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Abstract

Different models of tumor growth are considered. Some mathematical methods are

developed to analyze the dynamics of mutations enabling cells in cancer patients to metas-

tize. The mathematical models consist of some stochastic dynamical systems describing

tumor cells and immune effectors. It is also considered a method to find the ideal outcome

of some treatments. Some different types of dendritic cells are considered. The obtained

results will help to find some suitable treatments,which can be successful in returning an

aggressive tumor to its passive,non-immune evading state. The principle goal of this paper

is to find ways to treat the cancer tumors before they can reach an advanced stage devel-

opmen.
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1. Introduction

In this paper some deterministic and stochastic mathematical models are considered,

which explain the interaction of the immune system and cancer.

Any treatment, which can improve the bodies own immune response is called the im-

munotherapy.

The treatment by cytotoxic chemotherapy helps to kill rapidly dividing cells, but it can

harm normal tissues at the same time. The use of immunotherapy in conjuction with cy-

totoxic chemotherapy is known as bio chemotherapy. The bio chemotherapy treatment is

obtained by using the immunological drug Interleukin-2. The Interleukin-2 at time t is de-

noted by I(t). The cells, which can not kill other cells are called naive T-cells. The number

of naive t-cells at time t is denoted by TN(t). The naive t-cells will have the ability to kill

other cells, if activated by antigen presenting cells. The most important type of antigen

presenting cells are known as immature dendritic cells, immunogenic dendritic cells and to

tolerogenic dendritic cells. All cells population are assumed to be antigen specific.

In section 2, we shall write the most recent mathematical models, which incorporate some

different cells and the cytosine IL-2.

In section 3, we generalize the models in section 2 to stochastic dynamical systems.

2. deterministic models and cancer

There are various mathematical models of cancer and immune response [1-6]. As an exam-

ple, let φ(t) be the population of the immunogenic dendritic cells at time t and ψ(t) be the

Immature dendritic cells. It is assumed that the cells φ(t) are produced at a constant rate

a by the Immature dendritic cells ψ(t). It also decays at a constant rate ω. This yields the

following equation:
dφ

dt
= aψ(t)− ωφ(t) (2.1)
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Let M(t) be the chemotherapy drug concentration in the blood stream at time t. The

functions M(t) and I(t) decay exponentially with respect to t;

M(t) = M(0)e−ω1t , I(t) = I(0) e−ω2t,

where ω1 and ω2 are positive constants.

The tumor cell population T (t) grows logistically in the absence of immune response, [7,8].

The function T (t) satisfies the equation

dT (t)

dt
= a1T (1− b1T ) − D(t)T,

where

D(t) = b
[L(t)/T (t)]α

s + [L(t)/T (t)]α
,

and L(t) is the number of cells, which combat a specific invader at time t.

Let η(t) be the number of tolerogenic dendritic cells. following [9,10,11], the function η has

linear natural death term and satisfy the equation

dη

dt
= F (t) ψ(t) − a2 η(t) , (2.2)

where F is given by

F (t) = b2
TR(t)

c1 + TR(t)
+ b3

I(t)

c2 + I(t)

The function TR is the number of the so-called regularity T-cells at time t. The relation

between TR(t) and TN(t) is given by:

dTR(t)

dt
= b4 η(t) TN(t)

+ b5 TR(t)
I(t)

c3 + I(t)
− a3 TR(t) . (2.3)

The function TN(t) satisfy the following equation;

dTN(t)

dt
= a4 −

ω3

c4 + IN(t)
TN(t), (2.5)

All the parameters a, b, a1, ...a4, b1, ..., b5, c1, ..., c4 are nonnegative constants.
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3. Stochastic models

It is preferred to find ways to treat tumors before they can reach an advanced stage of

development.

Let us study the immunogenic dendritic cells φ(t).

To be more realistic, we consider the effect of the concentration of the chemotherapy M(t),

and assume that {φ(t)} is a stochastic process satisfying a stochastic differential equation

dφ(t) = [aψ(t)− ωφ(t)]dt

− k φ(t)[1− e−M(t)]dt+

+ σ dW (t) (3.1)

where σ is the volatility of the process {φ(t)} and W(t) is a Wiener process with zero mean

and unit variance.

The function ψ(t) satisfies the equation

dψ(t)

dt
= g(T (t))− F (t)ψ(t)− bψ(t) (3.2)

where g increases monotonically with respect to T(t) , [8,9].

equation (3.1) can be written in the form

d X(t) = g1(t)dt+ g2(t)dW (t), (3.3)

where

g1(t) = aψ(t) g3(t) − φ(0)
dg3(t)

dt
,

g2(t) = σ g3(t),

g3(t) = exp[(w + k)t− k
∫ t

0
e−M(s)ds],

X(t) = g3(t)[φ(t)− φ(0)],

a , w , k and α are positive constants.

It is supposed that φ(0) is deterministic. It is clear that

x(t) =
∫ t

0
g1(s)ds +

∫ t

0
g2(s) dW (s),
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φ(t) = g−13 (t) X(t) + φ(0).

According to Feynman-Kac formula [9], we get

∂u(x, t)

∂t
=

1

2
g22(t)

∂2u(x, t)

∂x2
+ g1(t)

∂u(x, t)

∂x
, (3.4)

u(x, 0) = f(x) , (3.5)

where

u(x, t) = E [f(x + X(t)],

(E(Y) is the expectation of Y).

If f is continuous and bounded on (−∞,∞), then the solution of (3.4) , (3.5) is given by;

u(x, t) =
1√

4πg(t)

∫ ∞
−∞

e
−(y−ξ)2

4g(t) f(ξ) dξ, (3.6)

where

g(t) =
1

2

∫ t

0
g22 (s) ds,

y = x +
∫ t

0
g1(s) ds.

using (3.6), one gets that the characteristic function of the stochastic process {X(t)} is

given by

E[ei λ X(t)] = exp[i λ
∫ t

0
g1(s) ds − λ2 g(t)]. (3.7)

From (3.3), we get

E[φ(t)] = g−13 (t) h(t) , (3.8)

h(t) = a
∫ t

0
g3 (s) ψ(s) ds + φ(0).

From (3.7) , one gets

E[eiλg3(t)φ(t)] = exp[
−h2(t)
4g(t)

− g(t){λ− ih(t)

2g(t)
}].

Using the last formula, we find that all the moments of the stochastic process {φ(t)} are

given by :

(ig3(t))
n E[φn(t)] = (−1)n g

n
2 (t) Hn(

−ih(t)

2
√
g(t)

) (3.9)
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where Hn(x) is the Hermite polynomial.

The variance of φ is given by V ar[φ(t)] = 2g−23 (t)g(t).

Our stochastic model,[10-16] should be viewed as an attempt to understand the growth

dynamics of some dendritic cells and the effect of the chemotherapy.

In immunotherapy without IL-2 delivery, tumor-specific lymphocytes are reintroduced to

the body after being inoculated with high concentrations of the cytokine IL-2. We add such

treatment via immunotherapy to this model by shifting the initial lymphocyte population.

(see [17-23]).
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