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Abstract 
Genome sequencing is revolutionising infectious disease epidemiology, providing a huge step 
forward in sensitivity and specificity over more traditional molecular typing techniques. 
However, the complexity of genome data often means that its analysis and interpretation 
requires high-performance compute infrastructure and dedicated bioinformatics support. 
Furthermore, current methods have limitations that can differ between analyses and are often 
opaque to the user, and their reliance on multiple external dependencies makes 
reproducibility difficult. Here I introduce SKA, a toolkit for analysis of genome sequence 
data from closely-related, small, haploid genomes. SKA uses split kmers to rapidly identify 
variation between genome sequences, making it possible to analyse hundreds of genomes on 
a standard home computer. Tests on publicly available simulated and real-life data show that 
SKA is both faster and more efficient than the gold standard methods used today while 
retaining similar levels of accuracy for epidemiological purposes. SKA can take raw read 
data or genome assemblies as input and calculate pairwise distances, create single linkage 
clusters and align genomes to a reference genome or using a reference-free approach. SKA 
requires few decisions to be made by the user, which, along with its computational efficiency, 
allows genome analysis to become accessible to those with only basic bioinformatics 
training. The limitations of SKA are also far more transparent than for current approaches, 
and future improvements to mitigate these limitations are possible. Overall, SKA is a 
powerful addition to the armoury of the genomic epidemiologist. SKA source code is 
available from Github (https://github.com/simonrharris/SKA). 
 
Introduction 
Genome sequencing of bacterial pathogens is rapidly becoming an essential tool in the 
epidemiologist’s armoury. It provides increased specificity and sensitivity over more 
traditional molecular typing approaches such as pulsed-field gel electrophoresis and multi 
locus sequence typing (MLST), as well as providing other epidemiologically-relevant data 
such as genotypic anitimicrobial resistance prediction. However, these improvements come at 
the cost of analytical complexity that often requires dedicated bioinformatics support to 
analyse genomic data and interpret results. Automation is possible, but typically requires 
complex analytical pipelines and significant compute infrastructure and some input from an 
experienced user is still often necessary. Here I present SKA (Split Kmer Analysis), a toolkit 
that provides a means for rapid analysis of bacterial genomic data for epidemiological 
purposes. SKA is fast, memory efficient and produces only relatively small intermediate files, 
making it feasible to analyse hundreds of bacterial (or other small, haploid) genome 
sequences on an average home computer. SKA is particularly powerful for analysing closely-
related genomes, such as those from an outbreak or transmission chain. It is not designed for 
population genomics applications at a species-wide or larger scale. 
 
To make use of genomic data for epidemiological purposes, the first step is to create 
hypotheses of homology between bases in the sequences of the samples of interest. This can 
be based on a single common reference sequence against which data from all new samples 
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are mapped, or by using reference-free techniques. Mapping is a relatively simple approach 
for identifying variation. Raw sequencing data is aligned to a relevant reference genome, 
usually a complete, closed genome sequence, using one of an array of software options. 
Aligned reads are then filtered and consensus base calls calculated for each base of the 
reference genome. Although mapping algorithms employ creative methods to speed up the 
alignment process, such as by indexing sequences using hash tables or burrows wheeler 
transforms (1), this process can still be relatively costly in terms of compute resources, 
including central processing unit (CPU) usage time, memory usage and disk space to store 
large intermediate files. The most common reference-free approach to genomic epidemiology 
involves analysis of a set of conserved genes. This core gene approach requires genome 
assembly followed by homology assessment, and often also alignment, of alleles. Neither 
reference mapping nor core genome methods are ideally suited for genomic epidemiology. 
Reference mapping can lead to biased results in cases where the reference is distant from all 
or some of the isolates in the analysis. These a biases are difficult to predict, and differ 
between analyses of the same data and even between samples within a single analysis. Core 
genome methods, on the other hand, exclude large regions of the genome, so can lack 
sensitivity. 
 
Rapid genomics: The kmer revolution 
The massively increasing number of genome sequences available for both eukaryotes and 
pathogenic bacterial species has necessitated a new generation of analytical methods. Many 
of these methods have leveraged the computational efficiency of exact matching by breaking 
genomic data down into small pieces of a known size (k), often called kmers. Kmer matching 
is extremely fast and scalable to thousands of genome comparisons. Examples of some of the 
more revolutionary applications are Mash (2), for rapidly estimating approximate Jaccard 
distances (3) between genomes, minimap (4), for aligning long sequencing reads to reference 
genomes extremely quickly and BIGSI (5), for searching for matches in graph representations 
of extremely large genome databases. To further increase analysis speed and reduce memory 
requirements, these methods use minimisers (6) and/or bloom filters (7). For closely-related, 
small genomes, however, such approximations are not necessary. All kmers can be stored and 
searched without adversely impacting speed and efficiency. Even so, a big challenge for 
kmer-based approaches is sequence variation. Counting kmers can identify similarity, but 
non-matching of kmers cannot distinguish variation in the sequence from absence of that 
sequence, and thus kmer methods for calculating distances are most applicable to divergent 
samples. Identifying relationships between samples within a single MLST sequence type, for 
example, is often inaccurate using kmer distances. 
 
Rapid identification of variation using split kmers 
Here I introduce the concept of the split kmer, which is simply a pair of kmers in a DNA 
sequence that are separated by one or more bases. Split kmers allow the speed of exact 
matching to be utilized to identify regions of variation flanked by conserved sequences. A 
related approach, whereby kmers are first counted and then sorted before looking for 
variation nat the middle base has been used in the kSNP software (8). kSNP does this by 
post-processing results from the jellyfish kmer counting software (9), which limits its speed, 
efficiency and versatility. Split kmers also have the added potential over the kSNP approach 
of allowing the analysis of insertions, deletions and other structural variations in genomes. 
 
SKA: A toolkit for split kmer genomic epidemiology 
SKA was developed to allow rapid, simple analysis of short-read genome sequence data from 
bacteria or other haploid organisms with small genomes. It is written in C++ with no 
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dependencies other than a UNIX-like command-line interface, gnu make and a version of 
g++ compatible with C++11 for installation from the makefile. Source code and 
documentation are available on github at https://github.com/simonrharris/SKA and 
https://github.com/simonrharris/SKA/wiki respectively. The SKA toolkit includes methods 
extract split kmers from assemblies or directly from fastq format read sequences, compute 
pairwise distances, identify clusters, produce sequence alignments with or without a reference 
sequence and provide various comparison and summary statistics. SKA comprises a set of 
subcommands to carry out these tasks, which can all be accessed via the single ska command. 
SKA currently uses the simplest form of split kmers, that is two kmers separated by a single 
base, to allow rapid comparison and alignment of single nucleotide polymorphisms (SNPs) in 
small, conserved genomes, making it particularly suited for bacterial pathogen surveillance, 
outbreak investigations and transmission tracking. Here I show with published simulated and 
real-world outbreak data that SKA is both computationally efficient and accurate, providing 
another powerful tool for the growing field of genomic epidemiology. 
 
Creating split kmer files 
SKA stores split kmers in a new file format known as skf (split kmer format) files, which can 
store sequence information for one or more samples. These files have the following structure. 
The first line reports the version of SKA that created the file. The second line contains a 
single integer representing the split kmer size used to create the split kmers in the file. The 
split kmer size is the size of each of the two kmers making up the split kmer. The third line is 
a whitespace separated list of the samples in the file. Subsequent lines are made up of a 
compressed representation of the split kmers for various subsets of the samples in the file. 
SKA can create split kmers from fasta and fastq files using three subcommands: ska fasta, ska 
alleles and ska fastq. Ska fasta and ska alleles require fasta format input and differ only in the 
way they interpret these files. For ska fasta, the split kmers in all fasta sequences in the input 
file(s) are treated as belonging to a single sample, as would be required for a set of contigs 
from an assembly or reference genome. For ska alleles, each fasta sequence is treated as a 
separate sample, as would be the case if the input file was a set of alleles of a locus. Ska fastq 
creates split kmers from one or more fastq files. As with ska fasta, all sequences in the input 
fastq file(s) are treated as belonging to a single sample. Importantly, ska fastq carries out a 
number of simple filtering steps to reduce noise in the split kmer set produced. These include 
breaking sequences at Ns or at bases with a base quality below a user-defined minimum 
(default=20) and only creating split kmers for the subsequences with qualities above this 
level, requiring a user-defined minimum coverage for each split kmer per input file 
(default=2), requiring a user-defined minimum total coverage for each split kmer (default=4), 
and a user-defined minimum minor allele frequency (default=0.2), with kmer alleles below 
this being discarded. The base quality filter is particularly efficient at reducing the number of 
noisy kmers, and can dramatically reduce the number of split kmers stored for a sample. 
Similar approaches could provide major efficiency improvements for many other kmer-based 
methods. The coverage and minor allele frequency cutoffs are important for reducing 
uncertainty in middle base calls caused by sequencing error, and are analogous to the sorts of 
filter that are often applied when calling variation from pileups of reads mapped against a 
reference genome. However, applying them at the kmer creation stage further improves the 
efficiency of downstream analysis. 
 
Merging skf files 
SKA is designed to be used for genomic epidemiology, particularly for outbreak and 
transmission investigations. The similarity of samples in these cases creates large amounts of 
redundancy in split kmer sets between samples. This redundancy can be utilized to improve 
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the efficiency of data storage and, as a consequence, data access by merging individual skf 
files using ska merge. Most SKA commands that take skf files as input can read merged files, 
and, given a file containing a list of samples, can analyse subsets of samples from merged skf 
files. Individual sample skf files can be re-extracted from merged skf files using the same 
approach. 
 
Summarising and comparing skf files 
SKA provides two subcommands for summarising split kmer files. Ska info provides 
information about the content of split kmers files, including the split kmer size, number of 
samples and number of split kmers. The ska summary command produces a tab separated 
table reporting a number of useful quality control (QC) statistics for each sample in the 
file(s), including the split kmer size, the total number of split kmers, the number of middle 
bases that are As, Cs, Gs, Ts and Ns and the GC content of the middle bases. For QC 
purposes, if the species of the sample is known it would be expected that the total number of 
split kmers should be approximately the same as the genome length, while the GC content of 
the middle bases should be representative of the species. It should be noted that repeat 
regions will reduce the number of split kmers while sequencing error and contamination may 
increase the number. In cases where the species is unknown, the number of split kmers can be 
checked to make sure it is in a sensible range for a bacterial sample (e.g. usually within a 
range of around 1Mb to 10Mb). 
Ska compare allows samples in a query skf file to be compared with those in one or more 
other skf files. The pairwise output includes the number of split kmers unique to each sample, 
the number of matching split kmers and the number of SNPs identified between the samples. 
 
Pairwise distance calculation and single linkage clustering 
Ska distance calculates a number of pairwise indices and distances between samples as well 
as performing single-linkage clustering of samples based on a user-defined SNP cutoff 
(default=20).   The statistics reported for each pair of samples are shown in table 1.  
 

Column Description 
File 1 The name of the first sample being compared 
File 2 The name of the second sample being compared 
Matches Number of split kmers found in both samples where the middle base is an 

A, C, G or T and matches between samples 
Mismatches Number of split kmers found in only one of the samples 
Jaccard Index Ratio of split kmers found in both samples to the total found in the two 

samples: matches/(matches+mismatches) 
Mash-like distance A distance based on the Mash distance calculation using the Jaccard Index 

(j) above and the split kmer length (k): (-1/(2k+1))*ln(2j/(1+j)) for 0<j≤1 or 
1 for j=0 

SNPs Number of split kmers found in both samples where the middle base is an 
A, C, G or T but differs between files 

SNP distance The ratio of SNPs to matches: SNPs/matches 
 
Table 1. Description of the columns in the .distances.tsv output of ska distance. 
 
Clusters are reported in a tab delimited file, and the sample names in each cluster containing 
multiple samples are output to individual text files that can be used to subset further analyses. 
Finally, a dot format file representing the clusters is produced to facilitate visualisation, for 
example in microreact (10). 
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Aligning split kmers 
One of the key features of SKA is the ability to create reference-free genome alignments with 
ska align. This is simply a kmer matching exercise, with the middle bases of matching split 
kmers output as the alignment. It is important to note that there is no positional information in 
the output alignments, which are therefore not suitable for analysis in recombination 
detection methods, such as Gubbins or ClonalFrameML, that utilise SNP density. Output 
alignments can be filtered to only include split kmer alignments that were present in a user-
defined proportion of samples (default=0.9). There is also the option to limit the output 
alignment to variable sites, in which case the number of constant sites of each base, where all 
aligned middle bases are the same base or N, are output to screen. Some phylogenetic 
methods can use this information to correct for ascertainment biases inherent in variable site 
alignments. 
 
Mapping split kmers to a reference 
Ska map allows split kmers to be aligned to (or mapped) against a reference genome. By 
default, the output alignment will only include sites mapped to by the middle base of a split 
kmer. However, there is also the option to map all bases covered by a split kmer. This 
improves coverage and allows mapping in the bases surrounding a variant site. As with ska 
align, the output can be restricted to variant sites only, in which case the number of constant 
sites for each base are output to screen. Due to the necessity for exact matches of split kmers, 
ska map works best when the reference is very similar to the samples being mapped (see 
limitations section below). 
 
Annotating split kmers 
Kmer-based analysis can sometimes seem separated from biological reality, with no obvious 
way to relate variation to a genomic context. For the reference-free methods of SKA that is 
particularly true. SKA includes the annotate subcommand to allow split kmers to be located 
in genomes, and where annotation is present, to extract biologically relevant information 
about the variant. Ska annotate accepts fasta and gff reference input and outputs a vcf. The 
vcf reports the chromosome and position of all middle base mappings to the reference 
sequence along with the reference and alternate bases along with various information in the 
info field (see Table 2). As with other SKA subcommands, the output can be restricted to 
variant sites only. 
 
Weeding split kmers 
When calling variation between genomes, particularly for the purpose of phylogenetic 
reconstruction, it is often useful to exclude parts of the genome that are known to be 
transmitted horizontally rather than vertically. Traditionally this can be achieved by masking 
regions of a reference genome during read mapping, or by analyzing core genome gene sets. 
Typically, kmer-based analyses do not exclude these accessory regions. Ska weed allows 
kmers matching known accessory sequences to be excluded from split kmer files. For 
example, to remove known phage, plasmid and other mobile sequences, the user needs to 
simply create a split kmer file from sequences of these elements and weed them from split 
kmer files of the samples of interest using ska weed. Other known contaminants can be 
excluded in the same way.  
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ID Type Description gff only Optional 
NS Integer Number of samples with a matching split kmer   
NS5 5 Integers Number of samples with A, C, G, T or N as the 

middle base 
  

FT String Feature type X  
FS Character Feature strand (+/-) X  
BP Integer Position of base in feature X  
CP Integer Position of base in codon X  
AAP Integer Position of amino acid in feature X  
RAA Character Reference amino acid X  
AAA Character(s) Alternate amino acid(s) X  
ID String Feature ID X  
LT String Feature locus tag X  
SI String Feature systematic ID X  
GE String Gene X  
PR String Product X X 

 
Table 2. Description of values in ska annotate vcf output file info column. Gff only indicates where 
values are only output when the input is a gff file. Optional indicates where a value is only output 
when requested by the user. 
 
Identifying unique split kmers 
Ska unique outputs a set of kmers that are found in an ingroup set of samples but not found in 
any other samples. For outbreak analyses this allows the creation of outbreak specific split 
kmer sets which can be used to rapidly screen new isolates to see if they are members of the 
outbreak using ska compare, which outputs various comparison statistics between a query skf 
file and one or more others. This technique works best if relatively close outgroup isolates are 
included.  
 
Typing alleles using split kmers 
SKA includes a typing subcommand, ska type, which accepts a set of multifasta files for 
alleles of loci of interest and an optional profiles file which translates allele numbers to 
sequence types. This can be used, for example for rapid MLST from skf files. Ska type will 
export sequences of novel or partial alleles, making it more adaptable than some other kmer-
based sequence typing methods. It should be noted, however, that ska type does not handle 
diverse alleles and repetitive alleles well due to the limitations imposed by the use of split 
kmers (see limitations section below). 
 
Limitations 
The use of kmers in general, or more specifically split kmers comes with a number of 
limitations. In particular, split kmers lose power as the density of variants increases. This is 
simply because split kmers no longer match if a second variant site occurs within a kmer 
length of either side of a middle base. For this reason, split kmers are particularly suited for 
the analysis of highly similar sequences, although results for analyses of more diverse 
sequences are still good in many cases (e.g. see results section below). This limitation affects 
different analyses slightly differently. For pairwise methods, such as pairwise distance 
calculation or mapping to a reference, the diversity between each pair will impact the results. 
For these analyses SKA outputs an estimate of the number of alignments that have been 
missed due to this phenomenon. This is purely a guide and should not be considered an 
accurate count of missed alignments. For reference-free alignment of split kmers the situation 
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is more complex, since in an all versus all alignment the total number of variant sites in all 
samples becomes important. This is because variants between any samples that are within a 
kmer length of each other will lead to missed alignments. Therefore, ska align outputs a 
prediction of the total number of missed alignments in the entire set of samples being aligned. 
In practice these often occur on longer branches of the tree and lead to subalignments within 
the data, which can be accessed by changing the minimum proportion of samples required to 
output an alignment. In cases where large numbers of alignments are missed, reanalyses of 
subsets of closely related samples (e.g. by subclade) can be used to improve resolution of 
those clades. 
A second limitation of using split kmers is that repeats of the kmer size or greater cannot be 
analysed, even if the raw sequence reads would include unique sequence either side of the 
repeat. This is simply because information linking split kmers to others in the same reads are 
not stored. In practice this usually results in a minor loss of power. 
A third consideration when using split kmers is that variation in the first or last k bases of the 
sequence (where k is the kmer length) cannot be identified for linear input sequences. For 
fasta files of reference genomes, ska fasta and ska map allow the sequence to be circularized 
to avoid this problem. For fasta input of uncircularised contigs or fastq files this is not 
possible. However, the first and last few bases of assembled contigs and sequencing reads are 
known to be the least accurate, so this may have the effect of reducing some noise in the data. 
It does, however, impact on depth of coverage for fastq file input. 
In general, split kmer analysis requires relatively high-quality input sequence data, for 
example from Illumina technologies or polished assemblies. Poor quality sequencing with 
high error rates or low coverage can lead to poor results. At the time of writing raw reads 
from long read technologies are not of a high enough quality for use in SKA. Reduction of 
the ska fastq filtering options can rescue data from poor sequencing runs, but often at the 
expense of increased noise which may impact on speed, memory usage and accuracy of 
analyses. Therefore, it is recommended that long read data is assembled and corrected before 
using with SKA. 
Finally, the current version of SKA only supports split kmers with a single base in the 
middle. Split kmer analyses could extend upon this to allow analyses of more complex data, 
including indels and short repeats. 
 
Methods 
Unless specifically mentioned, SKA commands were run using default options in SKA v1.0. 
 
Analysis of simulated data from Lees et al. (11) 
Methods 
The ability of SKA to correctly reconstruct the phylogeny from the simulated genomic data 
was assessed using three approaches: 

1) Calculation of a pairwise distance matrix using SKA distance 
2) Alignment of split kmers against a reference using SKA map 
3) Reference-free alignment of split kmers using SKA align 

The raw simulated read data and assemblies and inferred trees of Lees et al. (11) were 
retrieved from figshare at https://dx.doi.org/10.6084/m9.figshare.5483461 
and https://dx.doi.org/10.6084/m9.figshare.5483464 respectively. Split kmers were created 
from sample fastq files using ska fastq and from assemblies using ska fasta. Ska 
map was run using the TIGR4 genome (12) as reference with default options and with the 
option to only output variant sites. Ska align was run with the minimum proportion of isolates 
required to possess a split kmer for that kmer to be included in the alignment set to zero given 
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the diverse nature of the data. Ska distance was run with default options to calculate pairwise 
distances. 
Trees based on the distances from ska distance were reconstructed using bioNJ calculated in 
R v3.5.1. Distances were first rescaled using the rescale function from the scales package 
v1.0.0, and trees were calculated using the bionj function in the Ape package v5.1 (13). 
RapidNJ v2.3.2  (14) trees were run on ska map and ska align alignments under default 
options (Kimura model of evolution). Maximum likelihood trees were reconstructed from ska 
map and ska align alignments using IQ-Tree v1.6.5 (15) with and without the fast option. For 
all analyses a general time reversible (GTR) (16) model of evolution with a discrete gamma 
model (17) with four rate categories for among site rate variation was used. For analyses of 
alignments of variant sites only, an ascertainment bias correction (18) was applied. 
kSNP3 v3.1 was run from the assemblies of Lees et al. using a kmer length of 15 to give 
consistency with the kmer size used in SKA. All other options were set as the default. Trees 
were run from the resulting alignment using IQ-Tree with the fast option and a general time 
reversible (GTR) model of evolution with a discrete gamma model with four rate categories 
for among site rate variation. 
Kendall Colijn metrics (19) were calculated between kSNP3 trees, SKA trees and trees from 
Lees et al. with the real tree from Lees et al. in R v3.5.1 using the treespace package v1.1.3 
(20) with Ape v5.1. Trees were first midpoint rooted using the midpoint function from the 
Phangorn package v2.4.0 (21), followed by running treespace with an nf of 3 and a lambda of 
0. Robinson Foulds distances (22) were calculated in python v2.7.13 using the 
symmetric_difference function of dendropy v4.2.0 (23).  
 
Analysis of outbreak datasets from Timme et al. (24) 
For all datasets split kmers were created from raw reads of each sample, where available, 
using SKA fastq with default options. For the E. coli dataset, split kmers were produced for 
sample 2011C-3609 using ska fasta from the reference genome sequence. Ska distance was 
used with default options to create single-linkage clusters of samples separated by fewer than 
20 SNPs and ska align used to create an alignment of variant sites with all other parameters 
set to the default. Based on the results of the analyses of the simulated data from Lees et al. 
phylogenetic trees were reconstructed from these alignments using IQ-Tree v1.6.5 with a 
GTR+G+ASC model and the fast option. The phylogenetic trees and the cluster networks dot 
files produced by ska distance were visualized in Microreact (10) along with a csv combining 
metadata for the samples with the ska distance clusters. 
 
Analysis of MRSA outbreak data from Harris et al. (25) and Coll et al. (26) 
Split kmers were created for the 65 samples from Harris et al. using ska fastq with default 
options before being merged using ska merge. QC statistics were produced with ska summary 
and pairwise distances and single linkage clustering performed with ska distance with default 
parameters (SNP cutoff (-s) 20, minimum identity (-i) 0.9). Split kmers unique to the 45 
outbreak samples were identified using ska unique, by providing it with the file containing a 
list of the 45 sample names created by ska distance as one of its output cluster files. 
To illustrate how SKA can be used to identify novel cases linked to an outbreak, the sequence 
data of the 1,683 samples from Coll et al. that had been typed by them as being part of MLST 
clonal complex 22, were downloaded from the European Nucleotide Archive and ska fastq 
and ska merge used to create a merged skf file from these samples. QC statistics for this 
merged skf file were produced with ska summary. The split kmers unique to the 45 outbreak 
samples from Harris et al. were compared with the merged split kmers from the samples of 
Coll et al. using ska compare. Results were sorted using UNIX sort with the -g and -r flags 
and the -k option set to 5 to sort by the percentage of split kmers in each sample matching the 
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query split kmers. The skf files from the 45 outbreak samples from Harris et al. and the 
eleven samples with more than 5% match to these from the data of Coll et al. were then 
merged using ska merge. Ska distance was run on this merged skf file under default options. 
To compare the ability of SKA to reconstruct phylogenetic relationships between outbreak 
samples, the skf files from the 45 outbreak samples from Harris et al. and the ten samples 
from Coll et al. that were linked to the outbreak were merged using ska merge. A reference-
free alignment was produced from this merged skf file using ska align with the minimum 
proportion of isolates required to possess a split kmer for that split kmer to be include in the 
alignment set to 0.9 (default), the -v flag set to output a variant only alignment, and the -k 
flag set to output the split kmers of variant sites to a file. This skf file of variant sites was 
used to identify the location of the bases in the reference-free alignment in the HO 5096 0412 
and GCA_001369415.1 reference genomes using ska annotate to allow comparison of the 
SNPs identified by SKA with those from the output of SNP Pipeline v2.0.2 (27). SNP 
pipeline was run using default parameters against two reference genomes: HO 5096 0412 as 
an example of a realistic reference and GCA_001369415.1, a complete genome of one of 
the outbreak samples from Harris et al., as an unrealistically close reference. In both cases, 
the individual steps of the pipeline were run manually to allow computational resources to 
be accurately recorded. SNP pipeline has a number of dependencies. The versions of these 
used in the analysis were: Bowtie2 v2.2.3 (28), SAMtools v1.6 and BcfTools v1.5 (29), Picard 
v 2.18.14 (30), GATK v3.4-46 (31), VarScan v2.3.9 (32) and tabix v1.8 (33). Mapping was 
done using Bowtie2, and maximum memory allocated to GATK and Picard was restricted to 
5Gb. All other parameters were set to the default. Any sites in the resulting alignments that 
failed filters or were constant within the outbreak samples (i.e. only differed in the 
reference) were removed. Phylogenetic reconstruction of the alignments from SKA and SNP 
Pipeline were carried out with IQ-Tree v1.6.5 with a GTR+G+ASC model and the fast 
option. SNPs were reconstructed onto the branches of the trees using pyjar (34),  a python 
implementation of the joint ancestral reconstruction method of Pupko et al. (35). 
 
Results 
 
To test the utility of SKA, it was applied to 7 published datasets from four publications: 

1) A simulated dataset designed to compare methods for genomic phylogenetics (11). 
2) Four benchmarking outbreak datasets for genomic epidemiology, comprising 23 

Campylobacter jejuni, 9 Escherichia coli, 31 Listeria monocytogenes and 22 
Salmonella enterica subsp. enterica ser. Bareilly (24). 

3) 65 Staphylococcus aureus samples from an investigation into an outbreak on a 
special care baby unit (SCBU) at Addenbrooke’s Hospital, of which 45 have been 
previously identified as a single outbreak (25). 

4) 1,683 ST22 samples from a genomic survey of S. aureus from the East of England 
(26). 

 
All timings were made on an AMD Opteron (TM) Processor 6272 2.1GHz. 
 
Simulated data 
 
Description 
Lees et al.(11) produced a simulated dataset for comparison of methods for genomic 
phylogenetic reconstruction. Sequences were simulated on the tree topology from a published 
analysis of a Listeria monocytogenes dataset (36) and the evolutionary model parameterised 
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using values from Streptococcus pneumoniae. They provided raw sequence reads for 96 
simulated genomes along with assemblies produced from those reads using a typical 
assembly approach. After analyzing the data with various phylogenetic approaches they 
compared the trees produced by each method with the true tree using the Kendall Colijn (KC) 
metric (19). They found methods using maximum likelihood phylogenetic reconstruction 
based on mapping raw reads against a close reference were the most accurate. These methods 
were also computationally expensive. The most accurate reference-free approach was bioNJ 
reconstruction using distances calculated with Mash (2). Although this method was 
considerably less accurate, it was one of the most computationally efficient approaches in the 
tests. 
 
Results 
Supplementary Table 1 shows the KC and Robinson Foulds (RF) distances (22) to the true 
tree for each of the trees created using SKA along with trees from some of the better 
performing methods assessed by Lees et al. and kSNP3 as a comparison of an approach that 
is similar to SKA. Selected results are summarized in Fig. 1. 

 
Figure 1. Comparison between SKA and other methods for their accuracy of reconstruction of the 
true tree from simulated read data of Lees et al. Kendall Colijn (KC) metric distances from the true 
tree are shown on the x axis, and Robinson Foulds (RF) distances from the true tree on the y axis. 
The key shows the fill patterns for trees reconstructed with different SKA commands. Trees from the 
analyses of Lees et al. are filled white. For SKA analyses, IQ-Tree fast trees are shown for alignments 
of variant sites from ska map and ska align, while BioNJ trees are shown for ska distance mash-like 
distances. Square markers indicate SKA analyses from assemblies and circles from raw sequencing 
reads. The black cross indicates the tree from kSNP3. The white triangle indicates the best 
performing tree from Lees et al, which was a RAxML tree of a BWA mapping to an artificially close 
reference genome. White diamonds represent trees from other analyses run in Lees et al. (11), and 
are individually labelled.  
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SKA preformed very competitively, with results from mapping, reference-free alignment and 
distance-based trees comparable to the best mapping approaches presented by Lees et al. 
Results based on split kmers from assemblies and raw reads were similar, although in general 
analyses from reads proved slightly more accurate. 
The best performance resulted from reference-free alignments from SKA align. IQ-Tree 
reconstructions from these alignments produced trees of similar quality to the artificial gold 
standard method of Lees et al., which used RAxML on a BWA alignment to an artificially 
close reference. RapidNJ trees were only marginally inferior when run on the variant sites 
only. A general theme of the results was that RapidNJ provided less accurate trees when run 
on all sites in any alignment. The KC metric was particularly poor for these trees, while the 
RF distance was only slightly worse than that for the RapidNJ trees from alignments of 
variant sites. Since the KC metric is particularly harsh on deep rearrangements, this suggests 
that RapidNJ trees from alignments of all sites failed to accurately reconstruct the deeper 
relationships in the tree. 
Similar patterns of results were observed for alignments from SKA map, although the 
resulting trees were less accurate in all cases, and less accurate than the RAxML and IQ-Tree 
reconstructions from BWA mapping reported in Lees et al. This is unsurprising given the 
high level of variation of many samples from the reference genome, and the limitations of 
split kmers in those situations (see limitations section above). 
BioNJ trees based on SKA mash-like distances, provided a similar level of accuracy to those 
of RapidNJ run on the reference-free alignments of variant sites from SKA align, and were 
more accurate than any of the realistic methods presented by Lees et al. Trees created from 
SKA SNP distances were similar to those of RapidNJ run on the reference-free alignments of 
all sites from SKA align, with the same loss of accuracy under the KC metric. 
kSNP3, which uses a similar approach to SKA also performed well in terms of the tree it 
produced, providing results comparable to mapping approaches and SKA. However, kSNP3 
can only be run from assemblies and its runtime was much longer, memory requirements 
were higher, and disk space requirements far greater than SKA (see Supplementary Table 2). 
At one point during the analysis, kSNP3 had produced in excess of 50,000 intermediate files 
requiring more than 15Gb disk space. 
 
Outbreak benchmark datasets 
 
Description 
Timme et al. (24) produced a public resource for benchmarking phylogenomic methods. The 
resource comprises four real foodborne pathogen outbreak datasets for which sequence data, 
gold-standard trees and epidemiological data are all available. The gold-standard trees were 
created using SNP Pipeline (27), a reference-mapping approach used to create an alignment, 
and Garli (37) for phylogenetic reconstruction. To assess the ability of SKA to identify 
outbreaks from real data without the need of a reference sequence, we analysed the four real 
outbreak datasets from Timme et al. with SKA. 
 
Results 
Table 3 details the CPU time taken for each step of these analyses. In all cases, analyses took 
well under two hours of CPU time on a single core from raw data. The vast majority of this 
time was taken up creating split kmers from read data. Production of clusters, alignments and 
phylogenetic reconstructions from these split kmer files required less that 1.5 minutes total 
CPU time for all datasets. Clustering and phylogenetic results for the four datasets are shown 
in Fig. 2 and are available as interactive microreact instances at 
https://microreact.org/project/SKACjejuni, https://microreact.org/project/SKAEcoli, 
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https://microreact.org/project/SKALmonocytogenes and 
https://microreact.org/project/SKASenterica.  
 
 

Dataset C. jejuni E. coli L. monocytogenes S. enterica 
Number of fastq files 22 9 31 23 
Mean number of fastq 
reads 3,361,254 3,361,254 1,777,006 1,859,063 

Mean number of fastq 
bases 657,706,314 356,661,903 380,854,631 278,574,418 

SKA fastq mean CPU time 
(s) 271.35 145.21 184.29 118.14 

SKA fastq total CPU time 
(s) 5,969.7 1,306.89 5,712.99 2,717.22 

Number of fasta files 0 1 0 0 
Mean number of fasta 
contigs - 7 - - 

Mean number of fasta 
bases - 5,412,686 - - 

SKA fasta mean CPU time 
(s) - 10.06 - - 

SKA merge CPU time (s) 29.96 41.02 44.34 54.39 
SKA distance CPU time (s) 8.22 13.24 8.51 15.71 
SKA align CPU time (s) 10.29 14.06 12.59 19.24 
IQ-Tree fast CPU time (s) 0.12 0.31 0.49 0.42 
Total CPU time (s) 6,018.29 1,385.58 5,778.92 2,806.98 
Total CPU time (m) 100.31 23.09 96.32 46.78 
Total CPU time from split 
kmers (s) 48.59 68.63 65.93 89.76 

 
Table 3. Data summary and CPU time for each stage of the SKA analyses of the four datasets from 
Timme et al. (24) 
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Figure 2. Results of SKA analysis four datasets from Timme et al. (24) a) C. jejuni. b) E. coli. c) L. 
monocytogenes. d) S. enterica. In all cases, trees shown were reconstructed from ska align 
alignments of variant sites only using IQ-Tree with a GTR+G+ASC evolutionary model and the fast 
option. Black circles on terminal nodes indicate isolates that were part of an outbreak according to 
the original investigation. White circles on terminal nodes indicate outgroup isolate that were not 
considered part of the outbreak. Coloured bars to the right of each tree indicate single linkage 
clusters identified by ska distance using a 20 SNP cutoff. Scale bars indicate substitutions per site on 
branches as output by IQ-Tree. All figures edited from microreact output. 
 
In all four cases the phylogenies produced by IQ-Tree were similar to the trees reported by 
Timme et al. and recapitulated the expected clusterings. The SKA distance clusterings 
identified the expected outbreak sample sets for the C. jejuni and E. coli datasets. For the L. 
monocytogenes dataset, SKA split the outbreak into two clusters, which is not surprising 
given the clear diversity between those two clusters and is consistent with the IQ-Tree 
phylogenetic reconstruction and the trees reported by Timme et al. For the S. enterica dataset, 
SKA included one outgroup sample, CFSAN000189, in the outbreak cluster, because it was 
fewer than 20 SNPs from some isolates in the outbreak. However, the phylogenetic 
reconstruction clearly separated this outgroup from the outbreak isolates. In all four datasets 
SKA distance identified other, smaller clusters that were not the focus of the original 
outbreak investigations. These results highlight the problematic nature of using SNP cutoffs 
for outbreak definition, but illustrate that SKA provides rapid, accurate results that can be 
used to inform outbreak investigations without the need of a reference genome sequence. 
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Case Study: MRSA outbreak investigation 
 
Description 
In 2011 three babies in a special care baby unit (SCBU) at Addenbrooke’s Hospital in 
Cambridge, UK simultaneously tested positive for methicillin resistant S. aureus (MRSA) 
with near-identical Vitek antimicrobial resistance phenotypes during routine screening. The 
hospital deep cleaned the ward and launched an outbreak investigation. They found that over 
the previous six months 12 screening swabs had tested positive for MRSA with the same 
resistance pattern. However, there were two periods of time during those six months where 
no carriage was detected on the ward, making it difficult to conclude whether or not all of the 
cases were linked. Whole genome sequencing on the Illumina MiSeq platform was used by 
Harris et al. (25) to attempt to resolve this uncertainty. Twenty-six isolates were sequenced, 
including 17 isolates from the SCBU plus 9 isolates from other parts of the hospital that had 
no more than one difference in Vitek antibiograms from the outbreak samples. The results 
showed that 14 cases from the SCBU were linked, of which two were missed by the 
phenotypic method due to erroneous Vitek results. Further sequencing of community samples 
showed that the outbreak had spread into the community via the families of babies on the 
wards. During the investigation, two months after the last case, another baby on the ward 
tested positive for MRSA. This sample was immediately sequenced and confirmed to be part 
of the outbreak. Sampling of staff identified an individual carrying an MRSA that was 
confirmed to be linked to the outbreak by genome seuqencing. Decolonisation of the baby 
and staff member resolved the outbreak. In all, the genomic analysis linked 45 isolates to the 
outbreak and excluded a further 20. 
The genomic investigation of the outbreak was carried out using a mapping approach, 
whereby sequenced reads were aligned to the closest available complete reference genome 
(HO 5096 0412) to identify variation between samples. Here, the data generated during the 
investigation was used to illustrate how SKA can be applied in such outbreak investigations 
and how it can quickly identify new linked samples. The CPU time and memory usage for 
SKA commands run during these analyses are shown in Supplementary Table 3. 
 
Creation and QC of split kmer files 
For each of the 65 samples analysed in the outbreak investigation, ska fastq was run on the 
paired fastq files of raw reads using the default filtering options (minimum base quality of 20, 
minimum coverage per split kmer of 4 and minimum coverage per split kmer per file of 2). 
Ska summary showed that the split kmer files contained between 2,097,419 and 2,841,127 
(mean=2,761,345, median=2,780,919) split kmers with GC contents between 31.7% and 
32.7% (mean=32.6 %, median=32.6%). The reference ST22 genome HO 5096 0412 is 
2,832,299 bases long with a GC content of 32.8%, so these numbers are consistent with 
expectations. Two samples had fewer than 2,500,000 split kmers, suggesting they were from 
poor sequencing runs where sequencing depth and/or quality dropped below the levels of the 
default ska fastq filters for parts of the genome. 
 
Pairwise distance calculation and clustering 
Running ska distance with default options (SNP cutoff (-s) 20, minimum identity (-i) 0.9) 
clustered the 65 samples into 16 clusters, of which four contained two or more isolates. The 
largest cluster contained 45 isolates and corresponded to the outbreak samples identified in 
the original investigation. Two other clusters each contained two samples, and one contained 
four samples. In each case these were not isolated on the SCBU and potentially represent 
other outbreaks or transmissions that were not the focus of the published investigation. The 
maximum distance between any of the 45 isolates from the SCBU outbreak was 12 
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(minimum=0). Therefore, using SKA the SCBU outbreak could have been identified directly 
from raw sequencing reads in under two hours on a single CPU without the need for any prior 
information to identify a relevant reference genome, or even to know the species involved 
(total CPU time for all ska fastq, ska merge, ska summary and ska distance commands: 105.4 
minutes. Maximum memory usage: 1.4Gb; Supplementary Table 3). 
 
Identifying new linked cases 
SKA introduces a novel approach for efficient identification of new cases of a known 
outbreak. The first step is to identify conserved and unique split kmers from the known 
outbreak isolates using ska unique. The closer the outgroup samples are to the outbreak the 
more specific the method becomes. Using the 45 SCBU outbreak samples as the ingroup and 
the remaining 20 samples that were not identified as part of the outbreak as the outgroup 
identified 1,714 split kmers that were unique to the outbreak isolates. As new samples are 
sequenced, ska compare can be used to compare these unique outbreak kmers with the split 
kmers files produced from the fastq files of the new samples. This is extremely efficient. 
Toleman et al. (38) described ten further MRSA cases in the East of England from the 
following year that were found to be linked to the SCBU outbreak based on genomics and 
epidemiology. These isolates were discovered in a genomic survey of MRSA in patients in 
the East of England over a 12-month period from April 2012 to April 2013 by Coll et al. (26). 
They sequenced 2,282 isolates from 1,465 patients and found that the most common MLST 
clonal complex (CC) was CC22, the same CC to which the SCBU outbreak samples 
belonged. The ten isolates identified by Toleman et al. were part of this survey and were 
initially identified as linked to the SCBU outbreak on the basis of their MLST profile 
matching the novel profile of the SCBU outbreak samples. To assess whether SKA could 
identify the samples linked to the SCBU outbreak from the East of England survey, read data 
for the 1,683 samples listed as belonging to CC22 in the supplementary data table of Coll et 
al. were downloaded. Split kmers were created for each pair of fastq files using ska fastq and 
then merged into a single file. Fig. 3(a) illustrates the compression gained by storing these 
data in a merged skf file. QC of the data using ska summary (Fig. 3b) shows that a number of 
samples produced more split kmers than expected, suggesting they may contain DNA from 
contaminant sources, which will have the effect of inflating the size of the merged skf. 
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Figure 3. Summary and QC of split kmers created from the 1,683 CC22 MRSA samples of Coll et al. 
(26) and the 45 outbreak samples from Harris et al. a) Illustration of the data compression of a 
merged skf file containing all 1,683 samples relative to individual skf files, genome assemblies and 
gzipped fastq files. Areas of each circle are proportionate to the total size of the files. b) QC results 
from ska summary showing the number of split kmers and GC content of the middle bases of split 
kmers for the 1,683 MRSA samples from Coll et al. (black) and the 45 SCBU outbreak samples from 
Harris et al (red). Contaminated samples contain far more split kmers than expected for a genome of 
the length of S. aureus, while samples for which sequencing quality was poor contain fewer split 
kmers than expected. 
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Scanning the 1,683 samples from Coll et al. for the unique kmers of the SCBU outbreak 
samples required just 116s and 7Mb memory and identified ten samples matching 100% of 
the split kmers with no SNPs. One further isolate matched 34% of the split kmers with 34 
SNPs. No other isolates matched more than 5% of the split kmers. To confirm whether the 11 
isolates with greater than 5% match to the unique outbreak split kmers were linked to the 
outbreak, ska distance was run on a merged skf file of the 45 outbreak isolates plus the 11 
candidates. Results showed that then ten candidates that had perfectly matched the unique 
outbreak split kmers were all within 11 SNPs of an outbreak sample, while the candidate with 
only a 34% match to the unique outbreak split kmers was 53 SNPs from the closest outbreak 
sample. Ska type found consistent results, typing the ten closest samples as MLST ST2371, 
the novel ST identified in the SCBU outbreak samples, while the more distant candidate 
sample was typed as ST22. The ten samples were later confirmed as the same ten samples 
identified by Toleman et al. (Coll pers. comm.), illustrating the power of SKA to rapidly and 
accurately identify samples linked to an outbreak and to rule out links to other samples. 
 
Reconstructing the outbreak 
To test the ability of SKA to reconstruct the phylogenetic relationships between isolates in an 
outbreak, it was compared with a traditional mapping approach similar to that used by Harris 
et al. and Toleman et al. in their epidemiological investigations. For transparency, the 
publicly available SNP pipeline (27) was used as the comparator. IQ-Tree was used to 
reconstruct phylogenetic trees from three alignments of 55 samples comprising the 45 
original SCBU outbreak samples and the ten new samples identified by SKA: 

1) A reference free alignment using ska align 

2) An alignment created using SNP pipeline with the ST22 reference genome HO 
5096 0412, the reference genome used by Harris et al. in their original investigation. 

3) A gold standard alignment created using SNP pipeline with a complete reference 
genome of one of the samples from the outbreak identified by Harris et al., which 
was subsequently sequenced using long-read PacBio sequencing (accession number 
GCA_001369415.1). All SNPs in the alignment were manually curated to ensure 
accuracy. This alignment was used to test the accuracy of alignments 1 and 2, which 
are more representative of real-life scenarios. 

Table 4 provides an overview comparison of the ska alignment and the SNP pipeline 
alignment using the HO 5096 0412 reference, and figure 4 shows a comparison of the trees 
produced from these two alignments with the gold-standard tree created from alignment 3.  
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 SKA SNP Pipeline Fold difference 
Total topological differences to 
gold standard tree 0 0 - 

False positive SNPs 0 5 - 
False negative SNPs 8 7 0.875 
Total CPU time (m) 114 1,913 16.78 Total CPU time (h) 1.9 31.9 
Maximum memory usage (Mb) 607 4,479* 7.38 
Maximum file size (Mb) 31 2,450 79.03 
Total disk space used (Mb) 1,661 116,746 70.29 

 
Table 4. Comparison of SKA with SNP Pipeline, a typical mapping pipeline for analysis of bacterial 
genomic variation. These comparisons are based on analyses of 45 isolates from the SCBU MRSA 
outbreak of Harris et al. (25) plus the ten samples from Toleman et al. (38) with by ska align with the 
-v option to output an alignment of variable sites, and SNP pipeline under default options and using 
Bowtie2 for mapping. In both cases IQ-Tree was used to reconstruct a phylogeny from the alignment 
of variable sites under a GTR+ASC+G model and with the fast option. Note that the total disk space 
used could be reduced analyses if intermediate files were deleted during the analyses. *The 
maximum memory usage for SNP Pipeline was artificially reduced by restricting Picard 
MarkDuplicates and GATK RealignerTargetCreator and IndelRealigner to 5Gb RAM. 
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Figure 4. Accuracy of phylogenetic reconstructions of 45 isolates from the SCBU MRSA outbreak of 
Harris et al. (25) plus the ten samples from Toleman et al. (38) based on alignments created by ska 
align (a) and SNP pipeline mapped against a MRSA ST22 reference genome sequence (HO 
5096 0412) (b). Both panels show how the trees reconstructed from these alignments compared 
with a gold standard tree created from a manually curated alignment based on a SNP pipeline 
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mapping against a complete PacBio sequence of one of the outbreak samples (GCA_001369415). In 
all cases, trees were created from the alignments using IQ-Tree with a GTR+G+ASC model and the 
fast option. Red arrows indicate differences in branch length from the gold-standard tree. Arrows 
pointing towards the root indicate a reduction of a branch length by one SNP, while arrows pointing 
away from the root indicate an extension of a branch by one SNP. Multiple arrows on a branch 
indicate multiple SNP differences. The arrow below sample P3 in panel b is on the branch leading to 
sample P3, which was a zero-length branch in the gold-standard tree. Terminal node labels show 
samples names from Harris et al. (25) and Toleman et al. (38) Circles on terminal nodes indicate 
samples from Harris et. al. (25). while stars indicate samples from Toleman et al. (38). Their fill 
colour highlights samples from members of the same family (including multiple samples from the 
same individual). White fill indicates samples without family links. Each concentric circle of 
alternating white and grey indicates one SNP from the root, which was artificially placed on the 
branch leading to sample D. 
 
The trees created from each alignment and associated metadata including sample accession 
numbers are available at, https://microreact.org/project/SKASaureusSKAalign, 
https://microreact.org/project/SKASaureusSNPPipeline and 
https://microreact.org/project/SKASaureusGold, respectively. In all cases the topologies of 
the trees were consistent, however branch lengths differed in correspondence to the number 
of false positive and false negative SNPs for each method. In summary, SKA failed to 
identify eight variant sites, while SNP Pipeline missed seven and erroneously called SNPs at 
another five sites. Four of the false negatives in the SKA analysis were the result of SNPs in 
repeats that were longer than the total split kmer size. The other four were the result of two 
cases where variant sites were within a kmer length of each other. Such an occurrence is 
usually uncommon in datasets with such low levels of variation, but serves to illustrate the 
limitations of the method. Three of the false negatives in the SNP Pipeline analysis were in a 
region that was not present in the reference genome. Three more were removed by the 
pipeline default filters as there were more than three SNPs in a region of 1000bp in some 
samples. The final false negative was in a region duplicated in the outbreak samples relative 
to the reference, and corresponded to one of the false negatives of SKA. Four of the false 
positives called by SNP Pipeline were mis-alignments around indels relative to the reference, 
while the fifth was a heterogeneous call in a repeat region of varying length. It is important to 
note that even the gold standard alignment contained erroneous SNP calls prior to manual 
curation and phylogenetic reconstruction. In total nine false positives were removed. Five of 
these were mis-alignments around indels relative to the reference and another four were 
heterogeneous calls in repeat regions. 
Computational comparisons between the alignment methods showed much greater disparity 
(Table 4). SNP Pipeline required nearly 17 times more CPU time than SKA and over 70 
times more disk space. Memory usage was also 7 time greater and would have been higher 
had the Picard MarkDuplicates and GATK RealignerTargetCreator and IndelRealigner parts 
of the pipeline not been restricted to 5Gb RAM. Furthermore, the most CPU intensive part of 
the SKA analysis is the creation of a merged skf file from the raw sequencing reads. 
Alignment from this file took only 20s and 208Mb RAM.  The reference-free approach 
means that there would not be a need to remap to a different reference, but other analyses 
from the file, including mapping to a reference genome or distance calculation, would be 
similarly fast. Remapping to a different reference using a mapping approach such as SNP 
Pipeline, on the other hand, would require the same computational resources as for the first 
reference: in this example, that involved over 30 CPU hours, 5Gb RAM (or more if run in 
parallel) and over 100Gb disk space. 
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Discussion 
 
Genomics is becoming increasingly used in epidemiological investigations of bacterial 
pathogen outbreaks and to understand their transmission dynamics. However, analysis of 
genomic data often requires the skills of a dedicated bioinformatician and large compute 
resources. Results can depend on choices which need to be made during those analyses, such 
as the reference used for read mapping or the assembler used to create contigs. Thus, a level 
of understanding of genomics is required to both analyse the data and interpret the results. 
 
Here I have introduced a new approach to genomic analysis of highly-related, small, haploid 
genomes that lends itself well to epidemiological uses. In tests using published simulated and 
real-life data, SKA compared well to the best of the currently-used methods. However, SKA 
has a number of advantages over these methods. It is not dependent upon other 
bioinformatics software, is computationally efficient and produces small intermediate files, 
allowing analyses to be carried out on a typical laptop or desktop computer very quickly. 
Importantly, SKA allows genomic analysis that requires few, or no choices to be made by the 
user, including reference-free analyses that are not restrained by the need for a pre-defined 
core genome or closely-related reference sequence. A simple automated pipeline could 
convert raw sequence reads to skf files directly after sequencing, merge them using ska 
merge, cluster using ska distance, align each cluster using ska align and reconstruct trees 
using the algorithm of choice, all without even needing to know the species being sequenced. 
If an outbreak is identified, SKA includes methods identify outbreak-defining split kmers that 
can be used to quickly scan large samples sets for related samples. The ability to annotate 
split kmers onto reference genome sequences allows the biological consequences of variants 
identified during these analyses to be assessed. 
 
The main limitations of using split kmers are similar to all other kmer-based methods. In 
particular, their inability to identify SNPs in repeated split kmers or in cases where variant 
sites are within a kmer length of one another or of an indel can lead to loss of some signal. 
Fortunately, such cases are usually rare in outbreak scenarios. However, future improvements 
could allow post-processing of split kmers to identify these occurrences without impacting 
greatly on speed or efficiency. Traditional methods also have limitations. Core genome 
methods have reduced sensitivity due to the exclusion of large parts of the genome from the 
analysis. Mapping-based approaches suffer from more opaque biases. The distance of the 
reference genome from the samples of interest, for example, leads to reference-sample-
specific mapping biases. SNPs in regions missing from the reference will be excluded from 
the analysis and indels or repeats relative to the reference can lead to false positive SNP calls, 
even when the reference is very closely-related to the samples being analysed. Thus, 
comparison between analyses using different reference genomes is not ideal, although often 
is necessary. Furthermore, the reliance of the majority of mapping pipelines on many 
independent software tools makes versioning extremely tricky. For example, SNP Pipeline 
requires the installation of ten external dependencies. To ensure reproducibility when 
analyzing data in different locations all dependencies should be of the same version, 
something that is far from straightforward to manage. Biases caused by this type of variation 
in pipelines are usually completely ignored. 
 
In summary, SKA is a powerful new toolkit for the genomic epidemiologist with the potential 
to speed up outbreak detection and investigation from short read sequencing. 
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