Abstract
Synchronized states are marked by large-amplitude low-frequency oscillations in the cortex. These states can be seen during quiet waking or slow-wave sleep. Within synchronized states, previous studies have noted a plethora of different types of activity, including delta oscillations (0.5-4 Hz) and slow oscillations (<1 Hz) in the cortex and large- and small-irregular activity in the hippocampus. However, it is not still fully characterized how neural populations contribute to the synchronized state. Here we apply independent component analysis (ICA) to parse which populations are involved in different kinds of cortical activity, and find two populations that alternate throughout synchronized states. One population broadly affects cortical deep layers, and is associated with larger amplitude slower cortical activity. The other population exhibits theta-frequency oscillations that are not easily observed in raw field potential recordings. These theta oscillations apparently come from below the cortex, suggesting hippocampal origin, and are associated with smaller amplitude faster cortical activity. Relative involvement of these two alternating populations may indicate different modes of operation within synchronized states.