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Abstract 8 

The Diagnostic and Statistical Manual of Mental Disorders (DSM) has been the standard for 9 
diagnosing psychiatric disorders in the United States. Yet, evidence has suggested that symptoms in 10 
psychiatric disorders are not restricted to the boundaries between DSM categories, implicating an 11 
underlying latent transdiagnostic structure of psychopathology. Here, we applied an importance-12 
guided machine learning technique for model selection to item-level data from self-reported 13 
instruments contained within the Consortium for Neuropsychiatric Phenomics dataset. From 578 14 
questionnaire items, we identified a set of phenotypic features which consisted of 85 items that were 15 
shared across diagnoses of schizophrenia (SCZ), bipolar disorder (BD), and attention 16 
deficit/hyperactivity disorder (ADHD). A transdiagnostic classifier trained on the shared phenotypic 17 
features reliably distinguished the patient group as a whole from healthy controls (classification AUC 18 
= 0.95) and only 10 items were needed to attain the performance level of AUC being 0.90. A sum 19 
score created from the items produced high separability between patients and healthy controls 20 
(Cohen’s d = 2.85), and it outperformed predefined sum scores and sub-scores within the instruments 21 
(Cohen’s d ranging between 0.13 and 1.21). The shared phenotypic features comprised both 22 
symptom domains (e.g. dysregulated mood, attention deficits, and impaired reward processing) and 23 
personality traits (e.g. neuroticism, impulsivity, and extraversion). Moreover, by comparing these 24 
features with those that were most predictive of a single patient category, we can describe the unique 25 
features for each patient group superimposed on the transdiagnostic feature structure. Overall, our 26 
results reveal a latent transdiagnostic phenotypic structure shared across SCZ, BD, and ADHD and 27 
present a new perspective to understand insights offered by self-report psychiatric instruments. 28 
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1 Introduction 32 

The Diagnostic and Statistical Manual of Mental Disorders (DSM) provides a symptom-based 33 
taxonomy which serves to help clinicians classify various clusters of symptoms and abnormal 34 
behaviors into distinct categories of disorders. The uniformity of diagnostic criteria in DSM serves to 35 
effectively index psychiatric disorders but does not provide a data-driven framework within which to 36 
understand the shared and unique features across disorders. For example, dimensionality and 37 
comorbidity are pervasive in terms of symptoms across different DSM categories (Kessler et al., 38 
2005; Markon, 2009; Krueger and Markon, 2011). Such dimensionality manifests as heterogeneity in 39 
symptom clusters within disease categories defined by the DSM and is exemplified across DSM 40 
categories (Kessler et al., 2007). In the area of anxiety and mood disorders, more than 50% of 41 
individuals are diagnosed as having more than a single category of disorders according to the DSM at 42 
a given time (Grisanzio et al., 2017). Similarly, about 50% of bipolar disorder patients exhibit 43 
schizophrenia-like psychotic symptoms during illness episodes (Coryell et al., 2001; Keck et al., 44 
2003). The presence of such psychotic symptoms can be mood-incongruent (Pacheco et al., 2010) 45 
and can occur outside of illness episodes (Pope and Lipinski, 1978; Abrams and Taylor, 1981). These 46 
observations highlight the likelihood of a latent trans-diagnostic dimensional structure that spans 47 
multiple disorders (Krueger and Markon, 2006) and underscore the importance of understanding 48 
patients at the symptom-level, rather than simply at a diagnostic level, to create more effective 49 
treatments. 50 

Studies have attempted to uncover the latent structure of psychopathology, between or within 51 
categories, through multimodal assessments that measure symptoms, behavior, physiology, imaging, 52 
and genetics. One such example is the large-scale study conducted by the UCLA Consortium for 53 
Neuropsychiatric Phenomics (CNP), which seeks to identify links among phenotypic data, imaging, 54 
and genetics (Poldrack et al., 2016). Overall, genetic studies have pointed to the heritability of major 55 
neuropsychiatric disorders (Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; 56 
Hamshere et al., 2013; Larsson et al., 2013; The Brainstorm Consortium et al., 2017; Bipolar 57 
Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium et al., 2018; 58 
Gandal et al., 2018) as well as the genetic commonality amongst disorders (Purcell et al., 2009; Lotan 59 
et al., 2014) such as schizophrenia (SCZ), bipolar disorder (BD), and attention deficit/hyperactivity 60 
disorder (ADHD). Recent data-driven studies based on symptom and behavior have focused on 61 
classifying and subtyping patients within a single diagnostic category (Lamers et al., 2012; van Loo 62 
et al., 2012; Georgiades et al., 2013; Doshi-Velez et al., 2014; van Hulst et al., 2014; Costa Dias et 63 
al., 2015; Geisler et al., 2015; Sun et al., 2015; Drysdale et al., 2016; Gheiratmand et al., 2017). 64 
Several of these studies identified important shared abnormal features associated with the latent 65 
transdiagnostic structure across major psychiatric disorders. 66 

The clinical utility of using the features identified in the above-mentioned studies to reliably classify 67 
patients remains an open question. Emerging studies have used unsupervised machine learning 68 
approaches, such as clustering and dimensionality reduction algorithms, to uncover the 69 
transdiagnostic structure across disorders (Grisanzio et al., 2017; Xia et al., 2018). However, the lack 70 
of ground truth on how patients should be assigned to an identified cluster/subtype limits the 71 
application of these insights. Moreover, because studies did not adopt a supervised machine learning 72 
predictive framework wherein the identified features along with the predictive algorithms are 73 
rigorously tested on unseen data to mimic real-world clinical diagnostics, the validity of these 74 
transdiagnostic subtypes is yet to be fully established.  75 
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In the current study, we take a patient-focused approach to identify transdiagnostic features that are 76 
shared across SCZ, BD, and ADHD derived from self-reported responses on clinically-accepted 77 
questionnaires. Using an importance-guided model selection approach, the supervised machine 78 
learning framework used in this study allowed us to evaluate the performance of the transdiagnostic 79 
features and hence to iteratively identify the optimal set of features required to distinguish the patient 80 
group from healthy controls (HCs). Based on the CNP dataset, we used multiple data modalities 81 
including the behavioral/symptom phenotypes (from here on referred to as phenotypes) defined in 82 
self-reported instruments and neuroimaging data (sMRI and fMRI) to obtain the optimal 83 
transdiagnostic features. We then report these shared features and discuss the identified latent 84 
psychopathological structure across these psychiatric disorders. 85 

 86 

2 Materials and Methods 87 

2.1 The CNP dataset 88 

We utilized the openly available dataset from the CNP LA5c Study conducted at the University of 89 
California, Los Angeles (the CNP dataset: https://openneuro.org/datasets/ds000030/versions/00016). 90 
Detailed information on the CNP study/dataset can be found in (Poldrack et al., 2016). The CNP 91 
dataset contains a variety of data modalities. In this study, we focused on identifying shared 92 
transdiagnostic features based on the item-level data from self-reported instruments as well as 93 
neuroimaging data (including both sMRI and resting-state fMRI). The dataset in this study includes 94 
272 subjects, of which 50 are diagnosed with schizophrenia (SCZ), 49 with bipolar disorder (BD), 95 
and 43 with attention deficit/hyperactivity disorder (ADHD). The remaining 130 subjects are age-96 
matched healthy controls (HC). The diagnoses were given by following the Diagnostic and Statistical 97 
Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR; American Psychiatric 98 
Association, 2000) and were based on the Structured Clinical Interview for DSM-IV (First et al., 99 
2002). To better characterize ADHD related symptoms, the Adult ADHD Interview (Kaufman et al., 100 
2000) was further used as a supplement. Out of all subjects, 1 had incomplete phenotype data from 101 
the instruments used in this study, 10 had missing structural MRI (sMRI) data, and 10 had missing 102 
resting-state functional MRI (fMRI) data. Fifty-five (55) subjects had an aliasing artifact in their 103 
sMRI data potentially caused by the headset used in the scanner, whereas 22 subjects had errors in 104 
the structural-functional alignment step during MRI preprocessing. These subjects were excluded 105 
from the corresponding modeling analyses performed in this study. The subject numbers and 106 
demographics information are given in Table 1.  107 

2.2 Phenotype data 108 

Subjects were administered a total of 20 clinical instruments to capture a wide range of phenotype 109 
data including specific behavioral traits and symptom dimensions (Poldrack et al., 2016). These 110 
instruments are either clinician-rated or self-reported. While the clinician-rated questionnaires only 111 
covered relevant patient groups, 13 self-reported clinical scales were given to all three patient groups 112 
as well as the heathy controls. We therefore used subjects’ answers to each of the individual 113 
questions coming from these 13 self-reported scales as input features to our models. Specifically, the 114 
13 self-reported scales used in this study are: Chapman Social Anhedonia Scale, Chapman Physical 115 
Anhedonia Scale, Chapman Perceptual Aberrations Scale, Hypomanic Personality Scale, Hopkins 116 
Symptom Checklist, Temperament and Character Inventory, Adult ADHD Self-Report Scale v1.1 117 
Screener, Barratt Impulsiveness Scale, Dickman Functional and Dysfunctional Impulsivity Scale, 118 
Multidimensional Personality Questionnaire – Control Subscale, Eysenck’s Impulsivity Inventory, 119 
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Scale for Traits that Increase Risk for Bipolar II Disorder, and Golden and Meehl’s Seven MMPI 120 
Items Selected by Taxonomic Method. 121 

2.3 MRI data acquisition parameters 122 

MRI data were acquired on one of two 3T Siemens Trio scanners both housed at the University of 123 
California, Los Angeles. The sMRI data used in this study are T1-weighted and were acquired using 124 
a magnetization-prepared rapid gradient-echo (MPRAGE) sequence with the following acquisition 125 
parameters: TR = 1.9 s, TE = 2.26 ms, FOV = 250 mm, matrix = 256 x 256, 176 1-mm thick slices 126 
oriented along the sagittal plane. The resting-state fMRI data contain a single run lasting 304 s. The 127 
scan was acquired using a T2*-weighted echoplanar imaging (EPI) sequence using the following 128 
parameters: 34 oblique slices, slice thickness = 4 mm, TR = 2 s, TE = 30 ms, flip angle = 90°, matrix 129 
size 64 x 64, FOV = 192 mm. During the resting-state scan, subjects remained still and relaxed inside 130 
the scanner, and kept their eyes open. No specific stimulus or task was presented to them. 131 

2.4 MRI preprocessing 132 

2.4.1 sMRI 133 

Structural MRI preprocessing was implemented using Freesurfer’s recon-all processing pipeline 134 
(http://surfer.nmr.mgh.harvard.edu/). Briefly, the T1-weighted structural image from each subject 135 
was intensity normalized and skull-stripped. The subcortical structures, white matter, and ventricles 136 
were segmented and labeled according to the algorithm described in (Fischl et al., 2002). The pial 137 
and white matter surfaces were then extracted and tessellated (Fischl et al., 2001), and cortical 138 
parcellation was obtained on the surfaces according to a gyral-based anatomical atlas which partitions 139 
each hemisphere into 34 regions (Desikan et al., 2006).  140 

2.4.2 Resting-state fMRI 141 

Resting-state fMRI preprocessing was implemented in AFNI (http://afni.nimh.nih.gov/afni). 142 
Specifically, the first 3 volumes in the data were discarded to remove any transient magnetization 143 
effects in the data. Spikes in the resting-state fMRI data were then removed and all volumes were 144 
spatially registered with the 4th volume to correct for any head motion. The T1w structural image was 145 
deobliqued and uniformized to remove shading artifacts before skull-stripping. The skull-stripped 146 
structural image was then spatially registered with motion corrected fMRI data. The fMRI data were 147 
further spatially smoothed using a 6-mm FWHM Gaussian kernel and converted to percent signal 148 
change. Separately, the Freesurfer-generated aparc+aseg image from sMRI preprocessing was also 149 
spatially registered with and resampled to have the same spatial resolution of the BOLD image. 150 
Based on this, eroded white matter and ventricle masks were created, from which nuisance tissue 151 
regressors were built based on non-spatially smoothed fMRI data to model and remove variances that 152 
are not part of the BOLD signal. Specifically, we used the ANATICOR procedure (Jo et al., 2010), 153 
where a locally averaged signal from the eroded white matter mask within a 25-mm radius spherical 154 
region of interest (ROI) centered at each gray matter voxel was used to create a voxel-wise local 155 
estimate of the white matter nuisance signal. This local estimate of the white matter nuisance signal, 156 
along with the estimated head motions and average signal from the ventricles were detrended with a 157 
4th order polynomial and then regressed out from the fMRI data. Finally, the clean resting-state fMRI 158 
data was spatially normalized to the MNI template and resampled to have 2 mm isotropic voxels. 159 

2.5 Feature extraction 160 
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We extracted measures from 3 data modalities as features: phenotype data from self-reported 161 
instruments, measures derived from the sMRI data, and functional correlations based on resting-state 162 
fMRI data. For phenotype features from self-reported instruments, we directly used subjects’ 163 
responses from a total of 578 questions from the above listed 13 instruments. Responses from non-164 
True/False type questions were normalized to have a range of between 0 and 1 to match those from 165 
True/False type questions. For sMRI features, we specifically used 1) the volume of subcortical 166 
structures generated by Freesurfer’s subcortical volumetric segmentation, and 2) the area, thickness, 167 
and volume of cortical brain regions estimated from Freesurfer’s surface-based analysis pipeline. For 168 
resting-state fMRI features, we first parceled the brain into 264 regions according to the atlas 169 
proposed in (Power et al., 2011). A 5-mm radius spherical ROI was seeded according to the MNI 170 
coordinates of each brain region specified in the atlas. Second, the clean resting-state BOLD time 171 
series from all voxels within a given 5-mm radius spherical ROI were averaged to create the 172 
representative time series for the brain region. Third, functional connectivity between ROIs was 173 
estimated via the Pearson’s correlation coefficient between the average time series from all pairs of 174 
brain regions. This produced a 264-by-264 correlation matrix, from which 34,716 are unique 175 
correlations between two distinct ROIs and were used as input features to the models. 176 

2.6 Model fitting and feature importance weighting 177 

The primary goals of machine learning analyses in this study were two-fold: 1) to identify important 178 
features commonly found across patient groups and 2) to establish robust transdiagnostic classifiers 179 
that can reliably separate patient groups from healthy controls. To achieve these goals, we built 180 
transdiagnostic classifiers based on the logistic regression model as implemented in the scikit-learn 181 
toolbox to classify patients from HCs. To identify predictive transdiagnostic features embedded 182 
within each feature modality, separate logistic regression models were independently trained using 183 
each of the above extracted feature modalities (i.e., item-level phenotype data, sMRI measures, and 184 
resting-state fMRI correlations) as inputs and their performances were evaluated in each of the 185 
transdiagnostic scenarios. Combinations of 2 and 3 feature modalities were also used as classifiers’ 186 
inputs and their performances were evaluated in the same fashion.  187 

Because the number of features we extracted was relatively large compared to the sample size in 188 
CNP data, an elastic net regularization term (Zou and Hastie, 2005) was added in all of our logistic 189 
regression models to prevent overfitting. The use of elastic net regularization in our models also 190 
enabled feature selection as the regularization induces sparse models via the grouping effect where 191 
all the important features will be retained and the unimportant ones set to zero (Zou and Hastie, 2005; 192 
Ryali et al., 2012). This allowed us to identify predictive features that are shared across multiple 193 
patient categories.  194 

We adopted the following procedure to determine the best regularization parameters. First, the input 195 
data were randomly partitioned into a development set and an evaluation set. The development set 196 
contains 80% of the data upon which a grid search with 3-fold cross validation procedure was 197 
implemented to determine the best regularization parameters. Then the model with the best 198 
regularization parameters was further tested on the remaining 20% of evaluation set. All features 199 
were standardized to have zero mean and unit variance within the training data and the mean and 200 
variance from the training data were used to standardize the corresponding test data. The entire 201 
process was implemented 10 times. The following metrics were used to quantify the model 202 
performances: area under the receiver operating characteristics curve (AUC), accuracy, sensitivity, 203 
and specificity. The mean and standard deviation of the above metrics over the 10 evaluation sets 204 
were reported. 205 
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From the above models, the predictive power of each feature is assessed via the weights of the 206 
logistic regression model in our transdiagnostic classifiers. For each feature, we calculated its 207 
corresponding standardized model weight (mean model weight divided by the standard deviation) 208 
across the 10 model implementations as the proxy for feature importance. Features with large 209 
importance values from our transdiagnostic classifiers are potentially symptoms, traits, and 210 
neuropathological mechanisms shared across patient groups but are distinct from healthy controls. 211 

To identify the set of most predictive transdiagnostic features within a given data modality, we used 212 
the following feature importance-guided sequential model selection procedure. Specifically, we first 213 
rank ordered the features in the transdiagnostic classifiers according to their standardized model 214 
weights. Next, a series of truncated models was built such that each model only takes the top k most 215 
predictive features as inputs to perform the same transdiagnostic classification tasks. We let k range 216 
from the top 1 most predictive feature to all available features in steps of 1 for phenotype features, 217 
sMRI features, and the combination of the two feature sets. For any feature or feature combinations 218 
involving fMRI correlations, because of the significantly increased feature dimension, the k’s were 219 
chosen from a geometric sequence with a common ratio of 2 (i.e., 1, 2, 4, 8, 16, …). Model 220 
performances were obtained for each truncated model and were evaluated as a function of the number 221 
of top features (k) included in each truncated model to determine the optimal feature set.  222 

2.7 Statistical analyses 223 

To statistically examine whether the models’ performances are significantly above chance level, we 224 
performed a random permutation test where labels in the training data (e.g., HC vs. Patients) were 225 
shuffled 100 times and truncated models based on the best set of features were trained on these label-226 
shuffled data using exactly the same approach as described above (Ojala and Garriga, 2009). The 227 
performances from the 100 models were used to construct the empirical null distribution against 228 
which the performance of the best truncated models based on the actual unshuffled data was then 229 
compared. This random permutation test procedure also helped us to determine whether overfitting 230 
occurred during training. 231 

To evaluate differences in sum scores obtained from the top features between HC and patients, we 232 
used two sample t-tests on the sample means since the sum scores are quasi normally distributed. 233 
Effect sizes were measured using Cohen’s d, which captures the shift in mean scaled by the data’s 234 
standard deviation. Tests on the difference in AUC between the full model and the best truncated 235 
model were carried out via the Wilcoxon’s rank-sum test. 236 

 237 

3 Results 238 

In total, the HC vs. patients transdiagnostic classifiers were trained and tested on 7 sets of features by 239 
either using each individual feature modality (self-reported instruments, sMRI, and fMRI) or 240 
combinations of 2 or 3 feature modalities (e.g., instruments+sMRI+fMRI). The classifiers’ 241 
performances using each of the 7 feature sets for the HC vs. Patients transdiagnostic cases are 242 
reported in Table 2. Overall, classifiers trained on feature sets involving phenotypical data from self-243 
reported instruments (i.e., scales and scales + MRI feature sets) outperformed those only trained on 244 
MRI features (sMRI, fMRI, and sMRI+fMRI). For classifiers using features involving these 245 
instruments, the mean AUC ranged from 0.83 to 0.89 (mean accuracy: 0.77 – 0.91), whereas the 246 
mean AUC ranged from 0.56 to 0.59 (mean accuracy: 0.58 – 0.61) for MRI feature sets.  247 
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Next, to identify the optimal set of shared features among patients that are highly distinct from HC, 248 
we examined the performance measures from the best truncated classification models during 249 
sequential model selection (Figure 1 and Table 2; see Supplementary Fig. 1 for AUC as a function 250 
of input feature dimensions). Significantly improved performances were obtained from the best 251 
truncated classification models compared with the corresponding models using the full sets of 252 
features (all p’s < 0.05 as assessed by the rank-sum test; Table 2). The AUCs from all feature sets 253 
were also significantly above chance level as assessed via the random permutation test (all p’s < 254 
0.05; Supplementary Fig. 2). Additionally, the computational time for the importance guided 255 
sequential model selection method grew linearly as the number of features increased, which is highly 256 
efficient compared to the brute force feature selection procedure (exponential time complexity; 257 
Supplementary Fig. 3).  258 

The truncated classification model involving data from the self-reported instruments alone had high 259 
performance of distinguishing patients from HCs with the mean AUC being 0.95 (accuracy: 0.88; 260 
sensitivity: 0.87; specificity: 0.88; Figure 1; Table 2). This truncated model selected 85 items as the 261 
most predictive features from the total of 578 items contained in the 13 self-reported instruments. 262 
Moreover, only 10 items were needed to achieve an AUC of 0.90 (accuracy: 0.81; sensitivity: 0.79; 263 
specificity: 0.84), suggesting that a concise scale can be constructed potentially for screening 264 
purposes. The model involving data from self-reported instruments performed better compared to 265 
those using feature sets based solely on MRI (mean AUC ranging from 0.77 to 0.87; mean accuracy 266 
ranging from 0.71 to 0.85). Combining MRI features with data from instruments only slightly 267 
improved the model performance (mean AUC being 0.96 – 0.98) (Figure 1; Table 2). Taken 268 
together, this indicates that the phenotypical data captured by the 13 self-reported instruments contain 269 
a set of transdiagnostic features that are common across the patient populations and, at the same time, 270 
are highly distinct from healthy controls. We hence focused on discussing these transdiagnostic 271 
phenotypical features below. 272 

A simple sum score constructed by adding up an individual’s responses to the 85 most predictive 273 
items (with item responses having negative model coefficients reversed) demonstrated high 274 
separability between healthy controls and patients (Cohen’s d = 2.85; test on the difference in sample 275 
mean: t = 10.27, p < 0.001; Figure 2A). The separability based on the top 10 most predictive items 276 
(corresponding AUC = 0.90) was also very high (Cohen’s d = 2.16; test on the difference in sample 277 
mean: t = 18.13, p < 0.001). The sum scores had higher separability than other known sum 278 
scores/sub-scores of the self-reported instruments (Figure 2C & 2D; Supplementary Table 1), 279 
indicating the items selected by the transdiagnostic classifier do not adhere to known dimensional 280 
structures within the instruments. Calculating the sum score for each individual patient category 281 
showed that all 3 patient categories had elevated sum scores compared to healthy controls (t > 5.671, 282 
p < 0.001); yet, the difference between the patient categories was insignificant (t < 1.940, p > 0.056; 283 
Figure 2B). This suggests that the 85 items captured transdiagnostic phenotypic features shared 284 
across the patient groups as a whole rather than driven by a single patient category.  285 

Figure 3 illustrates the proportion of questionnaire items selected from each instrument that were 286 
included in transdiagnostic set of phenotypic features of the best truncated model (i.e. the one with 287 
the highest AUC). Items from all 13 instruments were selected to be among the top features by the 288 
classifiers. Overall, these instruments measure a wide range of phenotype and symptom domains 289 
encompassing personality traits, positive and negative affect (reward/anhedonia, fear, and anxiety), 290 
cognition (attention, response inhibition), sensory processing (perceptual disturbances), and social 291 
processing. While all items included among the set of transdiagnostic phenotypic features jointly 292 
formed a highly predictive set to distinguish patients from healthy controls, the Temperament and 293 
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Character Inventory (TCI) contributed the largest proportion of items in the transdiagnostic classifier. 294 
The proportion of TCI items selected among the 85 most predictive items (32.9%) significantly 295 
exceeded the proportion of all TCI items among all 578 items from the 13 instruments (24.0%; p = 296 
0.04 as assessed via the Z-test). The disproportionately high number of TCI items indicates that 297 
certain personality traits are strong predictors of shared psychopathology regarding SCZ, BD, and 298 
ADHD.  299 

To better understand which features strongly predicted psychopathology, we focused on the top 20 300 
items that contributed the largest magnitude of model weights. Among personality traits, the top 301 
transdiagnostic features included neuroticism, extraversion, and impulsivity (Figure 4A); whereas 302 
the top symptom domains consisted of mood dysregulation, inattention, hyperactivity/agitation, and 303 
social anhedonia and apathy. In addition, the importance of religion was also a shared feature across 304 
patients (Figure 4A; see Supplementary Table 3 for item grouping). We next compared the most 305 
predictive transdiagnostic features with those most predictive of a single patient category from 306 
healthy controls to identify category-specific differences (Figure 4B-D; see Supplementary Table 2 307 
and Supplementary Fig. 4 for classification results between HC and each patient category). SCZ 308 
patients exhibited additional features including perceptual aberration, physical anhedonia, and 309 
psychological distress that are not among the top transdiagnostic features. On the other hand, 310 
extraversion, impulsivity, inattention, and religion which were present in the transdiagnostic features 311 
set were not among the most predictive features for SCZ (Figure 4B and Supplementary Table 4). 312 
By contrast, transdiagnostic features overlapped with BD patient-specific features. Nonetheless, BD 313 
patients exhibited additional features of increased energy, psychological distress and physical 314 
anhedonia; yet psychomotor agitation and neuroticism contributed little predictive value (Figure 4C, 315 
Supplementary Table 5). ADHD patients were effectively classified by additional features such as 316 
indecision and physical anhedonia, with little predictive contribution from apathy, neuroticism, and 317 
religion (Figure 4D, Supplementary Table 6).  318 

 319 

4 Discussion 320 

In this study, using self-reported instruments provided in the CNP dataset, we generated predictive 321 
models to identify a set of transdiagnostic phenotypic features that were shared across SCZ, BD, and 322 
ADHD. These models were quantified for performance (e.g. accuracy, sensitivity and specificity) and 323 
were interpretable along dimensions of personality traits and symptom domains. We found the set of 324 
85 items is highly predictive of the patient group as a whole from HCs. To our surprise, a compact 325 
model of only 10 items is sufficient to achieve a performance AUC value of 0.90. Further, we 326 
demonstrated that a simple sum score can be calculated to enable high separability between patients 327 
and HCs. Our importance-guided sequential model selection approach revealed which phenotypical 328 
features were shared across transdiagnostic patient groups. Within each patient population, we also 329 
show which abnormal psychopathological personality traits and symptom domains deviated from the 330 
transdiagnostic classifier. Importantly, many of these features are consistent with established clinical 331 
intuition. Taken together, this study offers new perspectives on the shared psychopathology across 332 
SCZ, BD, and ADHD and underscores the potential of creating a short transdiagnostic screening 333 
scale based on the selected items.   334 

The application of machine learning to systematically search for consistent patterns in clinical data 335 
across disease categories defined in DSM is an emerging trend in the field of computational 336 
psychiatry (Bzdok and Meyer-Lindenberg, 2017). Nonetheless, our approach to identifying 337 
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transdiagnostic features in psychiatric disorders differs both conceptually and methodologically from 338 
previous studies. Numerous investigators have focused on patient subtyping within a given disorder 339 
(Rhebergen et al., 2011; Lamers et al., 2012; van Loo et al., 2012, 2014; Georgiades et al., 2013; 340 
Brodersen et al., 2014; Doshi-Velez et al., 2014; Lewandowski et al., 2014; van Hulst et al., 2014; 341 
Veatch et al., 2014; Costa Dias et al., 2015; Geisler et al., 2015; Sun et al., 2015; Clementz et al., 342 
2016; Drysdale et al., 2016; Mostert et al., 2018) or have mined transdiagnostic symptom dimensions 343 
underlying various psychiatric disorders (Grisanzio et al., 2017; Elliott et al., 2018; Xia et al., 2018a, 344 
b). Among studies examining the transdiagnostic symptom dimensions, most did not adopt a 345 
supervised machine learning predictive framework wherein the identified features along with the 346 
predictive algorithms are rigorously tested on unseen data. In addition, the differences in 347 
distance/similarity metrics used, coupled with the lack of ground truth in the unsupervised machine 348 
learning algorithms used to detect the transdiagnostic structure, make it difficult to validate the 349 
clinical utility of the identified features. We designed our study to overcome these limitations. To our 350 
best knowledge, our study is the first to use feature importance to guide forward model selection 351 
under a supervised machine learning framework to identify transdiagnostic psychopathological 352 
features across multiple DSM categories. The superior performance of our truncated models selected 353 
via the model selection approach demonstrate the clinical utility of the identified transdiagnostic 354 
features.  355 

Though we built models with different modalities as inputs (e.g. personality traits, symptoms and 356 
neuroimaging), we found high performance models could be obtained without significant 357 
contribution of the imaging modalities. This finding contrasts with what would be predicted from the 358 
published literature. For example, a recent meta-analysis of studies on psychiatric disorders involving 359 
structural magnetic resonance imaging (sMRI) identified shared abnormalities in certain brain 360 
regions underlying common psychiatric disorders (Goodkind et al., 2015). In addition, studies using 361 
functional MRI (fMRI) found altered functional connectivity patterns shared across multiple 362 
categories of disorders such as SCZ, BD, and major depressive disorder (MDD) (Buckholtz and 363 
Meyer-Lindenberg, 2012; Wei et al., 2018). Similarly, another recent study focusing on MDD, post-364 
traumatic stress disorder, and panic disorder identified 6 distinct subtypes based on 3 orthogonal 365 
symptom dimensions shared across the DSM diagnoses and their corresponding biomarkers in 366 
electroencephalogram (EEG) beta activity (Grisanzio et al., 2017). Although these studies did not 367 
systematically compare the predictability in each data modality, it is possible that the sample size in 368 
CNP or other methodological differences (e.g., parcellation used during sMRI and fMRI feature 369 
extraction) limited the weighted importance of structural or functional measures in our models.  370 

A broad set of phenotypes from the self-report instruments were identified by our transdiagnostic 371 
classifiers to be shared across the patient populations. The phenotypes are distributed across all 13 372 
self-reported instruments and covers symptom domains encompassing personality and traits, positive 373 
and negative affect, cognition, sensory and social processing. For the top 20 most predictive features, 374 
mood dysregulation, impulsivity, inattention, neuroticism, social anhedonia and apathy weighted 375 
prominently in the transdiagnostic model. This high level of shared symptom domains across SCZ, 376 
BD, and ADHD is in line with recent genetic studies reporting significantly correlated risk factors for 377 
heritability among these three disorders (Larsson et al., 2013; The Brainstorm Consortium et al., 378 
2017; Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium 379 
et al., 2018). For SCZ and BD, previous studies have identified shared features both in terms of 380 
symptoms and the underlying psychopathology and biology (Pearlson, 2015). Similarly, studies have 381 
identified shared symptoms and biology between SCZ and ADHD (Peralta et al., 2011; Park et al., 382 
2018) and has found high levels of comorbidity between BD and ADHD along with the shared 383 
features between the two disorders (Nierenberg et al., 2005; Klassen et al., 2010; van Hulzen et al., 384 
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2017; Wang et al., 2017). Despite these prior studies, the three diagnostic categories have not been 385 
considered together in a single study. Consistent with the findings reported in these studies, our study 386 
provides an important data-driven confirmation on the shared phenotypes and symptoms across the 387 
three disease categories. 388 

Since the TCI is less commonly used in clinical practice and historically a greater emphasis has been 389 
placed on symptoms than personality traits, we were surprised by finding that the TCI contributed the 390 
largest proportion of questions among the set of 85 most predictive items determined by the 391 
transdiagnostic classifier. Prior studies have found that the personality traits and characters defined in 392 
the TCI are associated with various mood disorders (Cloninger et al., 1998; Grucza et al., 2003). 393 
Specifically, for disorders in the CNP dataset, studies have found positive association between 394 
personality dimensions characterized in TCI and overall ADHD symptom (Lynn et al., 2005; 395 
Anckarsäter et al., 2006) as well as subtypes of ADHD (Salgado et al., 2009). For SCZ, studies have 396 
identified links between positive and negative symptom dimensions and TCI factors (Guillem et al., 397 
2002; Hori et al., 2008). Among BD patients, (Hajirezaei et al., 2017) identified personality profiles 398 
that are distinct from healthy controls and these profiles were further found to be shared with MDD. 399 
Since these studies associated disease symptoms solely with the known factor scores in the TCI, the 400 
contribution of the nuanced personality profiles captured in individual items in the TCI could not be 401 
determined. In the current study, the fact that we identified items in the TCI that corresponded to 402 
shared symptoms such as apathy, anhedonia, and distress directly extends prior literature and is 403 
consistent with studies documenting the relationship between TCI factor scores and symptoms such 404 
as anhedonia (Martinotti et al., 2008), as well as depression and anxiety (Jylhä and Isometsä, 2006). 405 
Additionally, prior studies only examined TCI’s association with symptoms without simultaneously 406 
including other instruments as covariates in the model. This approach cannot evaluate the relative 407 
importance of the personality traits in TCI against the broader set of phenotypical features defined in 408 
other instruments. In this regard, our study established the usefulness of personality traits as a set of 409 
highly reliable transdiagnostic features among all features defined in the self-reported instruments in 410 
the CNP data. 411 

The sum score of the 85 most predictive transdiagnostic items achieved much higher separability 412 
between HC and patients than known sub-scores and sum scores in the instruments that were 413 
specifically designed to assess diagnosis-specific symptom domains. This is true even for the subset 414 
of top 10 most predictive transdiagnostic items, which indicates that the shared phenotypic features 415 
across patient groups do not fully adhere to known dimensional structures in the instruments. Thus, 416 
using the total score and/or the sub-scores according to pre-defined subscales of a given instrument 417 
cannot identify the optimal set of transdiagnostic features. One explanation for this phenomenon is 418 
that because the patients share a broad range of phenotypic features, the pre-defined subscales and 419 
sum scores become insufficient in capturing the full dimensional structure since most of the 420 
instruments are designed to measure a limited set of constructs targeting a specific patient population 421 
(Avila et al., 2015). This further demonstrates the advantage of our importance-guided sequential 422 
model selection approach in identifying clinically relevant transdiagnostic features across a large set 423 
of instruments. 424 

While patients shared a broad set of phenotypic features, our results showed deviations from this 425 
transdiagnostic structure within the most predictive features for each patient group. These differences 426 
may in particular reflect clustered personality traits and symptom domains that are most unique for 427 
each patient population. For SCZ, the unique features of perceptual aberration and psychological 428 
distress, along with other features that are consistent with the transdiagnostic structure, largely 429 
conform to the positive and negative symptom dimensions associative with SCZ patients. For BD, 430 
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the unique features of increased energy, physical anhedonia, and psychological distress serve to 431 
shape the symptom structure along the manic and depressive dimensions. For ADHD, the increased 432 
representation in inattention, hyperactivity, and impulsivity is consistent with the overall 433 
symptomatology of ADHD patients. Overall, the concurrent existence of shared and category-434 
specific phenotypic features across the CNP patient groups is consistent with recent studies reporting 435 
both shared and distinct properties in functional brain networks (Grisanzio et al., 2017; Xia et al., 436 
2018a, b) and genetic neuropathology (The Brainstorm Consortium et al., 2017; Gandal et al., 2018) 437 
across major psychiatric disorders. Our results raise the possibility of exploring the relationship 438 
between the predictive phenotypic features and the underlying genetics of the individuals or groups 439 
that present with these features. 440 

In conclusion, we identified a set of transdiagnostic phenotypic features shared across SCZ, BD, and 441 
ADHD. This set of features distinguished the patient group from HC with high accuracy and a 442 
compact transdiagnostic screening scale can be derived from the corresponding top 10 most 443 
predictive questionnaire items. The feature importance guided sequential model selection provides a 444 
data-driven method to identify shared features under a supervised machine learning framework, in 445 
which the performance of the identified feature sets is evaluated on unseen data. This is an advantage 446 
over unsupervised machine learning methods. Moreover, the importance guided sequential model 447 
selection can be generalized to identify clinically-useful transdiagnostic features across categories 448 
defined in DSM-5 and ICD-10, or alternatively to identify the neural correlates of symptom severity 449 
across psychiatric disorders (Mellem et al., 2018). It should be noted that the medication status in the 450 
CNP dataset is not controlled. This suggests that although reliable transdiagnostic features could be 451 
identified across patient groups, the underlying cause of the observed symptom structure could 452 
potentially be confounded by the uncontrolled medication and symptom status. Future studies should 453 
further validate the transdiagnostic features identified in this study on other datasets with similar 454 
patient populations and with better controlled medication status. Including these additional datasets 455 
as out-of-sample validations can demonstrate the generalizability of the current results and 456 
methodology to the wider population. 457 
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Table 1. Demographic Information* 
HC SCZ BD ADHD Total 

No. of subjects 130 50 49 43 272 
With complete phenotype data 130 50 48 43 271 
With sMRI data** 98 30 44 34 206 
With fMRI data† 104 47 41 37 229 

     Age 
    Mean age 31.26  36.46  35.15  33.09 

SD age 8.74 8.88 9.07 10.76  
Range age 21-50 22-49 21-50 21-50 

      Gender 
    No. of female subjects 62 12 21 22 

Percent female subjects 47.69% 24.00% 42.86% 51.16% 

      Race 
    American Indian or Alaskan Native 19.23% 22.00% 6.25% 0% 

Asian 15.38% 2.00% 0% 2.33% 
Black/African American 0.77% 4.00% 2.08% 2.33% 
White 78.46% 66.00% 77.08% 88.37% 
More than one race 0% 2.00% 14.58% 6.98% 

      Education 
    No high school 1.54% 18.00% 2.08% 0% 

High school 12.31% 44.00% 29.17% 23.26% 
Some college 20.77% 18.00% 25.00% 30.23% 
Associate’s degree 7.69% 4.00% 6.25% 6.98% 
Bachelor’s degree 50.00% 10.00% 29.17% 32.56% 
Graduate degree 6.92% 0% 4.17% 2.33% 
Other 0.77% 4.00% 4.17% 4.65%   
* Demographic information is based on initial number of subjects 
** Excluding subjects with aliasing artifacts  
† Excluding subjects with misaligned structural-function imaging data 
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Table 2. Performances of the transdiagnostic models on each feature set* 

* The mean performance measures across 10 implementations are reported here with the standard deviation shown in parentheses 
** Wilcoxon’s rank-sum test

Performance of the full model:             
 Scales sMRI fMRI s+fMRI Scales+sMRI Scales+fMRI Scales+s+fMRI 
AUC 0.83(0.04) 0.56(0.05) 0.59(0.04) 0.57(0.05) 0.89(0.07) 0.86(0.06) 0.86(0.05) 
Accuracy 0.77(0.05) 0.58(0.08) 0.60(0.06) 0.61(0.07) 0.91(0.04) 0.87(0.05) 0.86(0.05) 
Sensitivity 0.77(0.07) 0.74(0.11) 0.60(0.11) 0.62(0.11) 0.86(0.08) 0.82(0.12) 0.86(0.08) 
Specificity 0.82(0.07) 0.38(0.11) 0.56(0.12) 0.49(0.17) 0.80(0.15) 0.61(0.30) 0.48(0.26) 

        

Performance of the best truncated model:      

 Scales sMRI fMRI s+fMRI Scales+sMRI Scales+fMRI Scales+s+fMRI 
AUC 0.95(0.02) 0.78(0.06) 0.87(0.08) 0.77(0.06) 0.96(0.03) 0.98(0.02) 0.96(0.03) 
Accuracy 0.88(0.04) 0.71(0.06) 0.85(0.07) 0.77(0.06) 0.87(0.05) 0.92(0.04) 0.90(0.04) 
Sensitivity 0.87(0.08) 0.81(0.09) 0.86(0.09) 0.77(0.08) 0.93(0.07) 0.91(0.06) 0.94(0.05) 
Specificity 0.88(0.04) 0.60(0.16) 0.84(0.18) 0.76(0.07) 0.80(0.15) 0.92(0.04) 0.85(0.09) 
No. of features 85 131 8192 16384 238 32 64 

        

Test on AUCs between the full and the truncated model**:     

 Scales sMRI fMRI s+fMRI Scales+sMRI Scales+fMRI Scales+s+fMRI 
Test statistic 100 100 100 99.5 82.5 100 95 
p-value < 0.001 < 0.001 < 0.001  < 0.001 0.01537 < 0.001 < 0.001 
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Figure Legends 

Figure 1. The performances of the best transdiagnostic models selected via the feature importance-
guided sequential model selection procedure. A) The receiver operating characteristic (ROC) curve 
for the best truncated models based on each feature set. Area under the ROC curve (AUC) for each 
model is listed in the legend. B) Box plots showing the AUC of the best truncated model for each 
feature set measured across 10 implementations of sequential model selection procedure. 

Figure 2. Distributions and effect sizes of the model’s derived scores vs. the existing scale scores. A) 
Sum score calculated from the identified 85 most predictive items showing high separability in terms 
of Cohen’s d between HC and Patients. B) All three patient categories showed elevated sum scores 
relative to HC (p < 0.001). C) The 4 temperament sub-scores in TCI included in the CNP dataset 
showing only medium effect sizes between HC and Patients. D) Box plot showing significantly 
higher effect size from the identified 85 items (asterisk) compared to all predefined sum and 
subscores in self-reported instruments in CNP data. The asterisk represents the Cohen’s d between 
HC and Patients from the top 85 items, whereas the box plot shows the effect sizes from all 
predefined sum and subscores (also see Supplementary Table 1). 

Figure 3. The percentage of items from each of the 13 self-reported instruments among the set of 85 
most predictive transdiagnostic items. 

Figure 4. The grouping of items into specific phenotypic domains for the top 20 most predictive 
items from A) the HC vs. All Patients transdiagnostic model and B) – D) the 3 HC vs. a single patient 
category classifiers. The radius in the spider plots represents item counts. 
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