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Abstract
Single-cell transcriptomics yields ever growing data sets containing RNA expression levels for

thousands of genes from up to hundreds of thousands of cells. Common data analysis pipelines
include a dimensionality reduction step for visualising the data in two dimensions, most frequently
performed using t-distributed stochastic neighbour embedding (t-SNE). It excels at revealing local
structure in high-dimensional data, but naive applications often suffer from severe shortcomings, e.g.
the global structure of the data is not represented accurately. Here we describe how to circumvent
such pitfalls, and explain a protocol for successful exploratory data analysis using t-SNE. They
include PCA initialisation, multi-scale similarity kernels, exaggeration, and downsampling-based
initialisation for very large data sets. We use published single-cell RNA-seq data sets to demonstrate
that this protocol yields superior results compared to the naive application of t-SNE.

1 Introduction
Recent years have seen a rapid growth of interest in single-cell RNA sequencing (scRNA-seq), or single-
cell transcriptomics (Sandberg, 2014; Poulin et al., 2016). Through improved experimental techniques
it has become possible to obtain gene expression data from tens of thousands of cells using full-length
sequencing (Tasic et al., 2017; The Tabula Muris Consortium, 2018) and from hundreds of thousands of
cells using tag-based protocols (Zeisel et al., 2018; Han et al., 2018; Saunders et al., 2018). Computational
analysis of such data sets often entails unsupervised, exploratory steps including dimensionality reduction
for visualisation. To this end, almost every study today is using t-distributed stochastic neighbour
embedding, or t-SNE (van der Maaten and Hinton, 2008).

This technique maps a set of high-dimensional points to two dimensions, such that ideally, close
neighbours remain close to each other and distant points remain distant. Informally, the algorithm
places all points on the 2D plane, initially at random positions, and lets them interact as if they were
physical particles. The interaction is governed by two “laws”: first, all points are repelled from each other;
second, each point is attracted to its nearest neighbours (see Box 1 for a mathematical description). The
most important parameter of t-SNE, called perplexity, governs how many of its nearest neighbours each
point is effectively attracted to. The default value of perplexity in different existing implementations is
30 or 50 and the common wisdom is that “the performance of t-SNE is fairly robust to changes in the
perplexity, and typical values are between 5 and 50” (van der Maaten and Hinton, 2008).

Strikingly, when applied to high-dimensional but well-clustered data, t-SNE tends to produce a two-
dimensional visualisation with distinctly isolated clusters, which in many cases are in good agreement
with the clusters produced by a dedicated clustering algorithm. This attractive property as well as the
lack of serious competitors until very recently (see Comparison with other methods) made t-SNE the
de facto standard for visual exploration of scRNA-seq data. At the same time, t-SNE has well known,
but frequently overlooked weaknesses (Wattenberg et al., 2016). Most importantly, it often fails to
preserve the global geometry of the data. This means that when t-SNE places cells into several distinct
clusters, the relative position of these clusters on the 2D plot is almost arbitrary and depends on random
initialisation more than on anything else. While this may not be a problem in some scenarios, scRNA-
seq data sets often exhibit biologically meaningful hierarchical structure, e.g. encompass several very
different cell classes, each further divided into various types. Typical t-SNE plots do not capture such
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global structure, yielding a suboptimal and potentially misleading visualisation. In our experience, the
larger the data set, the more severe this problem becomes. Other notable challenges include performing
t-SNE visualisations for very large data sets (e.g. a million of cells or more), or mapping cells collected
in follow-up experiments onto an existing t-SNE visualisation.

1.1 Development of the protocol
We developed this protocol to guide researchers in how to achieve improved t-SNE visualisations that
preserve the global geometry of the data. Our method relies on modifications of the standard pipeline such
as providing PCA initialisation, employing multi-scale similarity kernels, or using so called exaggeration,
which have been scattered throughout the literature (e.g. Lee et al., 2015; Linderman et al., 2017) and
remain poorly known in the transcriptomic community. To demonstrate our protocol we use a published
Smart-seq2 data set with 24 000 cells and several UMI-based data sets with up to 1 300 000 cells.

In many challenging cases our pipeline yields visualisations that are better than state of the art. We
also describe how to position new cells on an existing t-SNE reference atlas and how to visualise multiple
related data sets side by side in a consistent fashion. We focused on single-cell transcriptomics but our
recommendations are more generally applicable to any data set that has hierarchical organisation, which
is often the case e.g. in single-cell flow or mass cytometry (Amir et al., 2013; Unen et al., 2017) or
whole-genome sequencing (Li et al., 2017; Diaz-Papkovich et al., 2018).

1.2 Data sets for presentation
We make use of the following publicly available data sets to demonstrate our protocol. All data come
from the mouse brain. In all cases, we rely on quality control and clustering performed by the original
authors. All cell numbers reported below are after quality control (i.e. after excluding low-quality
cells, cell doublets, etc.). We use cluster names and cluster colours from the original publications. The
dimensionality in all cases is∼25 000 (the exact number of genes depends on the used genome annotation),
apart from the first data set where it is ∼45 000 (it includes non-coding genes and pseudogenes).

1. Tasic et al. (2017): N = 23 822 cells from primary visual cortex (VISp, 60%) and anterior lateral
motor cortex (ALM, 40%). Sequencing protocol: Smart-seq2. Number of clusters: 133.

2. Cadwell et al. (2016): N = 46 inhibitory neurons from Layer 1 of visual cortex. Sequencing
protocol: Smart-seq2. Two cell classes, identified based on electrophysiology.

3. Tasic et al. (2016): N = 1 679 cells from visual cortex. Sequencing protocol: SMARTer. Number
of clusters: 49.

4. Macosko et al. (2015): N = 44 808 from the retina. Sequencing protocol: Drop-seq. Number of
clusters: 39.

5. Shekhar et al. (2016): N = 27 499 cells from the retina, predominantly bipolar cells. Sequencing
protocol: Drop-seq. Number of clusters: 26 (18 biologically meaningful ones and 8 clusters of cell
doublets/contaminants).

6. Harris et al. (2018): N = 3 663 interneurons from area CA1 in hippocampus. Sequencing protocol:
10x Genomics Chromium. Number of clusters: 49.

7. 10x Genomics: N = 1 306 127 brain cells from mouse embryo, available at http://10xgenomics.
com. Sequencing protocol: 10x Genomics Chromium. We use clustering into 39 clusters performed
in Wolf et al. (2018).

1.3 Overview of the procedure
Our pipeline for performing t-SNE while preserving global geometry consists of several steps. First, we
perform data pre-processing consisting of library size normalisation, feature selection, nonlinear transfor-
mation, and dimensionality reduction using principal component analysis (PCA). Next, we inspect the
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Box 1: The t-SNE algorithm The t-SNE algorithm (van der Maaten and Hinton, 2008) is
based on the SNE framework (Hinton and Roweis, 2003). For any given point i, SNE introduces
a notion of directional similarity of point j to point i,

pj|i = exp(−‖xi − xj‖2/2σ2
i )∑

k 6=i exp(−‖xi − xk‖2/2σ2
i ) ,

defining a probability distribution over all points j 6= i (all pi|i are set to zero). The variance of
the Gaussian kernel σ2

i is chosen such that the perplexity of this probability distribution

exp
(
− ln(2) ·

∑
j 6=i

pj|i log2 pj|i

)
has some pre-specified value. The larger the perplexity, the larger the variance of the kernel, with
the largest possible perplexity value equal to N − 1 corresponding to σ2

i = ∞ and the uniform
probability distribution (N is the number of points in the data set). Importantly, for any given
perplexity value P , all but ∼P nearest neighbours of point i will have pj|i very close to zero. For
mathematical and computational convenience, symmetric SNE defines undirectional similarities

pij =
pi|j + pj|i

2N

such that
∑

i,j pij = 1, i.e. this is a valid probability distribution on the set of all pairs (i, j).
The main idea of SNE and its modifications is to arrange the N points in a low-dimensional

space such that the similarities qij between low-dimensional points match pij as close as possible
in terms of the Kullback-Leibler divergence. The loss function is thus

L =
∑
i,j

pij log pij

qij
.

The main idea of t-SNE was to use a t-distribution with one degree of freedom (also known
as Cauchy distribution) as the low-dimensional similarity kernel:

qij = wij

Z
, wij = 1

1 + ‖yi − yj‖2 , Z =
∑
k 6=l

wkl,

where yi are low-dimensional coordinates (and qii = 0). As a matter of definition, we consider
any method that uses the t-distribution as the output kernel and Kullback-Leibler divergence as
the loss function to be “t-SNE”; similarities pj|i can in principle be computed using non-Euclidean
distances instead of ‖xi − xj‖ or can use non-perplexity-based calibrations.

To justify our intuitive explanation in terms of attractive and repulsive forces, we can rewrite
the loss function as follows:

L =
∑
i,j

pij log pij

qij
= const−

∑
i,j

pij log qij ,

and dropping the constant,

−
∑
i,j

pij log wij

Z
= −

∑
i,j

pij logwij +
∑
i,j

pij logZ = −
∑
i,j

pij logwij + log
∑
i,j

wij .

To minimise L, the first sum should be as large possible, which means large wij , i.e. small
‖yi − yj‖, meaning an attractive force between points i and j whenever pij 6= 0. At the same
time, the second term should be as small as possible, meaning small wij and a repulsive force
between any two points i and j, independent of the value of pij .
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Figure 1: Our pre-processing pipeline for single-cell transcriptomics: library size normalisation, followed by
feature selection, followed by log-like transformation, followed by principal component analysis (PCA). See text
for details.

leading principal components for evidence of global structure, and perform t-SNE with various perplex-
ity settings to probe the structure at different scales. If clustering results are available, we recommend
further exploration via PCA or multidimensional scaling (MDS) on cluster means. We then initialise
t-SNE with PCA coordinates and use a multi-scale approach combining different perplexities to obtain
a visualisation yielding a good representation of both, the global and the local structure. If the data set
is very large, additional modifications such as initial downsampling and exaggeration may be required.
Optionally, we show how to create aligned visualisations of related data sets, or how to map additional
cells onto an existing visualisation. We first describe and validate each of these steps using example data
sets, before providing a step-by-step protocol.

1.4 Pre-processing of the data
We used a standard pre-processing pipeline consisting of the following steps (Figure 1, see Methods
for details): (i) library size normalisation; (ii) feature selection; (iii) log-transformation; (iv) PCA.
Specifically, we normalised the counts to counts per million (CPM), selected 1000–3000 most variable
genes using dropout-based feature selection similar to the one suggested in Andrews and Hemberg (2018),
applied log2(x+ 1) transform, and finally did PCA retaining the 50 leading PCs. We experimented with
modifying and omitting any of these steps. Our experiments showed that log-transformation (or a
similar nonlinear transformation) and feature selection are the two most important steps for good t-SNE
results (Figure 9). Library size normalisation was less important. PCA mainly improves computational
efficiency as it reduces the dimensionality and size of the data set before running t-SNE (see Methods
for further discussion).

In general, inspecting initial t-SNE results often allows to discover small outlying clusters of cell dou-
blets or other experimental artefacts. We recommend discarding such cells and re-running the analysis:
otherwise such artefact clusters can create “bridges” between unrelated t-SNE clusters and spoil the
visualisation. All data sets shown in this Protocol have already passed quality control by the original
authors, so we omit this step.

1.5 Preserving global geometry with t-SNE for medium sized data sets
To explore the global structure of the Tasic et al. (2017) data set, we performed PCA. In a plot of its first
and second principal components, three well-separated clusters are apparent (Figure 2a), corresponding
to excitatory neurons (cold colours), inhibitory neurons (warm colours), and non-neural cells such as
astrocytes or microglia (grey/brown colours). Iteratively performing PCA of these three clusters sepa-
rately revealed further structure inside each of them: e.g. inhibitory neurons are well separated into two
groups, Pvalb/SSt-expressing and Vip-expressing (Figure 2a, inset). This demonstrates the hierarchical
organisation of the data that any successful visualisation should capture.

Another way to look at the global geometry of this data set is to perform multidimensional scaling
(MDS) on the set of 133 cluster means (Figure 2b). Here again we see the same three groups (interestingly,
MDS highlights that non-neural clusters are very different from each other). Unlike PCA on the full
data set, PCA or MDS on the cluster means are not influenced by the relative abundances of different
clusters and thus can more faithfully represent the relationships between the clusters. However, this
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Figure 2: (a) PC1 vs PC2 of the Tasic et al. data set. Points show individual cells, colours correspond to clusters.
Same clusters and cluster colours as in Tasic et al. (2017). Squares/rhombi/circles show cluster centroids for
clusters having mostly VISp cells (squares), mostly ALM cells (rhombi), and cells from both areas (circles). Warm
colours correspond to inhibitory neurons, cold colours correspond to excitatory neurons, brown/grey colours
correspond to non-neural cells. Insets show first two PCs of these three groups of cells. (b) Multidimensional
scaling (MDS) on all 133 cluster means.

requires knowledge of the cluster structure. As we are primarily interested in exploratory analysis that
does not impose a specific clustering result on the visualisation, we will, from now on, not use cluster
labels for any analysis.

The observed global structure is clearly missing from a standard t-SNE visualisation of the same data
set, performed with the default perplexity 50 (Figure 3a). This figure clearly illustrates how t-SNE is
able to find the local structure (cells are split into multiple isolated groups that correspond well to the
clustering results), but fails to represent the global structure: excitatory neurons, inhibitory neurons, and
non-neural cells are each split into multiple groups which are shuffled among each other. For example,
the group of purple clusters is separated from a group of salmon clusters (both inhibitory neurons) by
some excitatory clusters, which clearly misrepresents the global topology of cell types. This outcome
is not a strawman: even though Tasic et al. (2017) do not show a t-SNE visualisation in their paper,
the accompanying section of the Allen brain atlas (http://celltypes.brain-map.org/rnaseq/mouse)
features a t-SNE figure qualitatively similar to our visualisation (Figure 3a). Perplexity values in the
common range (e.g. 20, 50, 80) yield similar results, confirming that t-SNE is not very sensitive to the
exact value of perplexity.

In contrast, extreme values of perplexity yield substantially different output (Figures 3b and c for
perplexity 5 and 500, respectively; obtained using the same random initialisation as in Figure 3a). Small
perplexity means weaker attractive forces; this lets the repulsive forces dominate allowing all clusters
to “blow up” from inside and coalesce together into a group of adjacent soap bubbles. This further
exacerbates the problem of misrepresenting global structure: some groups of related clusters that were
placed close together with perplexity 50 (Figure 3a) get separated into different regions with perplexity 5
(Figure 3b, black arrows highlight one example). In contrast, large perplexity means stronger and more
long-ranging attractive forces; this loses finer detail but pulls larger structures together (Figure 3c). In
fact, perplexity 500 yields a surprisingly good visualisation.

These examples show that smaller perplexity uncovers more local structure while larger perplexity
shows more global structure. This observation suggests several ways to obtain the desired visualisation
with accurate local and correct global structure. First, we can use the t-SNE output with large perplexity
as initialisation for t-SNE with smaller perplexity (this process can be called perplexity annealing) (Lee
et al., 2015). For example, we performed t-SNE with perplexity 50 using the t-SNE result with perplexity
500 (Figure 3c) as initialisation. It differs from Figure 3a only in initialisation, but preserves the global
structure substantially better (Figure 3d): each of the three major groups of cells occupies a separate
region without intermixing.
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Figure 3: (a) t-SNE visualisation of the Tasic et al. data set, colours and shapes as in Figure 2a. Random
initialisation, perplexity 50. (b) Same initialisation as in (a), perplexity 5. Black arrows highlight two clusters
that were close in panel (a) but got separated in (b). (c) Same initialisation as in (a), perplexity 500. (d)
Perplexity 50, but panel (c) used as initialisation. (e) Perplexity 50, but PCA as shown in Figure 2a used as
initialisation. Black arrows highlight two clusters that belong to the Pvalb/Sst group, as can be clearly seen in
(c), but end up in a wrong place here. (f) Multi-scale approach: similarities between cells are computed with
perplexity 50 and 500 and then averaged. PCA used as initialisation.

An alternative strategy is to use the first two PCs (after appropriate scaling, see Methods) as initiali-
sation. We saw above that the first two PCs provide a reasonable overview of the global geometry, which
is preserved during the course of t-SNE optimisation (Figure 3e). Apart from maintaining the global
geometry, PCA initialisation is convenient because it makes the t-SNE outcome reproducible and not
dependent on a random seed. For this data set, these two approaches yielded qualitatively similar results
(Figures 3d, e), yet PCA initialisation in this particular case does a bit worse: e.g. two well-isolated
clusters from the Pvalb/Sst group (Sst Chodl and Pvalb Vipr2, see black arrows in Figure 3e) end up far
away from the main Pvalb/Sst continent.

Another way to capture global and local structure together is to use a multi-scale approach suggested
in Lee et al. (2015). Here, several perplexity values are used together at the same time. For example,
using perplexities 50 and 500, each point is strongly attracted to its ∼50 closest neighbours and weakly
attracted to its ∼500 neighbours. Mathematically, this corresponds to using a similarity kernel that is
an average of a narrow and a broad Gaussian (see Methods), instead of a Gaussian similarity kernel used
in t-SNE. The result, when initialised with PCA, is arguably the best t-SNE visualisation of this data
set that we were able to obtain (Figure 3f). The local structure is captured thanks to perplexity 50, the
global structure is captured due to perplexity 500, and the overall result is deterministic due to using
PCA as initialisation. Compared to the Figure 3d, the clusters are less tightly packed. A very similar
result can be obtained by combining perplexities 5, 50, and 500.

An important caveat is that the success of this multi-scale approach relies on using perplexity values
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Figure 4: (a) t-SNE visualisation of the Macosko et al. (2015) data set, comprising N = 44 808 cells from
the mouse retina. Clusters and cluster colours are taken from the original publication. Perplexity combination
of 50 and 500; PCA initialisation. (b) t-SNE visualisation of the Shekhar et al. (2016) data set, comprising
N = 27 499 cells from the mouse retina, mostly bipolar cells. Clusters and cluster colours are taken from the
original publication. BC: bipolar cell, RBC: rod bipolar cell. Putative doublets/contamitants shown in grey.
Perplexity 50; see text for the initialisation details. Some clusters appear to consist of two parts; this is due to
an experimental batch effect that we did not remove. (c) t-SNE visualisation of the Harris et al. (2018) data
set, comprising N = 3 663 interneurons from the area CA1 in mouse hippocampus. Clusters and cluster colours
taken from the original publication. The mean of one cluster (Sst Cryab) is not shown because its cells were
scattered all over the figure (as they did in the original publication as well). Cluster labels not shown for visual
clarity. Perplexity 50 and PCA initialisation.

that are large enough to capture the global geometry. Here we had to use 500 ≈ N/50 as the largest
perplexity. If the data set had 10 times more cells, then the necessary perplexity would likely also grow
10 times. At the same time, t-SNE optimisation becomes much slower as the perplexity grows. For
N ≈ 25 000 and perplexity 500, the algorithm takes several minutes (compared to several seconds with
perplexity 50), but N ≈ 250 000 and perplexity 5000 would be computationally very expensive, and for
even larger data sets eventually unfeasible. We discuss an alternative strategy for large N in a later
section.

1.6 t-SNE analysis of UMI-based RNA-seq data
To demonstrate that our approach to t-SNE can handle UMI-based transcriptomic data as well, we
consider three further data sets. First, we re-analysed the data from Macosko et al. (2015) who sequenced
44 808 cells from mouse retina. Our t-SNE result (Figure 4a) preserved much of the global geometry:
e.g. multiple amacrine cell clusters ended up in one part of the figure, bipolar cell clusters in another
part, and non-neural clusters in yet another part. The t-SNE analysis performed by the authors in the
original publication relied on downsampling and had a much worse representation of the global geometry.

Second, we analysed the data from Shekhar et al. (2016) who sequenced N = 27 499 cells from mouse
retina targeting bipolar neurons. Here again, our t-SNE result (Figure 4b) is consistent with the global
structure of the data: for example, OFF bipolar cells (type 1 to type 4, warm colours) and ON bipolar
cells (type 5 to type 9, cold colours) were placed close to each other, and four subtypes of type 5 are next
to each other as well. This was not true for the t-SNE shown in the original publication. This data set
presents an additional complication because it contains several very distinct but very small clusters. In
this situation, large perplexity can fail to yield a good representation of the global geometry. For example,
in this data set, cone and rod photoreceptor clusters contain only ∼50 cells each, and with perplexity
500 will be strongly attracted to other, unrelated, clusters. This leads to small clusters getting “sucked”
into the middle of the figure even if they are initialised on a periphery. An alternative approach is to use
t-SNE without a perplexity parameter altogether, letting all cells be attracted to their neighbours in a
specified vicinity, irrespective of how many such neighbours there are (see Methods). Here we use the
result of such perplexity-free t-SNE as an initialisation for standard t-SNE with perplexity 50.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 25, 2018. ; https://doi.org/10.1101/453449doi: bioRxiv preprint 

https://doi.org/10.1101/453449
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lamp5
Krt73

Lamp5
Fam19a1
Pax6

Lamp5
Fam19a1
Tmem182

Lamp5
Ntn1
Npy2r

Lamp5
Plch2
Dock5

Lamp5
Lsp1

Sncg
Vip
Itih5

Vip
Igfbp6
Car10

Mapping Cadwell et al. cells
NGC cells
SBC cells

a b Uncertainty via gene bootstrapping

Figure 5: (a) All interneurons from Cadwell et al. (2016) positioned on the reference t-SNE atlas from Figure 3f.
Only Vip/Lamp5 continent shown here, as no cells mapped elsewhere. Cluster labels are given only for clusters
where at least one cell maps to. NGC: neurogliaform cells; SBC: single bouquet cells. (b) Uncertainty of the
mapping of 10 exemplary cells from panel (a). Polygons are convex hulls of bootstrap repetitions, see text.

Finally, we analysed a smaller data set from Harris et al. (2018) who obtained transcriptomes of
N = 3 663 inhibitory neurons from the area CA1 of mouse hippocampus. The original publication
introduced a novel clustering and feature selection method based on the negative binomial distribution,
and used a modified negative binomial t-SNE procedure. Our t-SNE visualisation (Figure 4c) did not
use any of that but was nevertheless at least as good as the original one. As always, we used PCA
initialisation, but in this case perplexity 50 yielded good results even with random initialisation (probably
because of the relatively small size of the data set). In good agreement with our recommendations, Harris
et al. (2018) also observed that performing standard t-SNE without log-transformation and/or without
feature selection leads to visibly worse results.

1.7 Positioning new points on an existing t-SNE atlas
A common task in single-cell transcriptomics is to match a given cell to an existing reference data
set. For example, introducing a protocol called patch-seq, Cadwell et al. (2016) performed patch-clamp
electrophysiological recordings followed by RNA sequencing of ∼50 inhibitory cells in layer 1 of mouse
VISp. Given the existence of the much larger Tasic et al. data set described above, it is natural to ask
where on the Figure 3d, taken as a reference atlas, should Cadwell et al. cells be positioned.

It is often claimed that t-SNE does not allow out-of-sample mapping, i.e. no new points can be put
on a t-SNE atlas after it is constructed. What this means is that t-SNE is a nonparametric method that
does not construct any mapping f(x) from a high-dimensional to the low-dimensional space (parametric
t-SNE is possible, but is out of scope of this paper, see Comparison with other methods). However,
despite the absence of such an f(x), there is a straightforward way to position a new x on the existing
t-SNE atlas (e.g. Berman et al., 2014).

It can be done as follows: for each Cadwell et al. cell, we find its k = 25 nearest neighbours among
the Tasic et al. reference cells, using Pearson correlation across the most variable Tasic et al. genes as
distance. Then we position the cell at the median t-SNE location of these k reference cells (Figure 5a).
The result agrees very well with the assignment of Cadwell et al. cells to the Tasic et al. clusters done
with a different method (Tasic et al., 2017, Figure S10).

This method assumes that for each new cell there are cells of the same type in the reference data set.
Cells that do not have a good match in the reference data can end up positioned in a misleading way.
However, in our case this assumption is justified because the Tasic et al. data set is much larger and
includes neurons from the same layer of the same brain area. The same procedure worked very well to
map the bipolar cells from the Macosko et al. (2015) data set to the t-SNE atlas of the Shekhar et al.
(2016) data (not shown).
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Figure 6: (a) t-SNE visualisation of the Tasic et al. (2016) data set. Clusters and cluster colours as in (Tasic
et al., 2016). Arrows show some noteworthy cases, see text. (b) t-SNE visualisation of the Tasic et al. (2017)
data set after excluding all clusters that mostly consist of ALM cells. This t-SNE analysis was initialised by
positioning all cells on the reference atlas from panel (a), ensuring that the two panels are aligned with each
other.

Berman et al. (2014) used a more sophisticated approach, where each new cell is initially positioned
as outlined above (or in a similar way) but then its position is optimised using a t-SNE-like method: the
cell is attracted to its nearest neighbours in the reference set and repelled from all points in the reference
set, with the effective number of nearest neighbours determined by the perplexity parameter. We found
that the simpler procedure without this additional optimisation step worked well for our data.

The proposed procedure does not convey any information on how trustworthy the position of each
new cell is. However, the uncertainty can be estimated via bootstrapping across genes (our procedure
is inspired by Tasic et al., 2017). We repeatedly selected a bootstrapped sample from the set of highly
variable genes and repeated the positioning procedure (100 times). This yielded a set of bootstrapped
mapping locations; the larger the variability in this set, the larger the uncertainty. To visualise the
uncertainty, we draw a polygon around each cell as a convex hull of the bootstrap repetitions (Figure 5b;
after excluding 5% of most outlying locations, see Methods). A large polygon means high uncertainty;
small polygons mean high precision. For some cells the polygons are so small that they are not visible
behind the main dot. For some other cells the polygons are large and sometimes even spread across the
border of two clusters. This means that not only the exact position of this cell on the t-SNE atlas is not
known, but even the cluster assignment is not certain.

1.8 Aligning two t-SNE visualisations
The data set of Tasic et al. (2017) is a follow-up to Tasic et al. (2016) that analysed N = 1 679 cells from
mouse VISp using a previous version of the sequencing protocol. If one excludes from the new data set
all clusters that have mostly ALM cells, then the remaining data set has N = 19 366 cells. How similar
is the cluster structure of this newer and larger data set compared to the older and smaller one? One
way to approach this question is through aligned t-SNE visualisations.

To obtain an aligned t-SNE visualisation, we perform t-SNE analysis on the Tasic et al. (2016) data
set using PCA initialisation with perplexity 50, which already achieves good results (probably because of
the small size of the data set; Figure 6a). Now we can position each cell of the reduced Tasic et al. (2017)
data set on this reference using the procedure described above and use the resulting arrangement as
initialisation for t-SNE with the perplexity combination of 50 and 500. The result is shown in Figure 6b.
Of course the larger data set has higher resolution and gets clustered into more clusters. But the paired
and aligned t-SNE analyses allow to make much more detailed comparisons.

The arrows in Figure 6 highlight several noteworthy findings. (1) and (2) are examples of well-isolated
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clusters in the 2016 data that remain to be well-isolated in the 2017 data (Sst Chodl and Pvalb Vipr2,
here and below we use the 2017 nomenclature). (3) and (4) are examples of small groups of cells that
were not assigned to separate clusters back in 2016, became separate clusters on the basis of the 2017
data, but in retrospect appear well-isolated on the 2016 t-SNE plot (two L5 LP VISp Trhr clusters and
two Meis2/CR clusters). Finally, (5) shows an example of several clusters in the 2016 data merging
together into one cluster based on the 2017 data (L4 IT VISp Rspo1 ). All of this corresponds well to
the conclusions of Tasic et al. (2017) made with other methods, but we find that t-SNE adds a valuable
perspective and allows for an intuitive comparison.

1.9 Preserving global geometry with t-SNE for large data sets
Performing t-SNE on large data sets with N � 100 000 presents three additional challenges to those
already adressed above:

1. Standard t-SNE is slow for N � 1000 and computationally unfeasible for N � 10 000. A widely
used approximation called Barnes-Hut t-SNE (van der Maaten, 2014) in turn becomes very slow
for N � 100 000 (see Box 2). For larger data sets one needs a faster approximation scheme.

2. For N � 100 000, t-SNE suffers from “overcrowding” (Linderman et al., 2017; Unen et al., 2017):
clusters tend to blow up and get squeezed together, similar to Figure 3b. The exact reason for this
is mathematically not well understood.

3. Our approach, described above, to preserve global geometry relies on using large (∼N/50) perplex-
ity values and becomes computationally infeasible for N � 100 000. For such Ns one has to use
perplexity values in the standard range 10–100.

The first challenge has been effectively solved by Linderman et al. (2017) who developed a novel
t-SNE approximation which uses an interpolation scheme accelerated by the fast Fourier transform (see
Box 2). Using this approximation, a data set with 1 million cells can be processed in ∼40 minutes on
a computer with 4 double-threaded cores, 3.4 GHz each (and in ∼15 minutes using a computer with 20
double-threaded cores, 2.2 GHz each).

For the second challenge, there is so far no principled solution in the t-SNE framework (but see
Comparison with other methods), but a very practical trick suggested in Linderman et al. (2017) is to
increase the strength of all attractive forces by a small constant “exaggeration” factor between 1 and
∼10 (see Methods). This counteracts the expansion of the clusters.

Our approach to the third challenge is based on an assumption that global geometry should be
detectable even after strong downsampling of the data set. This suggests the following pipeline: (i)
downsample a large data set down to some manageable size; (ii) run t-SNE using large perplexity to
preserve global geometry; (iii) position all the remaining points on the resulting t-SNE plot using k
nearest neighbours; (iv) use it as initialisation to run t-SNE on the whole data set.

We demonstrate these ideas using the 10x Genomics data set with N = 1 306 127, which is the largest
existing single-cell RNA-seq data set to date. We first create a t-SNE plot of a randomly selected subset
of 25 000 cells (Figure 7a). We use PCA initialisation and perplexity 500 to capture the global geometry
(combining perplexity 500 with smaller values like 50 did not seem to improve the result in this case). We
then positioned all N cells on this t-SNE plot using the approach described above with k = 1. Despite
the large size of the data set, this can be done fairly quickly (in under 10 minutes). Finally, we use the
result as initialisation to run t-SNE on all N points using perplexity 30 and exaggeration coefficient 4
(Figure 7b). In addition, we had to modify two optimisation parameters from their default values: we
increased the learning rate from 200 to 1000 and the length of the “early exaggeration” phase from 250
to 500 (see Methods for further details).

Validating this procedure is not straightforward, as there are no annotations available for the clusters.
To identify meaningful biological structure, we looked at developmental marker genes (Englund et al.,
2005; Yuzwa et al., 2017; Iacono et al., 2018). The left of the main continent is composed of radial glial
cells (neural stem cells) expressing Aldoc and Slc1a3 (Figure 8a). The neighbouring areas consist of
neural progenitors (neuroblasts) expressing Eomes (previously known as Tbr2 ) (Figure 8b). The lower
right parts consist of mature excitatory neurons expressing pan-neuronal markers such as Stmn2 and
Tubb3 (Figure 8c) but not expressing inhibitory neuron markers Gad1 or Gad2 (Figure 8d), whereas the
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Figure 7: (a) t-SNE visualiation of the 10x Genomics data set, subsampled to 25 000 cells. PCA initialisation,
perplexity 500. Colours and numbers correspond to clusters taken from Wolf et al. (2018). Cluster labels for
several small clusters (30, 35, 36, and 38) are not shown here and in (b) because these clusters were very dispersed
on our t-SNE figures. (b) t-SNE visualisation of the full 10x Genomics data set (1 306 127 cells). All cells were
positioned on panel (a) and this was used as initialisation. Perplexity 30, exaggeration 4. (c) The same as
in (b) but without exaggeration. (d) The same as in (b) but with PCA initialisation, i.e. without using the
downsampling step. (e) Default t-SNE: random initialisation, no exaggeration.

upper parts are occupied by several inhibitory neuron clusters (Figure 8d). These marker gene gradients
confirm that our t-SNE visualisation shows meaningful topology and is able to capture the developmental
trajectories: from radial glia, to excitatory/inhibitory neural progenitors, to excitatory/inhibitory mature
neurons.

The effectiveness of several of the components of our pipeline can be easily seen from a series of
control experiments. Omitting exaggeration yields over-expanded clusters and a plot with less obvious
global structure (issue #2 is not addressed, Figure 7c). Without downsampling, the global geometry is
preserved worse (Figure 7d): e.g. most of the interneuron clusters are in the lower part of the figure, but
clusters 17 and 19 (developing interneurons), are located in the upper part (issue #3 is not addressed).
Finally, the outcome of the default t-SNE pipeline with random initialisation and no exaggeration leads
to poor result that not only suffers from issues #2 and #3 but also has some clusters fragmented into
several pieces (Figure 7e). Again, this is not a strawman: Figure 7e is qualitatively similar to the t-SNE
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Radial glia
Aldoc

Neural progenitors
Eomes

Mature neurons
Stmn2a b c d Interneurons

Gad1 or Gad2

Figure 8: (a) Expression of Aldoc gene (marker of radial glia, i.e. neural stem cells) on the t-SNE map from
Figure 7b. Any cell with Aldoc detected (UMI count above zero) was coloured in red. Another radial glia
marker, Slc1a3, had similar but a bit broader expression. (b) Expression of Eomes, marker of neural progenitors
(neuroblasts). (c) Expression of Stmn2, marker of mature neurons. A pan-neuronal marker Tubb3 had similar
but a bit broader expression. The isolated island in the bottom of the plot (cluster 20) consists of Cajal-Retzius
neurons (expressing Reln). (d) Expression of Gad1 and Gad2 (either of them), markers of inhibitory neurons.

visualisations shown in Wolf et al. (2018) and Bhaduri et al. (2018). In additional experiments, we found
that the problems in Figure 7d can be substantially improved by using more aggressive early exaggeration
(Linderman and Steinerberger, 2017; Arora et al., 2018) (e.g. early exaggeration 120 for 1000 iterations).
For some data sets this can be a promising alternative to the downsampling approach presented above
(but see Methods for further discussion).

1.10 Advantages and disadvantages of the proposed procedure
Our protocol describes a set of tools which can be used to create accurate low-dimensional visualisations
of high-dimensional scRNA-seq data sets that preserve global, hierarchical structure. Accordingly, the
resulting visualisations are biologically more interpretable. The procedure works well even for large
data sets and — due to the PCA initialisation — the visualisation is deterministic and not random.
We provide means to create aligned presentations of two data sets or map additionally collected cells
onto existing visualisations. Nevertheless, in our experience the procedure requires a certain degree of
experimentation to be adapted to a different data set. In data vizualisation, as a matter of principle,
there is just no “one size fits all” solution — the reason we call this “the art of using t-SNE”.

1.11 Comparison with other methods
A very promising method called UMAP (McInnes and Healy, 2018) has recently attracted considerable
attention from the transcriptomics community (Becht et al., 2018). Technically, UMAP is very similar
to a method called largeVis (Tang et al., 2016), but McInnes and Healy (2018) provided a mathematical
foundation and a convenient Python package. LargeVis/UMAP use the same attractive forces as t-
SNE, but change the nature of the repulsive forces and use a different, sampling-based approach to
optimisation. While UMAP is much faster than Barnes-Hut t-SNE (see Box 2), the work of Linderman
et al. (2017) made t-SNE at least as fast as UMAP. One big advantage of UMAP is that, unlike t-SNE, it
does not seem to suffer from “overcrowding” for large N (issue #2 discussed above). In addition, UMAP
is claimed to preserve the global structure of the data better than t-SNE.

We tested this using the Tasic et al. (2017) data set. With default settings, UMAP produced a
visualisation similar to Figure 3a in that the global geometry was lost, but with more fragmented and
much more compressed clusters (not shown). We then modified the two key parameters (number of
neighbouring points and tightness of the embedding) in their recommended ranges on a two-dimensional
grid (see Methods). For some combinations the result looked good, but not quite as satisfactory as
Figure 3f. We also ran UMAP with default settings on the 10x data set with 1.3 million cells; the
outcome was similar to Figure 7b in terms of the main “fish” shape, but the overall geometry was worse
because interneuron clusters were located in various places around the fish (not shown). Also, for this
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data set, UMAP was around 3 times slower than t-SNE. On the other hand, UMAP was able to isolate
some (but not all) small clusters that remained scattered on the t-SNE figure (see caption to Figure 7b).
This analysis shows that UMAP does not solve the t-SNE’s problems out of the box and seems to require
as many careful choices as t-SNE does. Many recommendations for running t-SNE that we made in this
manuscript can likely be adapted for UMAP.

Additionally, several variants of t-SNE have been proposed in the literature. One important example
is a parametric version of t-SNE, where a neural network is used to create a mapping f(x) from high-
dimensional input space to two dimensions (i.e. the output layer of the network contains two neurons)
and is then trained using standard deep learning techniques to yield an optimal t-SNE result (van der
Maaten, 2009). One potential advantage of this approach is that the “optimal” perplexity does not
need to grow with the sample size, as long as the mini-batch size remains constant (cf. issues #2
and #3 above). Parametric t-SNE has been recently combined with a variational autoencoder and
applied to transcriptomic data under the name of scvis (Ding et al., 2018). The authors claim that their
algorithm leads to more “interpretable” visualisations than standard t-SNE because it does a better job
at preserving the global structure. Indeed, the network architecture limits the form that the mapping
f(x) can take; this implicit constraint on the complexity of the mapping prevents similar clusters from
ending up in very different parts of the resulting visualisation. To demonstrate the benefits of scvis over
standard t-SNE, Ding et al. (2018) re-analyzed the retinal data from Shekhar et al. (2016) and achieved
a visualisation with more meaningful global structure, similar to our Figure 4b.

Another important development is the work of Pezzotti et al. (2016) on hierarchical t-SNE (HSNE).
The key idea is to use random walks on the k-nearest-neighbours graph of the data to find a smaller
set of “landmarks”, which are points that can serve as representatives of the surrounding points. In the
next round, the k-nearest-neighbours graph on the level of landmarks is constructed. This operation
can reduce the size of the data set by an order of magnitude, and can be repeated until the data set
becomes small enough to be analysed with t-SNE. Each level of the landmarks hierarchy can be explored
separately. Unen et al. (2017) successfully applied this method to mass cytometry data sets with up to
15 million cells.

All of these methods can potentially become important tools for the transcriptomic data analysis.
Our goal in this manuscript was not to argue that t-SNE is better or worse than any of them, but to
demonstrate what t-SNE itself is capable of when applied with care and to provide a hands-on protocol
for doing so.

2 Methods
2.1 Pre-processing
Let X be a N × p matrix of gene counts, with N and p being the number of cells and the number of
genes respectively. We assume that zero columns (if any) have been removed.

Library size normalisation For each cell, we normalise the counts by the cell’s library size
∑

k Xik,
and multiply by 1 million, to obtain counts per million (CPM):

Xij∑
k Xik

· 106.

Some studies prefer to multiply by the median library size across all N cells instead of using 1 million.
In our experience, this does not make a difference. In fact, for the Tasic et al. (2017) data, library size
normalisation did not make much of a difference at all. Using RPKM or TPM data instead of read
counts did not change the results much either.

Feature selection Most studies use the mean-variance relationship to perform feature selection (e.g.
Zheng et al., 2017): they select genes that have large variance given their mean. We adapt the approach of
Andrews and Hemberg (2018) who exploit the mean-dropout relationship: the idea is to select genes that
have high dropout (i.e. zero count) frequency given their mean expression level (Figure 9a). Any gene
that has high dropout rate and high mean expression could potentially be a marker of some particular
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Box 2: The t-SNE optimisation The original publication (van der Maaten and Hinton,
2008) suggested optimising L using adaptive gradient descent with momentum. They initialised
yi with a standard Gaussian distribution with standard deviation 0.0001. It is important that
initial values have small magnitude: otherwise optimisation fails to converge to a good solution.

To escape bad local minima, van der Maaten and Hinton (2008) suggested an “early exagger-
ation” trick: during initial iterations they multiply all attractive forces by α > 1. Later work
(van der Maaten, 2014) used α = 12 for 250 iterations, which became the default since then.

The exact t-SNE computes N2 similarities pij and N2 pairwise attractive and repulsive forces
on each gradient descent step. This becomes infeasible for N � 10 000. In the follow-up paper,
van der Maaten (2014) suggested two approximations in order to speed up the computations.
First, he noticed that for any perplexity value P all but O(P ) nearest neighbours of any given
point i will have nearly zero values pj|i. He suggested to only find k = 3P nearest neighbours of
each point and set pj|i = 0 for the remaining N − 3P points. This relied on finding the exact
3P nearest neighbours, but in later work various authors (Pezzotti et al., 2017; Tang et al., 2016;
Linderman et al., 2017; McInnes and Healy, 2018) started using approximate nearest neighbour
algorithms which is much faster and does not seem to make t-SNE results any worse.

Using 3P nearest neighbours accelerates computation of the attractive forces. To accelerate
the repulsive force computations, van der Maaten (2014) used the Barnes-Hut approximation,
originally developed for N-body simulations in physics. This reduces computational complexity
from O(N2) to O(N logN), works reasonably fast for N up to ∼100 000, but becomes too slow
for much larger sample sizes. Inspired by the fast multipole method (FMM), another technique
originally developed for N-body simulations, Linderman et al. (2017) suggested using a fast Fourier
transform (FFT) to accelerate the interpolation of the repulsive forces on an equispaced grid. This
lowers computational complexity toO(N) and works very fast forN into millions. Throughout the
paper, we use their C++ implementation available at https://github.com/klugerlab/FIt-SNE.

There is some recent work on how to accelerate t-SNE computations by using GPUs (Chan
et al., 2018; Pezzotti et al., 2018), but we did not explore these implementations here.

subpopulation. We found it more intuitive to use the mean across non-zero counts instead of the overall
mean, because it is computed independently of the fraction of zero counts.

To be precise, for each gene g, we compute the fraction of “near-zero” counts

dg = 1
N

∑
i

I(Xig ≤ t)

and the mean log “non-zero” expression

mg =
〈

log2 Xig | Xij > t
〉
.

For all UMI-based data sets we used t = 0 but for Smart-seq2 data sets we found t = 32 to perform
better (some known marker genes were not getting selected with t = 0). We discard all genes that have
“non-zero” expression in less than nmin = 10 cells. We then plot dg versus mg for all remaining genes
(Figure 9a) and inspect the relationship. As we are not interested in conducting formal significance tests
for whether a gene has higher than chance dropout rate, but rather want to select a pre-specified number
M of genes (usually M = 1000 or M = 3000), we use a heuristic approach of finding a value b such that

dg > exp
[
− a(mg − b)

]
+ 0.02

was true for exactlyM genes. This can be done with a simple binary search. In Figure 9a this corresponds
to moving the red exponent line horizontally until there are exactly M genes to the upper-right of it.
These M genes were then selected. We used a = 1 for most data sets, but changed it to a = 1.5 for some
data sets to provide a better fit for the distribution.

Figure 9b shows the effect on t-SNE when feature selection step is omitted (i.e. PCA is performed on
the full-sized N × p matrix). For the Tasic et al. (2017) data set, this clumps multiple clusters together.
The same effect was observed by Harris et al. (2018, Figure S4) in their UMI-based data set.
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Figure 9: (a) Our feature selection procedure for the Tasic et al. (2017) data set. Black dots show well-known
marker genes, taken from Tasic et al. (2016, Figure 1c). Any good feature selection procedure should confidently
select all those. (b) The effect of omitting the feature selection step on t-SNE of the Tasic et al. (2017) data set.
All other settings as in Figure 3f. (c) The effect of omitting the log-transformation on t-SNE of the Tasic et al.
(2017) data set. All other settings as in Figure 3f.

We performed feature selection using the raw counts (before library size normalisation). Then we
used library-size normalised values (counts per million) for the selected M genes.

Nonlinear transformation We transform all values in the N×M count matrix after feature selection
with a log2(x+1) transformation. Figure 9c shows the effect on t-SNE when the log-transformation step
is omitted. For the Tasic et al. (2017) data set, this clumps multiple clusters together. The same effect
was observed by Harris et al. (2018, Figure S4) in their UMI-based data set.

The log2(x+ 1) transformation is standard in transcriptomics literature. It is convenient because all
zeros remain zeros, and at the same time the expression counts of all genes become roughly comparable.
Without this transformation, the Euclidean distances between cells are dominated by a handful of genes
with very high counts. However, there are other transformations that can perform similarly well. In the
cytometric literature, the inverse hyperbolic sine arsinh(x) = ln

(
x+
√
x2 + 1

)
is often used, sometimes

as arsinh(x/r) with r = 5 or a similar value (Amir et al., 2013). Note that arsinh(x/r) is the variance-
stabilizing transformation for the negative binomial distribution with parameter r, which is often taken
to model UMI counts well.

Another possibility is to use the x1/8 transformation (or another small power of x). It looks very
similar to log(x) for a large range of x values, which are typical for expression counts. In our experiments,
all these transformations performed similarly well.

Standardisation Many studies standardise the N×M matrix after the log-transformation, i.e. center
and scale all columns to have mean zero and unit variance. We prefer not to do this by default. In general,
standardisation is recommended when different features are on different scale, but the log-transformed
counts of different genes are arguably already on the same scale.

From a more theoretical point of view, if one could assume that the expression counts of each gene
for cells of the same type are distributed log-normally, then Euclidean distance after log-transformation
would exactly correspond to the log-likelihood. For the UMI-based data, the common assumption is that
the expression counts are distributed according to the negative binomial distribution. For large counts,
the negative binomial distribution behaves qualitatively similarly to the log-normal (for example, its
variance function is µ + µ2/r whereas the log-normal has variance function proportional to µ2), so the
Euclidean distance after the log-transformation can be thought of as approximating the negative binomial
log-likelihood (Harris et al., 2018). Standardising all the genes after log-transformation would destroy
this relationship.

At the same time, in some data sets we observed a stronger separation between some of the classes
if one does perform the standardisation step. We recommend trying to do the analysis both ways. Here
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we apply standardisation for those data sets in which it was used by the original authors (see below).

Principal component analysis We used PCA to reduce the size of the data matrix from N ×M
to N × 50 prior to running t-SNE. In our experiments, this does not have much influence on the t-SNE
results but is computationally convenient. Some studies estimate the number of “significant” principal
components via shuffling (e.g. Shekhar et al., 2016). In our experiments, for the data sets with tens of
thousands of cells, the number of significant PCs is close to 50 (for example, for the Tasic et al. (2017)
data set it is 37, according to the shuffling test). Given that PCA does not have much influence on the
t-SNE results, we prefer to use a fixed value of 50. Note that using many fewer PCs would be detrimental
because it could substantially distort between-cell distances.

When we use PCA for initialisation of t-SNE, we always divide the first two principal components by
the standard deviation of PC1 and multiply them by 0.0001 (which is the default standard deviation of
the random initialisation). This is very important: values used for initialisation should be close to zero,
otherwise the algorithm will have problems with convergence.

The sign of the principal components is arbitrary. To increase reproducibility of the figures, we always
fix the sign of the first two PCs such that for each PCA eigenvector the sum of its values was positive
(i.e. if it is negative, we flip the sign).

2.2 Details of the t-SNE analysis
This section gives additional details of our t-SNE analysis. We used a C++ implementation of t-SNE
by Linderman et al. (2017), available at https://github.com/klugerlab/FIt-SNE. While working on
this paper, we contributed to this package several additional features that were crucial for our pipeline.
Our analysis code in Python is available at https://github.com/berenslab/rna-seq-tsne.

Default parameters for t-SNE optimisation Unless explicitly stated, we used the default opti-
misation parameters of the FIt-SNE package. Following (van der Maaten, 2014), the defaults are 1000
iterations with learning rate η = 200; momentum .5 for the first 250 iterations and .8 afterwards; early
exaggeration α = 12 for the first 250 iterations; initialisation of the points in the 2D embedding space
with coordinates drawn from a standard Gaussian distribution with standard deviation 0.0001. Further
input parameters for the nearest neighbour search using the Annoy library (number of trees: 50, num-
ber of query nodes: 3P · 50) and for the grid interpolation (number of approximating polynomials: 3,
maximum grid spacing: 1, minimum grid size: 50) were always left at the default values.

Multi-scale similarities We follow Lee et al. (2015) in their definition of multi-scale similarities. For
example, to combine perplexities 50 and 500, the values pj|i (see Box 1) are computed with perplexity
50 and with perplexity 500 for each cell i and then averaged. This is approximately equivalent to saying
that we are using a different similarity kernel: instead of the Gaussian kernel exp(d2/2σ2

i ) where d is
Euclidean distance, a multi-scale kernel

1
σi

exp
( d2

2σ2
i

)
+ 1
τi

exp
( d2

2τ2
i

)
is used. The variances σ2

i and τ2
i are selected such that the perplexity of the first Gaussian component

was 50 and the perplexity of the second Gaussian component was 500. In other words, this kernel has
two adaptive parameters.

Exaggeration Early exaggeration (see Box 2) means multiplying the attractive term in the loss func-
tion (see last equation in Box 1) by a constant α > 1 during the initial iterations (the default is α = 12
for 250 iterations). Linderman et al. (2017) suggested to use “late exaggeration”: for an example data
set with 1 million points they used α = 12 to increase the attractive forces during the last 250 iterations.
Thus, their approach used three stages: early exaggeration, followed by no exaggeration, followed by
late exaggeration. For simplicity, we prefer to use two stages only: we keep α constant after the early
exaggeration is turned off. This is why we call it “exaggeration” and not “late exaggeration”.
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Tasic et al. 2017 We selected the M = 3000 most variables genes using our procedure with t = 32
and a = 1 (resulting in b = 6.43). We used t-SNE with random initialisation (random seed set to
42) for Figures 3a–c with perplexities 50, 5, and 500 respectively. For Figure 3d, we used Figure 3c as
initialisation for running t-SNE with perplexity 50. For Figure 3e, we used scaled PCA initialisation. For
Figure 3f, we used scaled PCA initialisation and a perplexity combination of 50 and 500. Increasing the
learning rate and/or the number of iterations decreased the loss but did not correspond to any noticeable
visual improvement.

Visualisation In all figures, we use the median across all points in a cluster to draw a cluster centroid.
For the Tasic et al. (2017) data set, we use three different symbols for cluster centroids: squares if more
than 95% of cells in a cluster come from VISp, rhombi if more than 95% of cells in a cluster come from
ALM, and circles otherwise.

Cadwell et al. 2016 Out of the 3000 most variables genes in the Tasic et al. (2017) data set, 2547
were present in the Cadwell et al. (2016) data. This was the gene set we used for mapping (Figure 5a).
Each cell was positioned at the median t-SNE location of its k = 25 nearest neighbours (in terms of
correlation distance) among the Tasic et al. (2017) cells.

Bootstrapping over genes We use bootstrapping to estimate the uncertainty of the mapping of new
cells to the existing t-SNE visualisation. Given a set of L genes that are used for mapping (e.g. for
Cadwell et al. data we used L = 2547 genes as stated above), we select a bootstrap sample of L genes
out of L with repetition and performing the positioning procedure using this sample of genes. This
constitutes one bootstrap iteration. We do 100 iterations and, for each cell, obtain 100 positions on the
t-SNE atlas. The larger the spread of these positions, the larger the mapping uncertainty.

For Figure 5b, we computed the distances from the original mapping position to the 100 bootstrapped
positions and discarded 5 bootstrap positions with the largest distance (as possible outliers). Then we
drew a convex hull of the remaining 95 bootstrap positions (using scipy.spatial.ConvexHull).

Tasic et al. 2016 We selected the M = 1000 most variables genes using our procedure with t = 32
and a = 1 (resulting in b = 8.58). We used t-SNE with perplexity 50 and scaled PCA initialisation
(Figure 6a).

Aligning Tasic et al. 2016 and 2017 Out of the 1000 most variables genes in the Tasic et al. (2016)
data set, 967 were present in the Tasic et al. (2017) data. This was the gene set we used for mapping
(Figure 6b). We excluded all cells assigned to ALM clusters (23 clusters that have “ALM” in the cluster
name) in Tasic et al. (2017). Each remaining cell was positioned at the median t-SNE location of its
k = 10 nearest neighbours (in terms of correlation distance) among the Tasic et al. (2016) cells. This was
used as initialisation for t-SNE of the non-ALM subset of Tasic et al. (2017) (Figure 6b) with combined
perplexities 50 and 500. Note that this initialisation was not scaled (as we do for PCA initialisation, see
above) because otherwise it gets distorted during optimisation (however, when applying the alignment
procedure to larger data sets, we did have to scale the initialisation as otherwise t-SNE did not converge
well). For the non-ALM subset we selected M = 3000 most variables genes using our procedure with
t = 32 and a = 1 (resulting in b = 6.51).

Macosko et al. 2015 We selected the M = 3000 most variables genes using our procedure with
t = 32 and a = 1 (resulting in b = 0.19). We standardised all features before running PCA, following the
original publication. We ran t-SNE with combined perplexities 50 and 500, scaled PCA initialisation,
and learning rate η = 1000 (Figure 4a). Using the default learning rate produced almost the same result,
but with some visible hallmarks of incomplete convergence.

Shekhar et al. 2016 We selected the M = 1000 most variables genes using our procedure with
t = 32 and a = 1.5 (resulting in b = 0.21). We only used 1000 genes because the data set contained
mostly bipolar cells which are all similar to each other. We standardised all features before running
PCA, following the original publication. We ran t-SNE with σ = .05 and k = 1000, and scaled PCA
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initialisation to get the representation of the global geometry. In this case, the N × 50 matrix after
PCA was divided by the maximum absolute value of its elements. This makes all the values be between
−1 and 1, so that the σ = .05 parameter is more interpretable. For comparison, when trying out this
procedure on the Tasic et al. (2017) data set, we found that we needed to use σ = 0.25 (with the same
k = 1000) to get a reasonable representation of the global structure.

We then used the result (without any scaling) as initialisation to run t-SNE with perplexity 50 and
exaggeration α = 1.2 (no additional early exaggeration) (Figure 4b). Without exaggeration the result
was very similar but clusters were slightly less compact.

Shekhar et al. used combined data from two animals and there is some batch effect visible in
Figure 4b. In the original publication batch correction was performed prior to PCA. We did not use
batch correction here because this is outside the scope of the manuscript. Using larger set of genes (we
tried 10 000) strongly exacerbated batch effect. The original publication used ∼13 000 genes.

Harris et al. 2018 We selected the M = 150 most variables genes using our procedure with t = 32
and a = 1.5 (resulting in b = 0.52). We used the same number of genes as in the original publication.
We did not standardise the features prior to PCA, because this better corresponds to the procedure in
the original publication (see above). We used t-SNE with perplexity 50 and scaled PCA initialisation
(Figure 4c).

10x Genomics (1.3 mln cells) We used the recipe_zheng17() preprocessing pipeline from scanpy
(Wolf et al., 2018) to ease the comparison with clustering and dimensionality reduction performed by
Wolf et al. This pipeline follows Zheng et al. (2017) and is similar to ours: it performs library size
normalisation, selects the 1000 most variable genes based on the mean-variance relationship, applies
the log(x + 1) transform, standardises each feature, and uses PCA to reduce dimensionality to 50. We
performed t-SNE on the data set randomly downsampled to 25 000 cells with perplexity 500 and scaled
PCA initialisation. We then positioned each cell at the t-SNE position of its k = 1 nearest neighbour (in
terms of Euclidean distance) among the 25 000-cell subset and scaled the resulting arrangement down
to standard deviation 0.0001 exactly as we do with scaled PCA initialisation (see above). We used
this as initialisation to run t-SNE with perplexity 30, early exaggeration α = 12 for 500 iterations and
exaggeration α = 4 afterwards, and learning rate η = 1000 (Figure 7b).

For data sets of such size, the default learning rate η = 200 is too small and one needs to increase
either the learning rate up to 1000 (as we do here) or the number of iterations from 1000 up to ∼5000.
Otherwise the result remains visibly not converged (“noisy”). We increased the length of the early
exaggeration phase from the default 250 to 500 iterations because otherwise cluster 24 remained split
into two disconnected parts. Figure 7c corresponds to the early exaggeration α = 12 for 500 iterations
but no exaggeration after that. Figure 7d shows the result with scaled PCA initialisation instead of
the downsampling-based initialisation. Figure 7e was obtained with all the default settings (random
initialisation, default early exaggeration regime) apart from the learning rate η = 1000.

When initialising with scaled PCA as in Figure 7c, we obtained much better results when using
aggressive early exaggeration (Linderman and Steinerberger, 2017; Arora et al., 2018): we used α = 120
for 1000 iterations followed by another 1000 iterations with α = 4. The result was similar to Figure 7b.
Nevertheless, we do not believe that aggressive early exaggeration can always help retaining the global
structure. Indeed, using perplexity 30 means that each cell is only attracted to k = 90 nearest neighbours.
If the global structure is not visible on this scale (imagine several far separated clusters with� 90 points
each), then no early exaggeration or other optimisation settings would yield an adequate representation
of the global structure.

When using scaled PCA initialisation with this data set, we always rotated the result 90 degrees
clockwise and flipped horizontally, to make it visually more pleasing. Note that t-SNE result can be
arbitrarily rotated and flipped as this does not change the distances between points.

UMAP For our experiments with UMAP on the Tasic et al. (2017) data set, we used n_neighbors
from {5, 10, 50, 100} and min_dist from {.001, .01, .1, .5} (defaults are 15 and .1 respectively), and tried
all 4×4 combinations. When running UMAP on the 10x Genomics data set, we used the default settings.
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3 Procedure
We created a Jupyter notebook in Python that guides through all the steps of this protocol. It
is available at https://github.com/berenslab/rna-seq-tsne. We suggest to install Python and
Jupyter from https://www.anaconda.com, install FIt-SNE following instructions at https://github.
com/klugerlab/FIt-SNE, download the notebook, and follow its steps. The protocol outline below gives
the key steps with additional information. The FIt-SNE library is written in C++ and provides inter-
faces for R, Matlab, and Python. Our code is in Python, but it is equally easy to use the other two
interfaces.

Our tutorial notebook is self-contained. For simplicity, it uses the Tasic et al. (2017) data set for all
demonstrations. To show how to map new cells to the reference t-SNE atlas, we split the data set into
training set and test set. To show how to align two t-SNE visualisations, we split the data set into two
parts. To show how to process a much larger data set, we replicate each cell 10 times and add noise. See
the same GitHub repository for the notebooks that generate all figures used in this manuscript.

The notebook starts with processing the data files as they are distributed by the Allen institute
(http://celltypes.brain-map.org/rnaseq). This takes 5 minutes. The raw count data in the sparse
matrix format is put into tasic2018.counts. Cluster ids of all cells are put into tasic2018.clusters
and colours of each cluster are in tasic2018.clusterColors.

The reported timings were measured on a standard personal workstation with 4 double-threaded
cores, 3.4 GHz each, and 32Mb RAM. Half the amount of this RAM should be enough to run the
notebook.

Step 1: Pre-processing [20 sec]
To select the 3000 most variable genes, run

# Get mean log non-zero expression of each gene
x = meanLogExpression(tasic2018.counts, threshold=32)
# Get near-zero frequency of each gene
y = nearZeroRate(tasic2018.counts, threshold=32)
# Adjust the threshold to select 3000 genes
selectedGenes = featureSelection(x, y, n=3000)

After that, we execute the pre-processing pipeline as follows:

counts3k = tasic2018.counts[:, selectedGenes] # Feature selection

librarySizes = tasic2018.counts.sum(axis=1) # Compute library sizes
CPM = counts3k / librarySizes * 1e+6 # Library size normalisation

logCPM = np.log2(CPM + 1) # Log-transformation

X = PCA(n_components=50).fit_transform(logCPM) # Principle component analysis (PCA)

Step 2: Initial data exploration using PCA [1 sec]
As we already did PCA as one of the pre-processing steps, we directly visualise the first two principal
components:

plt.figure(figsize=(5,5))
plt.scatter(X[:,0], X[:,1], s=3, color=tasic2018.clusterColors[tasic2018.clusters])
plt.tight_layout()

Similar plotting code can be used to visualise all later steps as well and will therefore not be repeated
as part of the protocol.
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If initial PCA indicates several distinct clusters, run PCA on each of them separately. For our example
data set, we perform PCA of the excitatory neurons by running:

subset = X[:,0] > -8 # Select the desired subset here
Xsubset = PCA(n_components=2).fit_transform(X[subset,:])

If clustering has already be done and cluster information is available, then it can be helpful to look
at a PCA and multi-dimensional scaling (MDS) of cluster means:

C = np.unique(tasic2018.clusters).size
clusterMeans = np.zeros((C, X.shape[1]))
for c in range(C):

clusterMeans[c,:] = np.mean(X[tasic2018.clusters==c,:], axis=0)

clusterMeansPCA = PCA(n_components=2).fit_transform(clusterMeans)
clusterMeansMDS = MDS(n_components=2).fit_transform(clusterMeans)

The given timing (1 second) is what it takes to run the code above. Actual data exploration is an
interactive process that of course takes much longer.

Step 3: Creating a standard t-SNE visualisation [30 sec]
Run t-SNE with standard settings:

tsne30 = fast_tsne(X)

This uses perplexity 30.

Step 4: Exploring the data set at different scales [10 min]
Run t-SNE with different perplexities in the range from 5 to ∼N/10. This assumes that the data set size
is small enough to allow that. For much larger data sets than the one used here, consider downsampling
to some manageable size and exploring the downsampled version first.

tsne5 = fast_tsne(X, perplexity=5, seed=42)
tsne50 = fast_tsne(X, perplexity=50, seed=42)
tsne500 = fast_tsne(X, perplexity=500, seed=42)

Running t-SNE with the largest perplexity takes 3 minutes, which is the slowest of the three function
calls. We use seed=42 to set the same random initialisation in all runs.

For some data sets, especially if there are very small very distinct clusters, it can be helpful to run
t-SNE without perplexity calibration (see the discussion of the Shekhar et al. (2016) data set above).
This can be done as follows (each t-SNE run takes 2 minutes):

tsne01 = fast_tsne(X/np.max(np.abs(X)), sigma=0.1, K=1000, seed=42)
tsne025 = fast_tsne(X/np.max(np.abs(X)), sigma=0.25, K=1000, seed=42)
tsne05 = fast_tsne(X/np.max(np.abs(X)), sigma=0.5, K=1000, seed=42)

Step 5: Refining the t-SNE visualisation [3 min]
To initialise t-SNE with scaled PCA coordinates, run

PCAinit = X[:,:2] / np.std(X[:,0]) * 0.0001
tsne30pca = fast_tsne(X, initialization=PCAinit)

To use a perplexity combination, along with scaled PCA initialisation, run
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PCAinit = X[:,:2] / np.std(X[:,0]) * 0.0001
tsne50_500 = fast_tsne(X, perplexity_list=[50,500], initialization=PCAinit)

Choose the plots which are most useful for highlighting relevant aspects of the data structure.

Step 6: Mapping new cells to an existing visualisation (optional) [3 min]
For demonstration purposes, we use 100 randomly selected cells as “new cells” (test set) that we want
to place on a t-SNE map created using the remaining cells (training set).

Perform t-SNE on the training set:

Xtrain = PCA(n_components=50).fit_transform(logCPM[trainingSet,:])
PCAinit_train = Xtrain[:,:2] / np.std(Xtrain[:,0]) * 0.0001
tsneTrain = fast_tsne(Xtrain, perplexity_list=[50,500], initialization=PCAinit_train)

And then position new points as follows (this runs in a few seconds):

pos = map_to_tsne(tasic2018.counts[:,selectedGenes][trainingSet,:],
tasic2018.counts[:,selectedGenes][testSet,:],
tsneTrain)

See the notebook for the implementation of map_to_tsne().

Step 7: Creating aligned t-SNE visualisations (optional) [4 min]
We use 5000 randomly selected cells as the first data set and the rest as the second data set. To create
an aligned data set of the two parts, perform t-SNE on the first data set:

X1 = PCA(n_components=50).fit_transform(logCPM[set1,:])
PCAinit1 = X1[:,:2] / np.std(X1[:,0]) * 0.01
tsne1 = fast_tsne(X1, perplexity=50, initialization=PCAinit1)

Then map the second data set on to this t-SNE result:

pos = map_to_tsne(tasic2018.counts[:,selectedGenes][set1,:],
tasic2018.counts[:,selectedGenes][set2,:],
tsne1)

Finally, use this mapping as initialisation to run t-SNE on the second data set:

X2 = PCA(n_components=50).fit_transform(logCPM[set2,:])
tsne2 = fast_tsne(X2, perplexity_list=[50,500], initialization=pos)

Step 8: Dealing with large data sets (optional) [10 min]
For demonstration purposes, we replicate each cell 10 times and add Gaussian noise to obtain a simulated
data set with N = 238 000. We assume that this data set is so large that we cannot use any perplexity
values much larger than the default one (30). This is not quite true for this N but would be true if we
did another tenfold increase.

Running t-SNE with PCA initialisation produces a very poor result with over-expanded clusters:

PCAinit10x = X10x[:,:2] / np.std(X10x[:,0]) * 0.0001
tsne10x = fast_tsne(X10x, initialization=PCAinit10x)

Running t-SNE with PCA initialisation and exaggeration coefficient α = 4 prevents over-expansion
of the clusters but fails to preserve global geometry:
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tsne10x_ex = fast_tsne(X10x, initialization=PCAinit10x,
late_exag_coeff=4, start_late_exag_iter=250)

Instead, use downsampling-based initialisation: Perfrom t-SNE in a global-geometry-preserving way
on a downsampled data set (here we use the original data set, 3 min); map all cells onto the resulting
t-SNE (1.5 min); run t-SNE on the full data set with this initialisation and exaggeration turned on (3
min):

pos = map_to_tsne_fast(X, X10x, tsne50_500)
downsampled_init = pos / np.std(pos[:,0]) * 0.0001
tsne10x_pos = fast_tsne(X10x, initialization=downsampled_init,

late_exag_coeff=4, start_late_exag_iter=250)

See the notebook for the implementation of map_to_tsne_fast().

4 Anticipated Results
A successful completion of the protocol will result in a t-SNE visualisation for a given scRNA-seq data
set that preserves the global structure. This t-SNE map can be annotated with the output of a clustering
procedure or the expression level of desired marker genes. The optional steps allow to achieve such a
result even for very large data sets.
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