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Abstract	
	
Background:	Deep	sequencing	of	targeted	genomic	regions	is	becoming	a	common	
tool	for	understanding	the	dynamics	and	complexity	of	Plasmodium	infections.	Here,	
Illumina-based	amplicon	sequencing	of	two	P.	falciparum	genomic	regions	(CSP	and	
SERA2)	was	performed	on	two	types	of	samples:	in	vitro	DNA	mixtures	mimicking	
low-density	infections	(1-200	genomes/μl)	and	natural	patient	samples	(44-
653,080	parasites/μl).	The	analytical	performance	of	four	analysis	tools—PASEC,	
DADA2,	HaplotypR,	and	SeekDeep—was	compared	on	both	datasets.		
	
Results:		All	four	analysis	tools	were	able	to	contend	with	mock	low-density	
samples,	showing	reasonable	detection	accuracy	down	to	a	concentration	of	5	
Plasmodium	genome	copies/μl.	Due	to	increased	stochasticity	and	background	
noise,	however,	accuracy	was	reduced	for	samples	with	very	low	parasitemia	(<	5	
copies/μl)	or	very	low	read	count	(<100	reads	per	amplicon).	PASEC	could	
distinguish	major	vs.	minor	haplotypes	with	an	accuracy	of	90%	in	samples	with	at	
least	30	Plasmodium	genome	copies/μl,	but	only	61%	at	low	Plasmodium	
concentrations	(<	5	copies/μl)	and	46%	at	low	read	counts	(<25	reads	per	
amplicon).	The	four	tools	were	additionally	compared	on	a	panel	of	patient	samples,	
and	all	four	provided	concordant	complexity	of	infection	patterns	across	four	sub-
Saharan	African	countries.	
	
Conclusions:	Amplicon	deep	sequencing	successfully	determines	the	complexity	
and	diversity	of	low-density	Plasmodium	infections,	even	in	the	absence	of	technical	
PCR/sequencing	replicates.	Current	state-of-the-art	tools	offer	multiple	robust	
approaches	for	analyzing	amplicon	data.	However,	as	samples	with	very	low	
parasitemia	and	very	low	read	count	have	higher	false	positive	rates,	researchers	
should	consider	implementing	higher	read	count	thresholds	when	working	with	
low-density	samples.	
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Background	
	

Amplicon	deep	sequencing	is	increasingly	displacing	other	genotyping	
approaches	as	it	provides	a	cost-effective	approach	to	profiling	the	genetic	diversity	
of	pathogen	infections.	Like	SNP-based	genotyping	approaches,	both	the	data-
generation	and	data-analysis	steps	of	amplicon	sequencing	are	highly	scalable,	
allowing	for	studies	of	hundreds	to	thousands	of	samples.	Amplicons,	however,	can	
be	designed	to	cover	long	genetic	segments	composed	of	multiple	variants.	When	
targeted	to	a	highly	polymorphic	genomic	region,	a	single	amplicon	can	therefore	
distinguish	among	hundreds	of	unique	DNA	sequences	(haplotypes)	[1],	which	
provides	higher	resolution	than	either	SNP-based	or	length-based	genotyping	
approaches	when	estimating	the	number	of	lineages	within	an	infection	(or	
complexity	of	infection;	COI)	[2–4].	Increasing	its	ease	of	use,	amplicon	analysis	in	
Plasmodium	has	been	adapted	to	multiple	sequencing	platforms	depending	on	the	
desired	cost,	sample	size,	and	sequence	length	[3,	5–7].	Because	of	this	high	
resolution	and	flexibility,		amplicon-based	methods	have	been	utilized	in	a	range	of	
applications,	including	studies	of	allele-specific	vaccine	efficacy	[1],	disease	severity	
[6],	clearance	rates	[8],	within-host	competition	[9],	relapse	rates	[5],	drug	
resistance	[10–12],	host	selection	[13],	and	population	structure	[13,	14].	Amplicon	
sequencing	has	high	sensitivity	for	the	detection	of	minority	clones	and	is	of	
particular	interest	in	longitudinal	studies	that	track	intra-host	dynamics	[3,	4].	
	 When	used	to	detect	known	single	variant	markers,	amplicon	sequence	data	
can	be	analyzed	with	relatively	straight-forward	approaches.	Often,	however,	
amplicon	sequencing	is	used	to	target	larger,	more	complex	haplotypes.	In	addition	
to	providing	higher	clonal	resolution,	longer	haplotypes	permit	the	discovery	of	
unknown	alleles,	for	instance	when	monitoring	variability	in	resistance-associated	
genes	[10–12],	and	provide	increased	information	for	haplotype-based	analyses	of	
epistasis	and	linkage	disequilibrium	[13].	

Being	more	information-rich,	these	longer	haplotypes	require	more	
sophisticated	analysis	methods	than	single-variant	detection.	Amplicon	sequencing	
data	is	known	to	be	subject	to	PCR	and	sequencing	artifacts,	particularly	for	
genomic	regions	with	high	A/T-content	and	high	rates	of	homopolymerism	[15,	16].	
In	addition,	library	preparation	method	and	primer	choice	can	influence	the	types	
and	extent	of	errors	[17].	Correctly	identifying	sequence	errors	is	therefore	a	
challenge	when	applying	amplicon	sequencing	to	P.	falciparum.	Fortunately,	several	
new	tools	for	analysis	of	amplicon	data	have	been	developed	in	recent	years	[18–
21].	Unlike	approaches	that	use	reference	datasets	or	cluster	sequences	with	hard	
percent-identity	thresholds,	these	new	methods	are	more	flexible	and	can	
distinguish	among	sequences	that	differ	by	only	a	single	nucleotide	change	[22].	
Questions	still	remain,	however,	regarding	the	relative	accuracy	of	these	different	
approaches,	their	applicability	to	samples	of	low	parasitemia,	and	their	capacity	to	
recover	quantitative	information	regarding	the	relative	abundance	of	different	
haplotypes	within	patient	infections.			
	 In	this	study,	amplicon	sequencing	of	densely	polymorphic	regions	in	the	P.	
falciparum	CSP	and	SERA2	genes	was	applied	to	two	sample	collections.	The	first—a	
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set	of	in	vitro	human/parasite	DNA	mixtures	that	mimic	low	density	parasite	
infections—was	designed	to	test	the	limit	of	detection	for	amplicon	sequencing.	The	
second	sample	set	consisted	of	DNA	extracted	from	dried	blood	spots	collected	on	
filter	paper	in	sub-Saharan	Africa,	capturing	the	conditions	under	which	samples	are	
typically	collected	and	processed.	Initial	analysis	of	the	data	resulting	from	these	
samples	was	conducted	with	the	Parallel	Amplicon	Sequencing	Error	Correction	
(PASEC)	pipeline,	a	new	distance	and	abundance-based	error-correction	tool	that	
has	been	carefully	tuned	for	use	with	these	two	amplicons.	The	performance	of	
PASEC	was	then	compared	to	that	of	three	previously	published	tools:	DADA2	[18],	
HaplotypR	[19],	and	SeekDeep	[20].	All	four	tools	detected	P.	falciparum	haplotypes	
with	high	sensitivity,	and	additionally	were	able	to	discriminate	between	major	and	
minor	haplotypes	with	reasonable	accuracy.	Overall,	the	results	show	that	low	
parasitemia	does	not	impede	amplicon	analysis	of	P.	falciparum	samples,	although	
researchers	should	expect	lower	sensitivity	and	lower	precision	with	low	read-
count	samples	(<100	reads/amplicon)	and	at	parasite	levels	under	5	genomes/μl.	
	
	
Methods	
	
Sample	assembly	and	composition	
Mock	Plasmodium/human	DNA	mixtures:	
Mixtures	of	cultured	P.	falciparum	parasite	and	human	genomic	DNA	were	
constructed	to	mimic	human	patient	infection	samples.	Up	to	five	culture-adapted	
parasite	strains	were	combined	in	various	ratios	and	number	(Figure	1;	exact	
sample	composition	is	in	Additional	File	1,	Table	S1).	Stock	mixtures	of	200	
copies/μl	total	were	prepared	by	real-time	PCR	quantification	of	copies/μl	in	
triplicate	relative	to	a	plasmid	containing	a	single	copy	of	the	quantification	target	
gene	[23].	These	stock	solutions	were	then	diluted	to	the	indicated	concentrations	
in	sequencing-grade	water	and	10ng	commercial	human	DNA	(Promega	Corp	
cat#G3041)	was	added	to	all	samples.	After	mixing	and	dilution,	a	subset	of	samples	
were	re-quantified	using	the	same	qPCR		protocol	and	reported	sample	
concentrations	were	adjusted	as	needed.	Plasmodium-free	negative	control	samples	
were	also	constructed.	These	contained	either	10ng	of	human	DNA	or	only	water.	
	
Patient	samples:	Previously	extracted	DNA	from	95	patient	samples	was	re-
amplified	and	re-sequenced	as	part	of	this	study.	These	samples	were	acquired	from	
four	countries	in	sub-Saharan	Africa	as	part	of	the	RTS,S	malaria	vaccine	Phase	3	
trial	and	had	parasite	densities	that	ranged	from	44-653,080	parasites/μl	as	
determined	by	blood	smear	(Figure	1;	[24]).	Full	details	on	sampling	and	extraction	
are	provided	in	Neafsey	et	al.,	2015	[1].	In	brief,	samples	were	collected	as	blood	
spots	on	Whatman	FTA	cards,	shipped	to	the	Broad	Institute,	and	stored	in	
desiccators	until	processing.	DNA	was	extracted	in	batches	of	95	samples	plus	one	
blank	control	card	using	the	automated	Chemagen	Chemagic	bead-based	extraction	
platform.	Total	DNA	was	stored	at	-80°C	until	re-amplification	and	sequencing.		
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Figure	1.	Mock	and	patient	sample	composition.	(A)	Mock	samples	were	constructed	
from	mixtures	of	P.	falciparum	and	human	DNA	to	mimic	the	parasite	DNA	concentrations	
found	in	extracted	low-density	infections.	(B)	DNA	from	a	total	of	five	clonal	lab	lines	were	
combined	in	the	mock	samples,	leading	to	COI	values	of	one	to	four.	(C)	Patient	samples	
were	previously	collected	and	extracted	from	a	combination	of	symptomatic	patients	and	
asymptomatic	carriers.	Parasite	densities	were	determined	by	blood	smear.	
	
	
Positive	control	plasmid:	A	plasmid	containing	synthetic	target	amplicon	sequences	
for	both	CSP	and	SERA2	was	obtained	from	a	commercial	vendor	(Invitrogen/Therm	
Fisher	Scientific)	and	served	as	a	positive	control	during	the	PCR	amplification	step.	
Outside	the	primer	regions,	the	plasmid	sequence	contains	nucleotide	variants	not	
observed	in	natural	P.	falciparum	isolates	so	that	any	instances	of	contamination	can	
be	readily	identified.	The	plasmid	map	can	be	found	in	Additional	File	1,	Figure	S1.	
	
PCR	and	sequencing	

Two	regions	from	the	genes	CSP	(PF3D7_0304600)	and	SERA2	
(PF3D7_0207900)	were	PCR	amplified	as	previously	described	[1].	In	brief,	targeted	
regions	were	amplified	then	indexed	in	two	separate	rounds	of	PCR.	The	final	CSP	
and	SERA2	amplicons	cover	288	and	258	nucleotides	respectively	
(Pf3D7_03_v3:221,352-221,639;	Pf3D7_02_v3:320,763-321,020).	Both	amplicons	
overlap	sequence	regions	of	high	nucleotide	diversity	in	sub-Saharan	Africa,	
maximizing	the	number	of	distinct	haplotypes	that	can	be	detected	across	samples	
in	this	geographic	area.	
	 All	DNA	samples	and	negative	controls	were	amplified	and	sequenced	in	
duplicate.	Paired-end	250-bp	reads	were	generated	in	one	MiSeq	run	conducted	on	
a	pool	of	384	PCR	products.	Unless	otherwise	noted,	each	PCR/sequencing	replicate	
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was	analyzed	as	a	distinct	sample.	Before	downstream	analysis,	raw	sequencing	
data	were	demultiplexed	and	aligned	to	amplicon	reference	sequences	to	remove	all	
non-Plasmodium	sequences.		
	
Sample	analysis	with	the	PASEC	pipeline	

For	each	sample,	paired-end	reads	were	merged	using	FLASH	[25]	and	
aligned	with	BWA-MEM	v0.7.12-r1039	[26]	to	the	amplicon	regions	of	the	P.	
falciparum	reference	genome	assembly	(PlasmoDB	v.9.0	3D7).	Two	short	
homopolymeric	tracts	in	CSP	were	masked	from	analysis	as	such	regions	are	highly	
error-prone	in	Illumina	sequencing	and	these	tracts	were	not	known	to	harbor	
natural	polymorphisms.	Masked	coordinates	are	given	in	Additional	File	3.	

Within	each	sample,	haplotypes	were	filtered	according	to	a	set	of	pre-
specified	thresholds	developed	by	Neafsey	et	al	[1].	Haplotypes	were	required	to	(1)	
cover	the	entire	amplicon	region,	(2)	have	no	uncalled	bases,	(3)	be	supported	by	at	
least	two	sets	of	merged	read	pairs,	and	(4)	have	an	intra-sample	frequency	≥	0.01.	
To	account	for	potential	PCR	and	sequencing	errors,	the	filtered	haplotypes	were	
clustered	based	on	nucleotide	distance	and	read	depth.	If	two	haplotypes	within	the	
same	sample	differed	by	only	one	nucleotide	and	had	a	read	coverage	ratio	≥8:1,	
they	were	merged,	maintaining	the	identity	of	the	more	common	haplotype.	
Previous	implementations	of	this	pipeline	removed	all	potential	chimeric	reads	and	
required	samples	to	contain	at	least	200	reads	for	one	of	the	two	amplicons	[1,	13].	
In	this	analysis,	these	metrics	were	analyzed,	but	hard	filters	were	not	applied	to	the	
samples	before	downstream	analysis.	

Full	details	on	the	PASEC	pipeline,	its	customizable	parameters,	and	its	
implementation	in	this	study	are	found	in	Additional	Files	2	and	3	and	at	
https://github.com/tmfarrell/pasec.		
	
Sample	analysis	with	DADA2,	HaplotypR,	and	SeekDeep	

All	samples	were	also	independently	analyzed	using	three	additional	
amplicon	analysis	tools:	DADA2	[18],	HaplotypR	[19],	and	SeekDeep	[20].	Beyond	
the	changes	detailed	below,	input	parameters	deviated	only	modestly	from	the	
default	settings.	Parameters	and	scripts	used	for	executing	each	pipeline	can	be	
found	in	Additional	File	3.	While	previous	implementations	of	PASEC	applied	a	200	
reads/sample	threshold,	no	read	count	filters	were	applied	at	the	sample	level	in	
this	analysis	comparison.	

SeekDeep	gives	the	option	of	grouping	data	from	technical	PCR/sequencing	
replicates	of	the	same	sample	and	applying	clustering	and	filtering	to	this	grouped	
data	to	increase	confidence	in	final	calls.	We	therefore	ran	the	pipeline	under	two	
conditions:	grouping	technical	replicates	(the	recommended,	default	SeekDeep	
approach;	“SeekDeep2x”)	and	treating	each	PCR/sequencing	replicate	
independently	(“SeekDeep1x”).	This	permitted	a	more	level	comparison	with	
pipelines	that	do	not	incorporate	replicate	information	and	allowed	for	a	
determination	of	whether	a	single	replicate	is	sufficient	for	making	accurate	
haplotype	calls.	

For	HaplotypR,	the	command-line	interface	was	extended	in	two	ways.	First,	
it	was	altered	to	return	full	haplotype	sequences	as	opposed	to	only	bases	at	variant	
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positions.	Second,	the	trimming	input	command	was	expanded	to	allow	each	
amplicon	to	have	different	lengths.	The	version	of	HaplotypR	used	in	this	analysis	
can	be	found	at	https://github.com/tmfarrell/HaplotypR.	After	running	the	
pipeline,	the	authors’	recommended	sample-level	filtering	was	applied	to	the	data.	
Specifically,	each	sample	was	required	to	have	a	minimum	of	25	reads,	and	
individual	haplotypes	needed	to	have	a	minimum	of	3	reads	and	a	within-host	
frequency	of	at	least	0.1%.	
	
Comparison	of	analysis	tools	
	 All	four	tools	were	assessed	for	their	ability	to	resolve	haplotypes	at	within-
sample	frequencies	down	to	1%	using	the	mock	low-parasitemia	samples.	Two	
performance	metrics	were	computed	by	comparing	expected	vs.	observed	
haplotypes	in	each	sample:	sensitivity	(proportion	of	all	expected	haplotypes	that	
were	observed)	and	precision	(proportion	of	all	observed	haplotypes	that	were	
expected).	For	sensitivity	calculations,	only	haplotypes	present	at	a	concentration	of	
at	least	1	copy/μl	were	considered.	For	each	tool,	samples	were	only	included	in	the	
performance	metric	calculation	if	at	least	one	haplotype	was	identified.	Except	for	
the	SeekDeep2x	implementation,	each	PCR/sequencing	replicate	was	analyzed	as	a	
distinct	sample.	
	
Results	
	
Sequencing	coverage	for	low-density	mock	infections	and	patient	samples	
from	sub-Saharan	Africa	

In	total,	148	DNA	mixtures	of	known	haplotypic	composition,	190	natural	
infections	from	sub-Saharan	Africa,	12	positive-control	plasmid	samples,	and	4	
negative-control	samples	without	Plasmodium	DNA	were	sequenced	on	a	single	
Illumina	MiSeq	run.	

The	148	mock	DNA	mixtures	were	constructed	to	mimic	infections	with	low	
parasite	density	and	contained	between	1	and	200	P.	falciparum	genomes/μl	(Figure	
1A).	After	sequencing,	145	samples	had	full-length	read	coverage	for	at	least	one	of	
the	two	amplicons.	For	each	amplicon,	initial	raw	coverage	across	these	samples	
varied	from	0	to	280,876.	After	implementing	the	PASEC	pipeline,	coverage	ranged	
from	0	to	31,787	reads.	Coverage	was	sufficient	for	both	amplicons,	although	
median	coverage	was	higher	for	CSP	than	for	SERA2	(1872	vs.	909;	Figure	2A).	All	
samples	with	very	low	coverage	(<100	reads)	had	Plasmodium	DNA	concentrations	
below	21	genomes/μl.	Overall,	however,	read	count	and	genome	copy	number	were	
only	weakly	correlated	(Spearman’s	ρ	=	0.55,	P	=	9.3x10-14;	Figure	2B).		
	 Sequence	coverage	was	higher	for	the	190	patient	samples	from	sub-Saharan	
Africa	(Figure	2C).	These	samples	were	extracted	from	dried	blood	spots	and	had	
parasite	densities	that	ranged	from	44-653,080	parasites/μl	as	determined	by	
microscopy	of	blood	smears.	As	with	the	in	vitro	DNA	mixtures,	coverage	was	
generally	higher	for	samples	with	higher	parasite	loads,	but	this	correlation	was	low	
(Spearman’s	ρ	=	0.31,	P	=	1.1x10-9;	Figure	2D).	Overall	sequencing	success	was	
lower	for	the	patient	samples	than	for	the	mock	DNA	mixtures	(Figure	2C).	It	is	
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likely	that	this	partially	resulted	from	difficulties	with	extracting	clean,	high	quality	
DNA	from	the	stored	filter	paper	blood	spots	rather	than	variability	in	the	
sequencing	itself.	In	total,	22	patient	samples	had	at	least	one	PCR/sequencing	
replicate	with	0	or	low	read	counts	(<100).	Of	these,	18	experienced	failure	with	
both	technical	PCR/sequencing	replicates.	
	
	
	

	
Figure	2.	Sequencing	coverage	of	mock	and	patient	samples.	Overall	sequencing	
coverage	was	lower	for	mock	(A)	than	patient	(C)	samples	although	patient	samples	had	a	
higher	failure	rate.	For	both	mock	(B)	and	patient	(D)	samples,	total	read	coverage	(reads	
combined	from	both	amplicons)	correlated	weakly	with	parasite	genome	concentration	or	
parasitemia.	
	
	
	
Absolute	haplotype	concentration	affects	the	probability	of	sequencing	
success	

Each	mock	sample	contained	between	one	and	four	unique	haplotypes	at	the	
CSP	and	SERA2	amplicons	present	at	concentrations	of	1-200	copies/μl	(Figure	1B).	
Overall,	there	was	a	high	recovery	of	these	expected	haplotypes	from	each	of	the	
samples.	PASEC	correctly	identified	all	haplotypes	present	at	a	concentration	of	30	
copies/μl	or	higher	and	96%	of	haplotypes	with	concentrations	over	20	copies/μl.	
Conversely,	only	41%	of	haplotypes	with	1-5	copies/μl	were	recovered	(Figure	3A).	
As	discussed	in	the	tool	comparison	below,	this	haplotype	sensitivity	is	only	slightly	
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influenced	by	the	post-sequencing	analysis	method	and	is	instead	driven	by	a	failure	
to	initially	amplify	and/or	sequence	these	low	frequency	haplotypes.		
	
	
	

	
Figure	3.	Correct	identification	of	mock	sample	haplotypes.	(A)	Detection	of	known	
haplotypes	within	the	mock	samples	was	dependent	on	haplotype	concentration	within	the	
sample.	Error	bars	represent	the	binomial-estimated	standard	deviation.	(B)	31%	of	
identified	haplotypes	were	erroneous,	but	these	haplotypes	were	generally	supported	by	
fewer	reads	than	correct	haplotypes.	
	
	
Amplicon	sequencing	retains	some	information	on	within-sample	haplotype	
frequencies,	even	at	low	concentrations	

When	performing	direct	short-read	sequencing,	read	depth	can	be	used	to	
infer	sample	features	like	genotype	ratios	or	genome	copy	number	variations.	
However,	during	construction	of	amplicon	libraries,	PCR	amplification	prior	to	
sequencing	can	introduce	stochastic	variation	in	the	final	read	counts.	Nevertheless,	
analysis	of	the	final	read	ratios	in	the	mock	samples	shows	that	some	information	
on	the	original	haplotype	ratios	can	be	recovered.	For	amplicons	with	at	least	100	
reads,	the	correlation	between	the	haplotypic	ratio	in	the	template	DNA	and	final	
read	ratio	was	moderate	(Pearson’s	r	=	0.82,	P	<	0.001,	Additional	File	1,	Figure	S2).	
As	a	result,	in	73%	of	samples	with	at	least	a	4%	margin	between	the	two	most	
prevalent	haplotypes,	read	ratio	correctly	identified	the	most	prevalent	haplotype	in	
the	starting	DNA	mixture.	Again,	low	sample	read	count	reduced	the	probability	of	
identifying	the	correct	major	haplotype	(Figure	4A).	Similarly,	major	haplotype	
identification	was	less	accurate	in	samples	with	very	low	total	Plasmodium	DNA	
concentration	(<5	genomes/μl;	Figure	4B).	
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Figure	4.	Proportion	of	mock	samples	where	the	major	haplotype	was	correctly	
identified.	Identification	of	the	major	haplotype	was	less	reliable	at	low	read	counts	(A)	
and	low	parasite	genome	concentrations	(B).	Samples	were	excluded	from	the	analysis	if	
the	difference	in	prevalence	between	the	top	two	haplotypes	was	less	than	4%.	Error	bars	
represent	the	binomial-estimated	standard	deviation.	
	
	
	
Erroneous	haplotypes	in	the	mock	samples	have	lower	read	support	than	
correct	haplotypes	

Results	show	that	read	support	is	a	useful	indicator	of	the	likelihood	that	a	
called	haplotype	is	correct.	In	keeping	with	past	observations,	haplotypes	with	
single-read	support	were	largely	sequencing	artifacts,	with	only	0.030%	matching	a	
haplotype	sequence	known	to	be	present	in	the	sample	mixtures.	The	default	PASEC	
pipeline	therefore	requires	haplotypes	to	have	read	support	≥2,	a	filter	that	
eliminated	89.0%	of	CSP	and	85.8%	of	SERA2	haplotypes	from	the	dataset.	

After	filtration	with	the	full	PASEC	pipeline,	some	erroneous	haplotypes	
remained,	but	they	continued	to	show	lower	read	support	than	true	haplotypes	
(Figure	3B).	In	the	final	filtered	dataset,	31%	of	the	identified	haplotypes	were	
erroneous,	although	combined	these	haplotypes	only	accounted	for	0.75%	of	the	
total	reads.	Of	note,	the	same	percentage	of	erroneous	reads	(0.8%)	was		previously	
reported	by	Hathaway	et	al	on	a	different	dataset	analyzed	with	their	tool	SeekDeep	
[20].		Reads	supporting	erroneous	haplotypes	were	more	prevalent	in	samples	with	
low	read	depth	and	low	parasite	concentration	(Additional	File	1,	Figure	S3).	In	
order	to	decrease	the	false	positive	rate,	users	could	therefore	choose	to	increase	
the	read	support	threshold	per	haplotype	or	the	minimum	read	depth	per	sample.	
Striving	to	completely	eliminate	false	positives,	however,	would	decrease	
sensitivity,	especially	for	low-frequency	haplotypes.	For	instance,	41%	of	samples	
contained	at	least	one	erroneous	haplotype	for	one	of	the	two	amplicons.	In	42%	of	
these	cases,	the	most	common	erroneous	haplotype	contained	higher	read	support	
than	the	least	prevalent	true	haplotype	within	the	sample.	
	
Frequency	and	source	of	haplotype	errors	in	the	mock	samples	

The	PASEC	pipeline	contains	customized	filtration	and	error-correction	steps	
to	remove	erroneous	CSP	and	SERA2	haplotypes.	The	filtration	and	error-correction	
steps	in	PASEC	were	designed	to	address	three	main	sources	of	erroneous	
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haplotypes:	sequencing	errors,	chimeric	reads,	and	sample	contamination.	The	
frequency	of	these	error	types	and	the	efficacy	of	the	various	PASEC	filters	are	
discussed	in	more	detail	below.	
	
Nucleotide	sequence	errors:	The	majority	of	erroneous	haplotypes	are	expected	to	
result	from	sequence	errors	(nucleotide	substitutions	or	indels)	that	occur	during	
Illumina	sequencing	or	the	initial	rounds	of	PCR.	The	PASEC	pipeline	accounted	for	
these	errors	with	two	approaches:	(1)	hard	masking	of	error-prone	sequence	
regions	and	(2)	clustering	of	haplotypes	that	differed	by	a	single	nucleotide	and	had	
a	read	coverage	ratio	≥8:1.	Hard	masking	was	applied	to	two	homopolymeric	
regions	in	CSP	composed	of	9	and	6	poly-Ts.	In	the	raw	data,	erroneous	indels	
within	these	two	regions	were	detected	in	5.7%	and	1.2%	of	full-length	reads.			
While	true	indels	might	occur	in	these	sequences	in	natural	populations,	this	high	
artifactual	indel	rate	suggests	that	inference	of	variants	in	these	regions	would	be	
too	unreliable.	Compared	to	masking,	the	clustering	of	haplotypes	had	an	even	
greater	impact	on	reducing	nucleotide	errors:	57.0%	of	CSP	haplotypes	and	47.9%	
of	SERA2	haplotypes	were	eliminated	at	this	step.	

In	the	final	filtered	dataset,	approximately	half	of	the	erroneous	haplotypes	
(51%)	differed	from	a	true	haplotype	by	one	or	two	nucleotide	changes	and	were	
likely	the	result	of	Illumina	sequencing	or	PCR	errors.	As	discussed	above,	these	
haplotypes	were	supported	by	fewer	reads	than	true	haplotypes	(Figure	3B).	
	
Chimeric	reads:	Chimeric	reads	are	false	recombinant	haplotypes	generated	during	
PCR	amplification.	While	a	necessary	consideration	when	performing	amplicon	
sequencing,	their	overall	impact	on	the	mock	sample	analysis	was	minimal.	
Potential	chimeras	were	identified	with	the	isBimera	function	in	DADA2	[18],	which	
identifies	all	haplotypes	that	could	be	constructed	from	a	simple	combination	of	two	
other	haplotypes	within	the	same	sample.	This	analysis	flagged	7	CSP	and	16	SERA2	
samples	as	containing	a	total	of	36	chimeric	haplotypes.	Eleven	(31%)	of	the	flagged	
haplotypes	were	in	fact	true	haplotypes	known	to	be	within	the	given	sample.	
Further	analysis	showed	that	20	of	the	25	flagged	erroneous	haplotypes	were	only	
one	nucleotide	change	away	from	another	haplotype	in	the	sample,	and	the	
remaining	five	were	related	by	two	nucleotide	changes.	This	suggests	that	some	of	
these	haplotypes	may	have	resulted	from	PCR	or	sequencing	error	instead	of	
chimeric	read	formation.	Eighteen	(78%)	of	the	flagged	samples	had	total	read	
counts	under	200,	the	read	threshold	previously	used	with	the	PASEC	pipeline	[1].	
The	increased	stochasticity	associated	with	low-read	samples	may	explain	why	
these	haplotypes	were	not	merged	as	part	of	the	PASEC	sequencing	error	filter.	

Correctly	identifying	chimeric	reads	in	patient	samples	presents	an	
additional	challenge,	especially	in	regions	of	high	malaria	prevalence	where	
recombination	among	haplotypes	is	expected	to	be	common.	Of	the	50	most	
common	CSP	sequences	detected	in	sub-Saharan	Africa	[13],	38	(76%)	were	flagged	
as	chimeric	combinations	by	DADA2.	Researchers	must	therefore	consider	
additional	factors	like	population-level	haplotype	frequency	when	identifying	
chimeric	reads	in	patient	samples	[19,	20].		
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Cross-sample	or	environmental	contamination:	A	large	percentage	(49%)	of	
erroneous	haplotypes	had	no	evidence	of	chimerism	and	were	unlikely	to	have	
resulted	from	sequencing	errors,	as	they	were	≥3	nucleotide	changes	away	from	any	
true	haplotype	within	a	given	sample.	68%	of	these	haplotypes	were	present	in	
other	samples	from	the	same	MiSeq	run,	suggesting	cross-sample	or	environmental	
contamination.	The	remaining	haplotypes	occurred	only	once	in	the	whole	dataset	
and	may	have	resulted	from	environmental	contamination.	A	small	amount	of	cross-
sample	or	environmental	contamination	was	also	observed	in	the	negative	control	
samples	that	contained	either	water	(N=2)	or	human	DNA	(N=2).	These	four	
Plasmodium-free	samples	contained	5,	7,	16,	and	20	reads,	respectively.	All	of	these	
read	counts	fell	well	below	the	200-read	quality	threshold	previously	used	with	the	
PASEC	pipeline	[1].	
	
Comparison	of	PASEC	with	three	state-of-the-art	amplicon	analysis	tools	

The	performance	of	PASEC—a	pipeline	that	has	been	carefully	tuned	for	use	
with	the	CSP	and	SERA2	amplicons	in	P.	falciparum—was	compared	to	that	of	three	
analytical	tools	that	were	developed	to	be	applied	to	amplicons	from	any	genomic	
region:	DADA2	[18],	HaplotypR	[19],	and	SeekDeep	[20].	All	four	of	these	tools	were	
designed	to	detect	low-frequency	haplotypes	and	differentiate	unique	haplotypes	
with	single-nucleotide	resolution.	There	are,	however,	differences	in	the	analytical	
approaches.	For	instance	during	error	filtration,	PASEC	and	HaplotypR	rely	mainly	
on	variant	frequency	and	read	depth,	while	SeekDeep	incorporates	k-mer	
frequencies	and	base	quality	scores	and	DADA2	further	models	sequencer-specific	
error	likelihoods.	

While	all	these	tools	have	undergone	rigorous	testing,	no	previous	study	has	
focused	on	their	performance	under	extremely	low	parasite	densities.	Here,	each	
tool	was	applied	to	the	mock	samples	and	it	was	evaluated	on	(1)	the	proportion	of	
all	expected	haplotypes	that	were	observed	(sensitivity)	and	(2)	the	proportion	of	
observed	haplotypes	that	were	expected	(precision).	
	
Sensitivity	and	precision:	Overall,	the	four	tools	performed	comparably	well	on	the	
mock	sample	panel,	although	they	showed	more	variability	in	precision	than	in	
sensitivity	(Figure	5).	This	suggests	that	what	differs	most	between	pipelines,	is	
their	ability	to	filter	out	erroneous	haplotypes,	not	identify	correct	haplotypes.	For	
instance,	while	the	sensitivity	of	SeekDeep1x—the	SeekDeep	implementation	using	
only	one	technical	replicate—	was	comparable	to	the	other	four	pipelines,	its	
precision	was	substantially	lower,	driven	by	the	identification	of	a	high	number	of	
erroneous	haplotypes.	The	use	of	replicate	samples	in	SeekDeep2x	greatly	
decreased	the	tool’s	false	positive	rate,	increasing	precision	with	a	small	cost	in	
sensitivity.	

Each	tool’s	performance	varied	to	a	some	extent	across	amplicons.	This	
variation	was	not	consistent	across	pipelines,	however,	and	as	a	result,	the	
pipelines’	rank	order	for	precision	and	sensitivity	was	different	for	CSP	and	SERA2	
(Additional	File	1,	Figure	S4).	
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Figure	5.	Sensitivity	and	precision	of	five	analysis	pipelines	for	the	detection	of	
haplotypes	in	mock	samples.	(A)	Analysis	approaches	vary	most	in	their	precision.	(B)	
Performance	of	all	approaches	improves	when	only	considering	samples	that	had	at	least	
100	reads	for	an	individual	amplicon.	Displayed	data	includes	results	from	both	the	CSP	and	
SERA2	amplicons.	95%	confidence	intervals	were	estimated	with	1000	bootstrapped	data	
set	replicates.		
	
	
Effect	of	sample	read	depth	and	genome	copy	number:	All	five	pipelines	showed	
reduced	performance	at	low	read	depths	(<25	reads)	and	low	parasite	
concentrations	(<5	genomes/μl;	Additional	File	1,	Figure	S5).	In	particular,	
SeekDeep2x	performed	most	optimally	on	samples	with	at	least	100	reads	(Figure	
5B).	Parasite	genome	copy	number	also	affected	the	tools	success	at	resolving	any	
haplotype	within	a	sample.	Overall,	the	pipelines	reported	haplotypes	for	78%	
(HaplotypR),	81%	(DADA2),	84%	(SeekDeep2x),	89%	(PASEC),	and	96%	
(SeekDeep1x)	of	the	samples	(Additional	File	1,	Figure	S6A).	The	majority	of	the	
samples	returning	no	data	contained	Plasmodium	DNA	concentrations	under	5	
genomes/μl	Additional	File	1,	Figure	S6B).	
	
Analysis	of	samples	from	Sub-Saharan	Africa	with	the	four	tools	

All	four	tools	were	also	applied	to	the	newly	generated	amplicon	data	from	
95	previously	sampled	patient	infections	from	four	countries	in	sub-Saharan	Africa	
(Figure	1C)	[1].	These	biological	samples	were	PCR	amplified	and	sequenced	in	
duplicate,	yielding	190	independently	sequenced	samples.	With	the	exception	of	
SeekDeep2x,	the	technical	replicates	were	again	treated	as	separate	samples	in	the	
analysis	step.	All	tools	were	run	with	the	same	parameters	used	for	the	mock	
samples.	

The	tools	differed	in	the	total	number	of	unique	haplotypes	identified	across	
the	samples,	with	estimates	ranging	from	48	to	336	for	CSP	and	38	to	412	for	SERA2	
(Additional	File	1,	Figure	S7).	For	both	amplicons,	SeekDeep1x	and	DADA2	
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identified	substantially	more	haplotypes	than	the	other	approaches,	although	a	
large	percentage	of	these	haplotypes	were	found	at	within-sample	frequencies	
under	1%,	raising	the	possibility	that	they	were	artifacts.	

Consistent	with	previous	observations	in	sub-Saharan	Africa,	the	majority	of	
the	patient	samples	contained	multiple	P.	falciparum	clones.	COI	was	estimated	for	
each	sample	as	the	maximum	number	of	unique	haplotypes	identified	at	either	of	
the	two	amplicons.	With	the	exception	of	SeekDeep1x,	all	four	tools	produced	
similar	estimates	of	mean	COI	per	country	(Figure	6).	This	is	in	keeping	with	the	
observation	that	SeekDeep	showed	lower	precision	on	the	mock	samples	than	the	
other	tools	when	run	with	single	replicates	(Figure	5).		
	
	

	
	
	
Discussion	
	
	 Amplicon	sequencing	of	complex	haplotypic	regions	is	being	applied	to	an	
increasing	range	of	questions	in	malaria	research.	This	growth	of	amplicon-based	
applications	has	led	to	the	development	of	a	number	of	new	analytical	tools	and	
several	studies	investigating	the	possibilities	and	limitations	of	the	approach.	Here,	
the	performance	of	amplicon	sequencing	was	assessed	for	the	first	time	under	a	
scenario	of	extremely	low	parasite	densities	(1-200	genomes/μl).	The	results	show	
that	amplicon	sequencing	is	more	challenging	at	low	parasite	densities,	however,	
the	approach	was	still	able	to	detect	individual	haplotypes	present	at	concentrations	
of	5-10	genomic	copies/μl	with	77%	accuracy.	The	study	design	mimicked	samples	
that	could	be	obtained	from	asymptomatic	carriers,	a	population	segment	that	is	
receiving	increased	attention	in	regions	nearing	malaria	eradication.	The	ability	of	
Illumina-based	amplicon	sequencing	to	reliably	detect	Plasmodium	DNA	at	these	
low	concentrations	shows	that	it	has	a	limit	of	detection	on	par	with	standard	
nested	PCR	[27]	and	qPCR	[28]	methods.	
	 The	analysis	of	deep	coverage	from	highly	diverse	amplicon	sequences	incurs	
several	technical	challenges,	including	the	identification	of	sequencing	errors,	
chimeric	reads	and	sample	contaminants.	The	four	tools	compared	here—PASEC,	
DADA2,	HaplotypR,	and	SeekDeep—have	different	approaches	towards	error	
correction	yet	all	performed	comparably	well	on	the	set	of	mock	samples	and	
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Figure	6.	Mean	COI	estimates	
for	four	sub-Saharan	African	
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provided	similar	COI	results	for	a	panel	of	patient	samples.	PASEC’s	high	
performance	was	the	result	of	extensive	pilot	work	and	hand-tuning	for	use	with	the	
amplicons	CSP	and	SERA2,	for	instance	the	hard	masking	of	difficult-to-sequence	
homopolymer	runs	in	the	CSP	amplicon	and	the	a	priori	identification	of	indels	in	
SERA2.	As	a	result	of	this	customization,	it	was	the	only	tool	to	identify	a	naturally	
occurring	three	nucleotide	deletion	in	SERA2	that	is	present	in	Africa.	Importantly,	
however,	this	study	shows	that	other	tools	also	provide	robust	results	without	
upfront	knowledge	of	an	individual	amplicon.	In	addition,	methodological	
developments	are	still	underway.	In	particular,	work	on	the	identification	of	sample	
contamination	may	lead	to	lower	false	positive	rates	in	future	studies	[29,	30].	

As	expected,	the	accuracy	of	amplicon	sequencing	is	reduced	on	samples	
with	low	parasite	densities,	regardless	of	the	applied	analysis	tool.	Stochasticity	at	
the	level	of	sample	preparation	doubtless	impacts	the	approach’s	ability	to	quantify	
haplotypes	at	low	concentrations.	In	addition,	overall	error	rates	are	higher	in	
samples	with	low	parasite	density	and	low	read	counts.	Researchers	can	therefore	
take	steps	to	lower	false	positive	rates	in	these	challenging	classes	of	samples.	
Erroneous	haplotypes	are	generally	supported	by	fewer	reads	(Figure	3B)	and	
samples	with	lower	read	counts	have	a	higher	proportion	of	false	haplotypes	
(Additional	File	1,	Figure	S3).	It	should	therefore	be	standard	practice	to	raise	read	
thresholds	when	analyzing	low	parasitemia	or	low	coverage	samples.	
	
	
Conclusion	
	

Amplicon	sequencing	is	a	versatile	approach	for	exploring	a	range	of	intra-
host	questions	in	malaria	research.	Cost-effective	and	scalable	for	use	with	
thousands—or	tens	of	thousands—of	samples	in	high-throughput	settings,	its	use	
will	likely	increase	in	the	coming	years.	As	shown	here,	amplicon	sequencing	can	be	
applied	to	samples	with	both	low	and	high	parasite	densities,	although	the	
consistent	detection	of	parasite	clones	with	very	low	prevalence	(<5	genomes/μl)	is	
challenging.	Even	at	low	densities,	amplicon	sequencing	retained	some	information	
on	haplotype	ratio,	allowing	major	and	minor	clones	to	be	distinguished	within	73%	
of	the	infections.	Currently,	several	tools	exist	for	the	general	analysis	of	long,	multi-
variant	amplicons.	Three	of	these	versatile	tools	(DADA2,	HaplotypR,	and	SeekDeep)	
showed	similar	performance	compared	to	PASEC,	a	method	specifically	developed	
for	use	with	the	two	amplicons	sequenced	here:	CSP	and	SERA2.	While	all	tools	
performed	well,	final	choice	of	analysis	method	should	take	into	account	aspects	of	
study	design	(such	as	the	inclusion	of	technical	PCR/sequencing	replicates),	the	
read	coverage	of	the	samples,	and	expectations	regarding	the	targeted	Plasmodium	
genotypes	(for	instance,	the	potential	presence	of	indels).	Regardless	of	the	tool	
used,	future	studies	involving	samples	with	parasitemias	<5	parasites/μl	will	likely	
benefit	from	more	stringent	read-count	filtration	as	accuracy	was	consistently	lower	
for	these	samples.	
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Additional	Files	
	
Additional	File	1:	Supplementary	Figures	and	Tables	
	
	
Additional	File	2:	Supplementary	PASEC	Documentation	
	
	
Additional	File	3:	Analysis	Pipeline	Files	for	PASEC,	DADA2,	HaplotypR,	and	
SeekDeep	
(zip	file)	
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