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Abstract 8 

The Diagnostic and Statistical Manual of Mental Disorders (DSM) is the standard for diagnosing 9 
psychiatric disorders in the United States. However, evidence has suggested that symptoms in 10 
psychiatric disorders are not restricted to the boundaries between DSM categories, implying an 11 
underlying latent transdiagnostic structure of psychopathology. Here, we applied an importance-12 
guided machine learning technique for model selection to item-level data from self-reported 13 
instruments contained within the Consortium for Neuropsychiatric Phenomics dataset. From 578 14 
questionnaire items, we identified a set of features which consisted of 85 items that were shared 15 
across diagnoses of schizophrenia (SCZ), bipolar disorder (BD), and attention deficit/hyperactivity 16 
disorder (ADHD). A classifier trained on the transdiagnostic features reliably distinguished the 17 
patient group as a whole from healthy controls (classification AUC = 0.95) and only 10 items were 18 
needed to attain the performance level of AUC being 0.90. A sum score created from the items 19 
produced high separability between patients and healthy controls (Cohen’s d = 2.85), and it 20 
outperformed predefined sum scores and sub-scores within the instruments (Cohen’s d ranging 21 
between 0.13 and 1.21). The transdiagnostic features comprised both symptom domains (e.g. 22 
dysregulated mood, attention deficit, and anhedonia) and personality traits (e.g. neuroticism, 23 
impulsivity, and extraversion). Moreover, by comparing the features that were common across the 24 
three patient groups with those that were most predictive of a single patient category, we can describe 25 
the unique features for each patient group superimposed on the transdiagnostic feature structure. 26 
Overall, our results reveal a latent transdiagnostic symptom/behavioral phenotypic structure shared 27 
across SCZ, BD, and ADHD and present a new perspective to understand insights offered by self-28 
report psychiatric instruments. 29 
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1 Introduction 33 

The Diagnostic and Statistical Manual of Mental Disorders (DSM) provides a symptom-based 34 
taxonomy which serves to help clinicians classify various clusters of symptoms and abnormal 35 
behaviors into distinct categories of disorders. The uniformity of diagnostic criteria in DSM serves to 36 
effectively index psychiatric disorders but does not provide a data-driven framework within which to 37 
understand the shared and unique features across disorders. For example, dimensionality and 38 
comorbidity are pervasive in terms of symptoms across different DSM categories (Kessler et al., 39 
2005; Markon, 2009; Krueger and Markon, 2011). Such dimensionality manifests as heterogeneity in 40 
symptom clusters within disease categories defined by the DSM and is exemplified across DSM 41 
categories (Kessler et al., 2007). In the area of anxiety and mood disorders, more than 50% of 42 
individuals are diagnosed as having more than a single category of disorders according to the DSM at 43 
a given time (Grisanzio et al., 2017). Similarly, about 50% of bipolar disorder patients exhibit 44 
schizophrenia-like psychotic symptoms during illness episodes (Coryell et al., 2001; Keck et al., 45 
2003). The presence of such psychotic symptoms can be mood-incongruent (Pacheco et al., 2010) 46 
and can occur outside of illness episodes (Pope and Lipinski, 1978; Abrams and Taylor, 1981). These 47 
observations highlight the likelihood of a latent trans-diagnostic dimensional structure that spans 48 
multiple disorders (Krueger and Markon, 2006) and underscore the importance of understanding 49 
patients at the symptom-level, rather than simply at a diagnostic level, to create more effective 50 
treatments. 51 

Studies have attempted to uncover the latent structure of psychopathology, between or within 52 
categories, through multimodal assessments that measure symptoms, behavior, physiology, imaging, 53 
and genetics. One such example is the large-scale study conducted by the UCLA Consortium for 54 
Neuropsychiatric Phenomics (CNP), which seeks to identify links among phenotypic data, imaging, 55 
and genetics (Poldrack et al., 2016). Overall, genetic studies have pointed to the heritability of major 56 
neuropsychiatric disorders (Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; 57 
Hamshere et al., 2013; Larsson et al., 2013; The Brainstorm Consortium et al., 2017; Bipolar 58 
Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium et al., 2018; 59 
Gandal et al., 2018) as well as the genetic commonality amongst disorders (Purcell et al., 2009; Lotan 60 
et al., 2014) such as schizophrenia (SCZ), bipolar disorder (BD), and attention deficit/hyperactivity 61 
disorder (ADHD). Recent data-driven studies based on symptom and behavior have focused on 62 
classifying and subtyping patients within a single diagnostic category (Lamers et al., 2012; van Loo 63 
et al., 2012; Georgiades et al., 2013; Doshi-Velez et al., 2014; van Hulst et al., 2014; Costa Dias et 64 
al., 2015; Geisler et al., 2015; Sun et al., 2015; Drysdale et al., 2016; Gheiratmand et al., 2017). 65 
Several of these studies identified important shared abnormal features associated with the latent 66 
transdiagnostic structure across major psychiatric disorders.  67 

Despite recent advancements, several unresolved issues still remain in the field. First, the clinical 68 
utility of using the features identified in the above-mentioned studies to reliably classify patients 69 
remains an open question. Emerging studies have used unsupervised machine learning approaches, 70 
such as clustering and dimensionality reduction algorithms, to uncover the transdiagnostic structure 71 
across disorders (Grisanzio et al., 2017; Xia et al., 2018). However, the lack of ground truth on how 72 
patients should be assigned to an identified cluster/subtype limits the application of these insights. 73 
Second, despite recent genetic studies documenting shared risk factors among SCZ, BD, and ADHD 74 
(Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; Larsson et al., 2013), a trans-75 
diagnostic dimensional structure shared across the three disorders has not been discovered in other 76 
modalities such as neuroimaging and clinical characteristics. While a substantial body of 77 
neuroimaging studies have focused on investigating shared etiology between SCZ and BD (see e.g., 78 
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Rashid et al., 2014), studies that further incorporated ADHD are scarce. Third, how well different 79 
feature modalities can be used as markers to reliably identify psychiatric patients in a clinical setting 80 
has not been systematically compared in prior literature. Studies typically reported systematic 81 
deviations within a single feature modality among psychiatric patients (Buckholtz and Meyer-82 
Lindenberg, 2012; Goodkind et al., 2015; Sha et al., 2018) and the relative predictive power of 83 
various feature modalities in transdiagnostic scenarios remains unknown. 84 

In the current study, we addressed the above issues by taking a patient-focused approach to identify 85 
transdiagnostic features that are shared across SCZ, BD, and ADHD. Following the definition used in 86 
the recent literature, we used the term “transdiagnostic” to denote features that extend beyond a 87 
single DSM category. Using an importance-guided model selection approach, the supervised 88 
machine learning framework used in this study allowed us to evaluate the performance of the 89 
transdiagnostic features and hence to iteratively identify the optimal set of features required to 90 
distinguish the patient group from healthy controls (HCs). Based on the CNP dataset, we used 91 
multiple data modalities including the behavioral/symptom phenotypes (from here on referred to as 92 
phenotypes) defined in self-reported instruments and neuroimaging data (sMRI and fMRI) to obtain 93 
the optimal transdiagnostic features. Because the self-reported instruments were administered to 94 
acquire a rich set of phenotypic information rather than providing diagnoses, our study also sought to 95 
establish the clinical utility of these phenotypic features in distinguishing patients from HCs. In 96 
addition, the clinical utility of the markers identified in each feature modality was systematically 97 
evaluated by comparing the performance of models trained on each modality. We then report these 98 
shared features and discuss the identified latent psychopathological structure across these psychiatric 99 
disorders. 100 

 101 

2 Materials and Methods 102 

2.1 The CNP dataset 103 

We utilized the openly available dataset from the CNP LA5c Study conducted at the University of 104 
California, Los Angeles (the CNP dataset: https://openneuro.org/datasets/ds000030/versions/00016). 105 
Detailed information on the CNP study/dataset can be found in (Poldrack et al., 2016). The CNP 106 
dataset contains a variety of data modalities. In this study, we focused on identifying shared 107 
transdiagnostic features based on the item-level data from self-reported instruments and 108 
neuroimaging data (including both sMRI and resting-state fMRI). The dataset in this study includes 109 
272 subjects, of which 50 are diagnosed with schizophrenia (SCZ), 49 with bipolar disorder (BD), 110 
and 43 with attention deficit/hyperactivity disorder (ADHD). The remaining 130 subjects are age-111 
matched healthy controls (HC). The diagnoses were given by following the Diagnostic and Statistical 112 
Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR; American Psychiatric 113 
Association, 2000) and were based on the Structured Clinical Interview for DSM-IV (First et al., 114 
2002). To better characterize ADHD related symptoms, the Adult ADHD Interview (Kaufman et al., 115 
2000) was further used as a supplement. Out of all subjects, 1 had incomplete phenotype data from 116 
the instruments used in this study, 10 had missing structural MRI (sMRI) data, and 10 had missing 117 
resting-state functional MRI (fMRI) data. Fifty-five (55) subjects had an aliasing artifact in their 118 
sMRI data potentially caused by the headset used in the scanner, whereas 22 subjects had errors in 119 
the structural-functional alignment step during MRI preprocessing. These subjects were excluded 120 
from the corresponding modeling analyses performed in this study. The final number of subjects 121 
included in each modeling analysis is as follows: phenotype data, 271; sMRI, 206; fMRI, 229; 122 
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sMRI+fMRI, 178; phenotype+sMRI, 205; phenotype+fMRI, 228; phenotype+sMRI+fMRI: 177. The 123 
demographic information from the subjects are given in Table 1.  124 

2.2 Phenotype data 125 

It should be noted that we used the term phenotype to broadly refer to behavioral and symptom 126 
measures characterized by the clinical instruments. A total of 20 clinical instruments were 127 
administered in the CNP dataset to capture a wide range of phenotype data including specific 128 
behavioral traits and symptom dimensions (Poldrack et al., 2016). These instruments are either 129 
clinician-rated or self-reported. While the clinician-rated questionnaires only covered relevant patient 130 
groups, 13 self-reported clinical scales were given to all three patient groups as well as the heathy 131 
controls. We therefore selected to only use subjects’ answers to each of the individual questions 132 
coming from these 13 self-reported scales as input features to our models because these scales 133 
captured phenotypic features across all diagnostic groups as well as the HCs. It should be noted that 134 
these 13 self-reported scales were not used to provide the official diagnosis in the CNP data since 135 
they are not designed for such purposes. Specifically, the 13 self-reported scales used in this study 136 
are: Chapman Social Anhedonia Scale, Chapman Physical Anhedonia Scale, Chapman Perceptual 137 
Aberrations Scale, Hypomanic Personality Scale, Hopkins Symptom Checklist, Temperament and 138 
Character Inventory, Adult ADHD Self-Report Scale v1.1 Screener, Barratt Impulsiveness Scale, 139 
Dickman Functional and Dysfunctional Impulsivity Scale, Multidimensional Personality 140 
Questionnaire – Control Subscale, Eysenck’s Impulsivity Inventory, Scale for Traits that Increase 141 
Risk for Bipolar II Disorder, and Golden and Meehl’s Seven MMPI Items Selected by Taxonomic 142 
Method. Together, these self-reported scales cover domains including symptoms, personality traits, 143 
positive and negative affect, cognition, as well as sensory and social processing. The scores for 144 
known sum and sub-scores within these self-reported instruments for each patient group as well as 145 
the HCs are reported in Supplementary Table 1. 146 

2.3 MRI data acquisition parameters 147 

MRI data were acquired on one of two 3T Siemens Trio scanners both housed at the University of 148 
California, Los Angeles. The sMRI data used in this study are T1-weighted and were acquired using 149 
a magnetization-prepared rapid gradient-echo (MPRAGE) sequence with the following acquisition 150 
parameters: TR = 1.9 s, TE = 2.26 ms, FOV = 250 mm, matrix = 256 x 256, 176 1-mm thick slices 151 
oriented along the sagittal plane. The resting-state fMRI data contain a single run lasting 304 s. The 152 
scan was acquired using a T2*-weighted echoplanar imaging (EPI) sequence using the following 153 
parameters: 34 oblique slices, slice thickness = 4 mm, TR = 2 s, TE = 30 ms, flip angle = 90°, matrix 154 
size 64 x 64, FOV = 192 mm. During the resting-state scan, subjects remained still and relaxed inside 155 
the scanner, and kept their eyes open. No specific stimulus or task was presented to them. 156 

2.4 MRI preprocessing 157 

2.4.1 sMRI 158 

Structural MRI preprocessing was implemented using Freesurfer’s recon-all processing pipeline 159 
(http://surfer.nmr.mgh.harvard.edu/). Briefly, the T1-weighted structural image from each subject 160 
was intensity normalized and skull-stripped. The subcortical structures, white matter, and ventricles 161 
were segmented and labeled according to the algorithm described in (Fischl et al., 2002). The pial 162 
and white matter surfaces were then extracted and tessellated (Fischl et al., 2001), and cortical 163 
parcellation was obtained on the surfaces according to a gyral-based anatomical atlas which partitions 164 
each hemisphere into 34 regions (Desikan et al., 2006).  165 
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2.4.2 Resting-state fMRI 166 

Resting-state fMRI preprocessing was implemented in AFNI (http://afni.nimh.nih.gov/afni). 167 
Specifically, the first 3 volumes in the data were discarded to remove any transient magnetization 168 
effects in the data. Spikes in the resting-state fMRI data were then removed and all volumes were 169 
spatially registered with the 4th volume to correct for any head motion. The T1w structural image was 170 
deobliqued and uniformized to remove shading artifacts before skull-stripping. The skull-stripped 171 
structural image was then spatially registered with motion corrected fMRI data. The fMRI data were 172 
further spatially smoothed using a 6-mm FWHM Gaussian kernel and converted to percent signal 173 
change. Separately, the Freesurfer-generated aparc+aseg image from sMRI preprocessing was also 174 
spatially registered with and resampled to have the same spatial resolution of the BOLD image. 175 
Based on this, eroded white matter and ventricle masks were created, from which nuisance tissue 176 
regressors were built based on non-spatially smoothed fMRI data to model and remove variances that 177 
are not part of the BOLD signal. Specifically, we used the ANATICOR procedure (Jo et al., 2010), 178 
where a locally averaged signal from the eroded white matter mask within a 25-mm radius spherical 179 
region of interest (ROI) centered at each gray matter voxel was used to create a voxel-wise local 180 
estimate of the white matter nuisance signal. This local estimate of the white matter nuisance signal, 181 
along with the estimated head motions and average signal from the ventricles were detrended with a 182 
4th order polynomial and then regressed out from the fMRI data. Finally, the clean resting-state fMRI 183 
data was spatially normalized to the MNI template and resampled to have 2 mm isotropic voxels. 184 
Note that in our preprocessing pipeline, the spatial normalization was performed after regressing out 185 
nuisance signals. This allowed nuisance tissue regression to be performed in each subject’s native 186 
space to achieve a more accurate removal of these signals. 187 

2.5 Feature extraction 188 

We extracted measures from 3 data modalities as features: phenotype data from self-reported 189 
instruments, measures derived from the sMRI data, and functional correlations based on resting-state 190 
fMRI data. For phenotype features from self-reported instruments, we directly used subjects’ 191 
responses from a total of 578 questions from the above listed 13 instruments. Responses from non-192 
True/False type questions were normalized to have a range of between 0 and 1 to match those from 193 
True/False type questions. For sMRI features, we specifically used 1) the volume of subcortical 194 
structures generated by Freesurfer’s subcortical volumetric segmentation, and 2) the area, thickness, 195 
and volume of cortical brain regions estimated from Freesurfer’s surface-based analysis pipeline. For 196 
resting-state fMRI features, we first parceled the brain into 264 regions according to the atlas 197 
proposed in (Power et al., 2011). A 5-mm radius spherical ROI was seeded according to the MNI 198 
coordinates of each brain region specified in the atlas. Second, the clean resting-state BOLD time 199 
series from all voxels within a given 5-mm radius spherical ROI were averaged to create the 200 
representative time series for the brain region. Third, functional connectivity between ROIs was 201 
estimated via the Pearson’s correlation coefficient between the average time series from all pairs of 202 
brain regions. This produced a 264-by-264 correlation matrix, from which 34,716 are unique 203 
correlations between two distinct ROIs and were used as input features to the models. 204 

2.6 Model fitting and feature importance weighting 205 

The primary goals of machine learning analyses in this study were two-fold: 1) to identify important 206 
features shared across a transdiagnostic patient group and 2) to evaluate the clinical utility of the 207 
transdiagnostic features via classifiers that can reliably separate the patient group as a whole from 208 
healthy controls. To achieve these goals, we built classifiers based on the logistic regression model as 209 
implemented in the scikit-learn toolbox to classify patients from HCs. To identify predictive 210 
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transdiagnostic features embedded within each feature modality, separate logistic regression models 211 
were independently trained using each of the above extracted feature modalities (i.e., item-level 212 
phenotype data, sMRI measures, and resting-state fMRI correlations) as inputs and their 213 
performances were evaluated in each of the transdiagnostic scenarios. Combinations of 2 and 3 214 
feature modalities were also used as classifiers’ inputs and their performances were evaluated in the 215 
same fashion.  216 

Because the number of features we extracted was relatively large compared to the sample size in 217 
CNP data, an elastic net regularization term (Zou and Hastie, 2005) was added in all of our logistic 218 
regression models to prevent overfitting. The use of elastic net regularization in our models also 219 
enabled feature selection as the regularization induces sparse models via the grouping effect where 220 
all the important features will be retained and the unimportant ones set to zero (Zou and Hastie, 2005; 221 
Ryali et al., 2012). This allowed us to identify predictive features that are shared across multiple 222 
patient categories.  223 

We adopted the following procedure to determine the best regularization parameters. First, the input 224 
data were randomly partitioned into a development set and an evaluation set. The development set 225 
contains 80% of the data upon which a grid search with 3-fold cross validation procedure was 226 
implemented to determine the best regularization parameters. Then the model with the best 227 
regularization parameters was further tested on the remaining 20% of evaluation set. All features 228 
were standardized to have zero mean and unit variance within the training data and the mean and 229 
variance from the training data were used to standardize the corresponding test data. The entire 230 
process was implemented 100 times. The following metrics were used to quantify the model 231 
performances: area under the receiver operating characteristics curve (AUC), accuracy, sensitivity, 232 
and specificity. The mean and standard deviation of the above metrics over the 100 evaluation sets 233 
were reported. 234 

From the above models, the predictive power of each feature is assessed via the weights of the 235 
logistic regression model in our transdiagnostic classifiers. For each feature, we calculated its 236 
corresponding standardized model weight (mean model weight divided by the standard deviation) 237 
across the 100 model implementations as the proxy for feature importance. Features with large 238 
importance values from our transdiagnostic classifiers are potentially symptoms, traits, and 239 
neuropathological mechanisms shared across patient groups but are distinct from healthy controls. 240 

To identify the set of most predictive transdiagnostic features within a given data modality, we used 241 
the following feature importance-guided sequential model selection procedure. Specifically, we first 242 
rank ordered the features in the classifiers according to their standardized model weights. Next, a 243 
series of truncated models was built such that each model only takes the top k most predictive 244 
features as inputs to perform the same classification tasks. The model weights and the best 245 
regularization parameters for each truncated model were estimated via the 3-fold cross validation 246 
procedure within the development set. We let k range from the top 1 most predictive feature to all 247 
available features in steps of 1 for phenotype features, sMRI features, and the combination of the two 248 
feature sets. For any feature or feature combinations involving fMRI correlations, because of the 249 
significantly increased feature dimension, the k’s were chosen from a geometric sequence with a 250 
common ratio of 2 (i.e., 1, 2, 4, 8, 16, …). The sequential model selection procedure was 251 
implemented 10 times for each feature set. Model performances based on the evaluation set were 252 
obtained for each truncated model and were evaluated as a function of the number of top features (k) 253 
included in each truncated model to determine the optimal feature set.  254 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2018. ; https://doi.org/10.1101/453951doi: bioRxiv preprint 

https://doi.org/10.1101/453951
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transdiagnostic features for psychiatric disorders 

 
7 

2.7 Statistical analyses 255 

To statistically examine whether the models’ performances are significantly above chance level, we 256 
performed a random permutation test where labels in the training data (e.g., HC vs. Patients) were 257 
shuffled 100 times and truncated models based on the best set of features were trained on these label-258 
shuffled data using exactly the same approach as described above (Ojala and Garriga, 2009). The 259 
performances from the 100 models were used to construct the empirical null distribution against 260 
which the performance of the best truncated models based on the actual unshuffled data was then 261 
compared. This random permutation test procedure also helped us to determine whether overfitting 262 
occurred during training. 263 

To evaluate differences in sum scores obtained from the top features between HC and patients, we 264 
used two sample t-tests on the sample means since the sum scores are quasi normally distributed. 265 
Effect sizes were measured using Cohen’s d, which captures the shift in mean scaled by the data’s 266 
standard deviation. Tests on the difference in AUC between the full model and the best truncated 267 
model were carried out via the Wilcoxon’s rank-sum test. 268 

 269 

3 Results 270 

In total, we trained classifiers to distinguish HCs from the patient group as a whole based on 7 sets of 271 
features by either using each individual feature modality (self-reported instruments, sMRI, and fMRI) 272 
or combinations of 2 or 3 feature modalities (e.g., instruments+sMRI+fMRI). The classifiers’ 273 
performances using each of the 7 feature sets for the HC vs. Patients classifier are reported in Table 274 
2. Overall, classifiers trained on feature sets involving phenotypical data from self-reported 275 
instruments (i.e., scales and scales + MRI feature sets) outperformed those only trained on MRI 276 
features (sMRI, fMRI, and sMRI+fMRI). For classifiers using features involving these instruments, 277 
the mean AUC ranged from 0.83 to 0.89 (mean accuracy: 0.77 – 0.91), whereas the mean AUC 278 
ranged from 0.56 to 0.59 (mean accuracy: 0.58 – 0.61) for MRI feature sets.  279 

Next, to identify the optimal set of transdiagnostic features shared across the CNP patient population 280 
that are highly distinct from HC, we examined the performance measures from the best truncated 281 
classification models during sequential model selection (Figure 1 and Table 2; see Supplementary 282 
Fig. 1 for AUC as a function of input feature dimensions). Significantly improved performances were 283 
obtained from the best truncated classification models compared with the corresponding models 284 
using the full sets of features (all p’s < 0.05, FDR corrected, as assessed by the rank-sum test; Table 285 
2). The AUCs from all feature sets were also significantly above chance level as assessed via the 286 
random permutation test (all p’s < 0.01, FDR corrected; Supplementary Fig. 2). Additionally, the 287 
computational time for the importance guided sequential model selection method grew linearly as the 288 
number of features increased, which is highly efficient compared to the brute force feature selection 289 
procedure (exponential time complexity; Supplementary Fig. 3).  290 

The truncated classification model involving data from the self-reported instruments alone had high 291 
performance of distinguishing patients from HCs with the mean AUC being 0.95 (accuracy: 0.88; 292 
sensitivity: 0.87; specificity: 0.88; Figure 1; Table 2). This truncated model selected 85 items as the 293 
most predictive features from the total of 578 items contained in the 13 self-reported instruments. 294 
Moreover, only 10 items were needed to achieve an AUC of 0.90 (accuracy: 0.81; sensitivity: 0.79; 295 
specificity: 0.84), suggesting that a concise scale can be constructed potentially for screening 296 
purposes. The model involving data from self-reported instruments performed better compared to 297 
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those using feature sets based solely on MRI (mean AUC ranging from 0.77 to 0.87; mean accuracy 298 
ranging from 0.71 to 0.85). Combining MRI features with data from instruments only slightly 299 
improved the model performance (mean AUC being 0.96 – 0.98) (Figure 1; Table 2). Taken 300 
together, this indicates that the phenotypical data captured by the 13 self-reported instruments contain 301 
a set of transdiagnostic features common across the patient populations studied while distinguishing 302 
them from the healthy controls. We hence focused on discussing these transdiagnostic phenotypical 303 
features below. 304 

It should be noted that small yet systematic differences exist between patients and HCs in the CNP 305 
dataset despite the effort to fully counterbalance subjects’ demographic information during 306 
recruiting. From the demographic information listed in Table 1, a statistical test on age showed that 307 
the median age for patients were significantly higher than HCs (Mann-Whitney’s U test: p = 0.001). 308 
The gender ratio on the other hand did not significantly differ between patients and HCs (Z-test on 309 
proportions: p = 0.14). Patients had significantly lower years of education compared with HCs 310 
(Mann-Whitney’s U test: p < 0.001). The racial distribution also showed a significant difference 311 
between patients and HCs (χ2-test: p = 0.004). To ensure that the results were not mainly driven by 312 
differences in demographics, we built classifiers based solely on these demographic variables. The 313 
mean test AUC on the evaluation set for the best model was 0.71 (SD = 0.06), which was 314 
substantially lower than the performance of both the full model and the best truncated model based 315 
on the self-reported instruments alone (mean AUCs being 0.83 and 0.95, respectively). Additionally, 316 
despite mixing the demographic variables with the self-reported instrument items slightly improved 317 
model performance compared to those obtained from instruments alone (mean AUC for truncated 318 
model using demographics and instruments: 0.98), the highest-ranking demographic variable ranked 319 
only 43rd among all instrument items and demographic features. Taken together, these results suggest 320 
that our models were unlikely to be mainly driven by demographic differences. 321 

A simple sum score constructed by adding up an individual’s responses to the 85 most predictive 322 
items (with item responses having negative model coefficients reversed) demonstrated high 323 
separability between healthy controls and patients (Cohen’s d = 2.85; test on the difference in sample 324 
mean: t = 10.27, p < 0.001; Figure 2A). The separability based on the top 10 most predictive items 325 
(corresponding AUC = 0.90) was also very high (Cohen’s d = 2.16; test on the difference in sample 326 
mean: t = 18.13, p < 0.001). The sum scores had higher separability than other known sum 327 
scores/sub-scores of the self-reported instruments (Figure 2C & 2D; Supplementary Table 2), 328 
indicating the items selected by the sequential model selection procedure do not adhere to known 329 
dimensional structures within the instruments. Calculating the sum score for each individual patient 330 
category showed that all 3 patient categories had elevated sum scores compared to healthy controls (t 331 
> 5.671, p < 0.001); yet, the difference between the patient categories was insignificant (t < 1.940, p 332 
> 0.056; Figure 2B). This suggests that the 85 items captured transdiagnostic phenotypic features 333 
shared across the patient groups as a whole rather than driven by a single patient category.  334 

Figure 3 illustrates the proportion of questionnaire items selected from each instrument that were 335 
included in transdiagnostic set of phenotypic features of the best truncated model (i.e. the one with 336 
the highest AUC). Items from all 13 instruments were selected to be among the top features by the 337 
classifiers. Overall, these instruments measure a wide range of phenotype and symptom domains 338 
encompassing personality traits, positive and negative affect (reward/anhedonia, fear, and anxiety), 339 
cognition (attention, response inhibition), sensory processing (perceptual disturbances), and social 340 
processing. While all items included among the set of transdiagnostic phenotypic features jointly 341 
formed a highly predictive set to distinguish patients from healthy controls, the Temperament and 342 
Character Inventory (TCI) contributed the largest proportion of items in the set of transdiagnostic 343 
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features. The proportion of TCI items selected among the 85 most predictive items (32.9%) 344 
significantly exceeded the proportion of all TCI items among all 578 items from the 13 instruments 345 
(24.0%; p = 0.04 as assessed via the Z-test). The disproportionately high number of TCI items 346 
indicates that certain personality traits are strong predictors of shared psychopathology regarding 347 
SCZ, BD, and ADHD.  348 

To better understand which features strongly predicted psychopathology, we focused on the top 20 349 
items that contributed the largest magnitude of model weights. We identified the specific 350 
behavioral/symptom phenotypes characterized by each item and then grouped the items accordingly. 351 
Among personality traits, the top transdiagnostic phenotypes included neuroticism, extraversion, and 352 
impulsivity (Figure 4A); whereas the top symptom domains consisted of mood dysregulation, 353 
inattention, hyperactivity/agitation, and social anhedonia and apathy. In addition, the importance of 354 
religion was also a shared feature across patients (Figure 4A; see Supplementary Table 4 for item 355 
grouping). We next compared the most predictive transdiagnostic features with those most predictive 356 
of a single patient category from healthy controls to identify category-specific differences (Figure 357 
4B-D; see Supplementary Table 3 and Supplementary Fig. 4 for classification results between HC 358 
and each patient category). SCZ patients exhibited additional features including perceptual 359 
aberration, physical anhedonia, and psychological distress that are not among the top transdiagnostic 360 
features. On the other hand, extraversion, impulsivity, inattention, and religion which were present in 361 
the transdiagnostic features set were not among the most predictive features for SCZ (Figure 4B and 362 
Supplementary Table 5). By contrast, transdiagnostic features overlapped with BD patient-specific 363 
features. Nonetheless, BD patients exhibited additional features of increased energy, psychological 364 
distress and physical anhedonia; yet psychomotor agitation and neuroticism contributed little 365 
predictive value (Figure 4C, Supplementary Table 6). ADHD patients were effectively classified 366 
by additional features such as indecision and physical anhedonia, with little predictive contribution 367 
from apathy, neuroticism, and religion (Figure 4D, Supplementary Table 7).  368 

 369 

4 Discussion 370 

In this study, using self-reported instruments provided in the CNP dataset, we generated predictive 371 
models to identify a set of transdiagnostic phenotypic features that were shared across SCZ, BD, and 372 
ADHD. These models were quantified for performance (e.g. accuracy, sensitivity and specificity) and 373 
were interpretable along dimensions of personality traits and symptom domains. We found the set of 374 
85 items is highly predictive of the patient group as a whole from HCs. To our surprise, a compact 375 
model of only 10 items is sufficient to achieve a performance AUC value of 0.90. Further, we 376 
demonstrated that a simple sum score can be calculated to enable high separability between patients 377 
and HCs. Our importance-guided sequential model selection approach revealed which phenotypical 378 
features were shared across transdiagnostic patient groups. Within each patient population, we also 379 
show which abnormal psychopathological personality traits and symptom domains deviated from the 380 
transdiagnostic classifier. Importantly, many of these features are consistent with established clinical 381 
intuition. Taken together, this study offers new perspectives on the shared psychopathology across 382 
SCZ, BD, and ADHD and underscores the potential of creating a short transdiagnostic screening 383 
scale based on the selected items.   384 

The application of machine learning to systematically search for consistent patterns in clinical data 385 
across disease categories defined in DSM is an emerging trend in the field of computational 386 
psychiatry (Bzdok and Meyer-Lindenberg, 2017). Nonetheless, our approach to identifying 387 
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transdiagnostic features in psychiatric disorders differs both conceptually and methodologically from 388 
previous studies. Numerous investigators have focused on patient subtyping within a given disorder 389 
(Rhebergen et al., 2011; Lamers et al., 2012; van Loo et al., 2012, 2014; Georgiades et al., 2013; 390 
Brodersen et al., 2014; Doshi-Velez et al., 2014; Lewandowski et al., 2014; van Hulst et al., 2014; 391 
Veatch et al., 2014; Costa Dias et al., 2015; Geisler et al., 2015; Sun et al., 2015; Clementz et al., 392 
2016; Drysdale et al., 2016; Mostert et al., 2018) or have mined transdiagnostic symptom dimensions 393 
underlying various psychiatric disorders (Grisanzio et al., 2017; Elliott et al., 2018; Xia et al., 2018a, 394 
b). Among studies examining the transdiagnostic symptom dimensions, most adopted an 395 
unsupervised machine learning predictive framework. However, the differences in distance/similarity 396 
metrics used, coupled with the lack of ground truth in the unsupervised machine learning algorithms 397 
used to detect the transdiagnostic structure, make it difficult to validate the clinical utility of the 398 
identified features. We designed our study to overcome these limitations. To our best knowledge, our 399 
study is the first to use feature importance to guide forward model selection under a supervised 400 
machine learning framework to identify transdiagnostic psychopathological features across multiple 401 
DSM categories. The high performance of our truncated models selected via the model selection 402 
approach demonstrate the potential clinical utility of the identified transdiagnostic features.  403 

Though we built models with different modalities as inputs (e.g. personality traits, symptoms and 404 
neuroimaging), we found high performance models could be obtained without significant 405 
contribution of the imaging modalities. This finding contrasts with what would be predicted from the 406 
published literature. For example, a recent meta-analysis of studies on psychiatric disorders involving 407 
structural magnetic resonance imaging (sMRI) identified shared abnormalities in certain brain 408 
regions underlying common psychiatric disorders (Goodkind et al., 2015). In addition, studies using 409 
functional MRI (fMRI) found altered functional connectivity patterns shared across multiple 410 
categories of disorders such as SCZ, BD, and major depressive disorder (MDD) (Buckholtz and 411 
Meyer-Lindenberg, 2012; Wei et al., 2018). Similarly, another recent study focusing on MDD, post-412 
traumatic stress disorder, and panic disorder identified 6 distinct subtypes based on 3 orthogonal 413 
symptom dimensions shared across the DSM diagnoses and their corresponding biomarkers in 414 
electroencephalogram (EEG) beta activity (Grisanzio et al., 2017). Although these studies did not 415 
systematically compare the predictability in each data modality, it is possible that the sample size in 416 
CNP or other methodological differences (e.g., parcellation used during sMRI and fMRI feature 417 
extraction) limited the weighted importance of structural or functional measures in our models.  418 

A broad set of behavioral phenotypic features from the self-report instruments were identified by our 419 
sequential model selection procedure to be shared across the three patient groups. The phenotypes are 420 
distributed across all 13 self-reported instruments and covers symptom domains encompassing 421 
personality and traits, positive and negative affect, cognition, sensory and social processing. It should 422 
be noted that these 13 self-reported instruments are not designed to yield diagnoses. Therefore, a set 423 
of phenotypic features that can be identified algorithmically and used to distinguish patients from 424 
HCs with an accuracy level close to a clinician’s performance demonstrates the potential clinical 425 
utility of the phenotypic features and the sequential model selection approach. For the top 20 most 426 
predictive features, mood dysregulation, impulsivity, inattention, neuroticism, social anhedonia and 427 
apathy weighted prominently in the transdiagnostic model. This high level of shared symptom 428 
domains across SCZ, BD, and ADHD is in line with recent genetic studies reporting significantly 429 
correlated risk factors for heritability among these three disorders (Larsson et al., 2013; The 430 
Brainstorm Consortium et al., 2017; Bipolar Disorder and Schizophrenia Working Group of the 431 
Psychiatric Genomics Consortium et al., 2018). For SCZ and BD, previous studies have identified 432 
shared features both in terms of symptoms and the underlying psychopathology and biology 433 
(Pearlson, 2015). Similarly, studies have identified shared symptoms and biology between SCZ and 434 
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ADHD (Peralta et al., 2011; Park et al., 2018) and have found high levels of comorbidity between 435 
BD and ADHD along with the shared features between the two disorders (Nierenberg et al., 2005; 436 
Klassen et al., 2010; van Hulzen et al., 2017; Wang et al., 2017). Despite these prior studies, the three 437 
diagnostic categories have not been considered together in a single study. Consistent with the 438 
findings reported in these studies, our study provides an important data-driven confirmation on the 439 
shared behavioral and symptoms features across the three disease categories. 440 

Since the TCI is less commonly used in clinical practice and historically a greater emphasis has been 441 
placed on symptoms than personality traits, we were surprised by the finding that the TCI contributed 442 
the largest proportion of questions among the set of 85 most predictive items determined by the 443 
transdiagnostic classifier. Prior studies have found that the personality traits and characters defined in 444 
the TCI are associated with various mood disorders (Cloninger et al., 1998; Grucza et al., 2003). 445 
Specifically, for disorders in the CNP dataset, studies have found positive association between 446 
personality dimensions characterized in TCI and overall ADHD symptom (Lynn et al., 2005; 447 
Anckarsäter et al., 2006) as well as subtypes of ADHD (Salgado et al., 2009). For SCZ, studies have 448 
identified links between positive and negative symptom dimensions and TCI factors (Guillem et al., 449 
2002; Hori et al., 2008). Among BD patients, (Hajirezaei et al., 2017) identified personality profiles 450 
that are distinct from healthy controls and these profiles were further found to be shared with MDD. 451 
Since these studies associated disease symptoms solely with the known factor scores in the TCI, the 452 
contribution of the nuanced personality profiles captured in individual items in the TCI could not be 453 
determined. In the current study, the fact that we identified items in the TCI that corresponded to 454 
shared symptoms such as apathy, anhedonia, and distress extends prior literature and is consistent 455 
with studies documenting the relationship between TCI factor scores and symptoms such as 456 
anhedonia (Martinotti et al., 2008), as well as depression and anxiety (Jylhä and Isometsä, 2006). 457 
Additionally, prior studies only examined TCI’s association with symptoms without simultaneously 458 
including other instruments as covariates in the model. Such an approach cannot evaluate the relative 459 
importance of the personality traits in TCI against the broader set of phenotypical features defined in 460 
other instruments. In this regard, our study established the usefulness of personality traits as a set of 461 
reliable transdiagnostic features among all features defined in the self-reported instruments in the 462 
CNP data. 463 

The sum score of the 85 most predictive transdiagnostic items achieved much higher separability 464 
between HC and patients than known sub-scores and sum scores in the instruments that were 465 
specifically designed to assess diagnosis-specific symptom domains. This is true even for the subset 466 
of top 10 most predictive transdiagnostic items, which indicates that the shared phenotypic features 467 
across patient groups do not fully adhere to known dimensional structures in the instruments. Thus, 468 
using the total score and/or the sub-scores according to pre-defined subscales of a given instrument 469 
cannot identify the optimal set of transdiagnostic features. One explanation for this phenomenon is 470 
that because the patients share a broad range of phenotypic features, the pre-defined subscales and 471 
sum scores become insufficient in capturing the full dimensional structure since most of the 472 
instruments are designed to measure a limited set of constructs targeting a specific patient population 473 
(Avila et al., 2015). This further demonstrates the advantage of our importance-guided sequential 474 
model selection approach in identifying potentially clinically relevant transdiagnostic features across 475 
a large set of instruments. 476 

While patients shared a broad set of phenotypic features, our results showed deviations from this 477 
transdiagnostic structure within the most predictive features for each patient group. These differences 478 
may in particular reflect clustered personality traits and symptom domains that are most unique for 479 
each patient population. For SCZ, the unique features of perceptual aberration and psychological 480 
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distress, along with other features that are consistent with the transdiagnostic structure, largely 481 
conform to the positive and negative symptom dimensions associative with SCZ patients. For BD, 482 
the unique features of increased energy, physical anhedonia, and psychological distress serve to 483 
shape the symptom structure along the manic and depressive dimensions. For ADHD, the increased 484 
representation in inattention, hyperactivity, and impulsivity is consistent with the overall 485 
symptomatology of ADHD patients. Overall, the concurrent existence of shared and category-486 
specific phenotypic features across the CNP patient groups is consistent with recent studies reporting 487 
both shared and distinct properties in functional brain networks (Grisanzio et al., 2017; Xia et al., 488 
2018a, b) and genetic neuropathology (The Brainstorm Consortium et al., 2017; Gandal et al., 2018) 489 
across major psychiatric disorders. Our results raise the possibility of exploring the relationship 490 
between the predictive phenotypic features and the underlying genetics of the individuals or groups 491 
that present with these features. 492 

In conclusion, we identified a set of transdiagnostic phenotypic features shared across SCZ, BD, and 493 
ADHD. This set of features distinguished the patient group from HC with high accuracy and a 494 
compact transdiagnostic screening scale can be derived from the corresponding top 10 most 495 
predictive questionnaire items. The feature importance guided sequential model selection provides a 496 
data-driven method to identify shared features under a supervised machine learning framework, in 497 
which the performance of the identified feature sets is evaluated on unseen data. This is an advantage 498 
over unsupervised machine learning methods. Moreover, the importance guided sequential model 499 
selection can be generalized to identify clinically-useful transdiagnostic features across categories 500 
defined in DSM-5 and ICD-10, or alternatively to identify the neural correlates of symptom severity 501 
across psychiatric disorders (Mellem et al., 2018). It should be noted that the medication status in the 502 
CNP dataset is not controlled. This suggests that although reliable transdiagnostic features could be 503 
identified across patient groups, the underlying cause of the observed symptom structure could 504 
potentially be confounded by the uncontrolled medication and symptom status. Future studies should 505 
further validate the transdiagnostic features identified in this study on other datasets with similar 506 
patient populations and with better controlled medication status. Including these additional datasets 507 
as out-of-sample validations can demonstrate the generalizability of the current results and 508 
methodology to the wider population. Additionally, because the phenotypic features largely reflected 509 
behaviors and symptoms through self-reports, the high performance of our models based on these 510 
features may be reflecting the close mapping between the identified features and symptom-based 511 
diagnostic criteria in DSM. Nevertheless, our findings represent an important step in the ongoing 512 
effort to characterize clinically useful transdiagnostic phenotypes. Future studies could potentially 513 
investigate the underlying brain circuits associated with these clinically-relevant phenotypic features.  514 
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Table 1. Demographic Information* 
HC SCZ BD ADHD Total 

No. of subjects 130 50 49 43 272 
With complete phenotype data 130 50 48 43 271 
With sMRI data** 98 30 44 34 206 
With fMRI data† 104 47 41 37 229 

     Age 
    Mean age 31.26  36.46  35.15  33.09 

SD age 8.74 8.88 9.07 10.76  
Range age 21-50 22-49 21-50 21-50 

      Gender 
    No. of female subjects 62 12 21 22 

Percent female subjects 47.69% 24.00% 42.86% 51.16% 

      Race 
    American Indian or Alaskan Native 19.23% 22.00% 6.25% 0% 

Asian 1.54% 2.00% 0% 2.33% 
Black/African American 0.77% 4.00% 2.08% 2.33% 
White 78.46% 66.00% 77.08% 88.37% 
More than one race 0% 2.00% 14.58% 6.98% 

      Education 
    No high school 1.54% 18.00% 2.08% 0% 

High school 12.31% 44.00% 29.17% 23.26% 
Some college 20.77% 18.00% 25.00% 30.23% 
Associate’s degree 7.69% 4.00% 6.25% 6.98% 
Bachelor’s degree 50.00% 10.00% 29.17% 32.56% 
Graduate degree 6.92% 0% 4.17% 2.33% 
Other 0.77% 4.00% 4.17% 4.65%   
* Demographic information is based on initial number of subjects 
** Excluding subjects with aliasing artifacts  
† Excluding subjects with misaligned structural-function imaging data 
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Table 2. Performances of the transdiagnostic models on each feature set* 

* The mean performance measures across 10 implementations are reported here with the standard deviation shown in parentheses 
** Wilcoxon’s rank-sum test 
† FDR-corrected

Performance of the full model:             
 Scales sMRI fMRI s+fMRI Scales+sMRI Scales+fMRI Scales+s+fMRI 
AUC 0.83(0.04) 0.56(0.05) 0.59(0.04) 0.57(0.05) 0.89(0.07) 0.86(0.06) 0.86(0.05) 
Accuracy 0.77(0.05) 0.58(0.08) 0.60(0.06) 0.61(0.07) 0.91(0.04) 0.87(0.05) 0.86(0.05) 
Sensitivity 0.77(0.07) 0.74(0.11) 0.60(0.11) 0.62(0.11) 0.86(0.08) 0.82(0.12) 0.86(0.08) 
Specificity 0.82(0.07) 0.38(0.11) 0.56(0.12) 0.49(0.17) 0.80(0.15) 0.61(0.30) 0.48(0.26) 

        

Performance of the best truncated model:      

 Scales sMRI fMRI s+fMRI Scales+sMRI Scales+fMRI Scales+s+fMRI 
AUC 0.95(0.02) 0.78(0.06) 0.87(0.08) 0.77(0.06) 0.96(0.03) 0.98(0.02) 0.96(0.03) 
Accuracy 0.88(0.04) 0.71(0.06) 0.85(0.07) 0.77(0.06) 0.87(0.05) 0.92(0.04) 0.90(0.04) 
Sensitivity 0.87(0.08) 0.81(0.09) 0.86(0.09) 0.77(0.08) 0.93(0.07) 0.91(0.06) 0.94(0.05) 
Specificity 0.88(0.04) 0.60(0.16) 0.84(0.18) 0.76(0.07) 0.80(0.15) 0.92(0.04) 0.85(0.09) 
No. of features 85 131 8192 16384 238 32 64 

        

Test on AUCs between the full and the truncated model**:     

 Scales sMRI fMRI s+fMRI Scales+sMRI Scales+fMRI Scales+s+fMRI 
Test statistic 100 100 100 99.5 82.5 100 95 
p-value† < 0.001 < 0.001 < 0.001  < 0.001 0.01537 < 0.001 < 0.001 .
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Figure Legends 

Figure 1. The performances of the best transdiagnostic models selected via the feature importance-
guided sequential model selection procedure. A) The receiver operating characteristic (ROC) curve 
for the best truncated models based on each feature set. Area under the ROC curve (AUC) for each 
model is listed in the legend. B) Box plots showing the AUC of the best truncated model for each 
feature set measured across 10 implementations of sequential model selection procedure. 

Figure 2. Distributions and effect sizes of the model’s derived scores vs. the existing scale scores. A) 
Sum score calculated from the identified 85 most predictive items showing high separability in terms 
of Cohen’s d between HC and Patients. B) All three patient categories showed elevated sum scores 
relative to HC (p < 0.001). C) The 4 temperament sub-scores in TCI included in the CNP dataset 
showing only medium effect sizes between HC and Patients. D) Box plot showing significantly 
higher effect size from the identified 85 items (asterisk) compared to all predefined sum and 
subscores in self-reported instruments in CNP data. The asterisk represents the Cohen’s d between 
HC and Patients from the top 85 items, whereas the box plot shows the effect sizes from all 
predefined sum and subscores (also see Supplementary Table 2). 

Figure 3. The percentage of items from each of the 13 self-reported instruments among the set of 85 
most predictive transdiagnostic items. 

Figure 4. The grouping of items into specific phenotypic domains for the top 20 most predictive 
items from A) the HC vs. All Patients transdiagnostic model and B) – D) the 3 HC vs. a single patient 
category classifiers. The radius in the spider plots represents item counts. 
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