sea Celtic Sea Cel 8
North Sea North Sea Nse 12
Baltic Sea Baltic West BalW 8
Baltic Sea Baltic East BalE 8
Russia White Sea Whi 8
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Table S7: Long high-differentiation regions in the Codfish data. Branches with corresponding
scores with −log10(P ) > 5 for at least 1 SNP inside the region were placed into the column
’SIGNAL STRONG IN...’.

LINKAGE
GROUP START END SIGNAL STRONG IN... SIGNAL ALSO PRESENT IN..

LG01 9.1Mb 26.1Mb Iceland-I; BarentsSea-L Greenland-J; J-H; K-I; M-K;
N-J; N-M; O-N; Q-O

LG02 18.5Mb 24Mb M-K; N-J; N-M; O-N;
FaroePlateau-O; Iceland-I

NorthSea-S; S-Q; Q-O; K-I;
L-K; CelticSea-S; C-B; FaroeBank-P; I-H; P-O

LG07 13.7Mb 23Mb M-K; N-J; N-M; O-N;
Iceland-I; K-I

A-R; B-A; BalticWest-T; C-B;
P-O; Q-O; S-Q; T-Q; CelticSea-S;
FaroeBank-P; FaroePlateau-O; H-R; I-H

LG12 0.5Mb 13.4Mb CelticSea-S; Q-O; S-Q Iceland-I; M-K; N-J; N-M; NorthSea-S; O-N
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