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Abstract 8 

Sleep spindles are characteristic events in EEG signals during non-REM sleep, and are known 9 

to be important biological markers. Manually labeling spindles by visual inspection, however, 10 

has proved to be a tedious task. Automatic detection algorithms generalize weakly for versatile 11 

spindle forms, and machine-learning methods require large datasets to train, which are 12 

unfeasible to acquire particularly for experimental animal groups. Here, a novel, integrated 13 

system based on a process of iterative “Selection-Revision” (iSR) is introduced to aid in the 14 

efficient detection of spindles. By coupling low-threshold automatic detection of spindle events 15 

based on selected parameters with manual “Revision,” the human task is effectively simplified 16 

from searching across signal traces to binary verification. Convergence was observed between 17 

resulting spindle sets through iSR, largely independent of their initial labeling, demonstrating 18 

the robustness of the method. Although possible breakdown of the revised spindle sets could 19 

be seen after multiple rounds of Revision, due to overfitting of the revised set to the initial 20 

human labeling, this could be compensated for by a Selection scheme tolerant to higher False-21 

Negative rates of the machine labeling relative to the standard set. It was also found that iSR is 22 

generalizable to different datasets, and that initial human labeling could be substituted by low-23 

threshold machine detection. Overall, this human-machine coupled approach allows for fast 24 

labeling to obtain consistent spindle sets, which can also be used to train machine-learning 25 
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models in the future. The principle of iSR may also be applied for many different data types to 26 

assist with other pattern detection tasks. 27 

 28 

Significance Statement 29 

Electroencephalography (EEG) recordings are widely adopted in brain research. Abnormalities 30 

in the occurrence of particular EEG waveforms, such as sleep spindles, can be used to diagnose 31 

psychiatric diseases. Traditionally, human experts have labeled EEG traces for sleep spindles, 32 

a time consuming process; automated detection algorithms, however, often yield inaccurate 33 

results. This study introduces a new method for efficient sleep spindle detection with a human-34 

machine coupled system that can iteratively revise labeled datasets, enabling convergence 35 

towards a robust, accurate spindle labeling. This system eases large-scale sleep spindle 36 

detection, which can yield datasets for both biological analyses and for training machine-37 

learning models. Furthermore, the underlying method of iterative revision can be used to 38 

analyze other types of patterns efficiently. 39 

 40 

Introduction 41 

Sleep spindles are 0.5-3s bursts in electroencephalography (EEG) recordings with central 42 

frequencies of 8-16 Hz and a distinctive waxing-waning pattern generated by the thalamic 43 

reticular nucleus (TRN) (Huupponen et al., 2000, 2007; Duman, 2005; Sitnikova et al., 2009). 44 

As a unique characteristic of non-rapid eye movement (non-REM) sleep in mammals, sleep 45 

spindles have been used as important biological markers in sleep research and for investigating 46 

the functional role of the TRN in memory consolidation and synaptic plasticity (Diekelmann 47 

and Born, 2010; Fogel and Smith, 2011). Furthermore, abnormalities in the density of sleep 48 

spindles has been experimentally determined to be correlated with schizophrenia, autism, and 49 

ADHD (Ferrarelli et al., 2007; Wamsley et al., 2012; Wells et al., 2016; Antony et al., 2018), 50 
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among other psychiatric disorders. Thus, counting spindles in EEG recordings and determining 51 

their characteristics could have valuable applications in medical diagnostics. 52 

 Traditionally, sleep spindles have been manually marked by human experts (Warby et al., 53 

2014; Purcell et al., 2017). However, this task is time-consuming and is difficult for large-scale 54 

studies. In light of this, several automatic detection algorithms have been developed, primarily 55 

based on signal processing techniques such as band-pass filtering, amplitude thresholds, or a 56 

variety of transformations (Schimicek et al., 1994; Duman et al., 2009; Devuyst et al., 2011; 57 

Adamczyk et al., 2015). However, the fine-tuning of algorithm parameters against human gold 58 

standards can be a laborious and unsystematic task. Furthermore, besides the difficulty to obtain 59 

large gold standard spindle sets, labeling by human experts may not be completely reliable, as 60 

reflected by large variabilities between manually labeled sets (Warby et al., 2014). 61 

 More recently, machine-learning methods have also been researched in to improve the 62 

performance of automated detection algorithms (Gorur, 2002; Ventouras et al., 2005; Camilleri 63 

et al., 2014; Ventouras et al., 2014; Tan et al., 2015). However, the training process is 64 

convoluted and often requires very large sets of human expert labels, which may be unfeasible 65 

to obtain for specific groups of subjects such as genetically modified mice. Moreover, the 66 

overfitting of machine-learning models may also be a concern when applying such trained 67 

models to new subjects. 68 

 This study presents a new method to address these issues by introducing an iterative approach 69 

for spindle detection, integrating both human labeling and algorithmic automatic detection in a 70 

process of “Selection-Revision” that systematically adjusts algorithm parameters. Starting with 71 

a short segment of manually labeled spindles, the algorithm processes the EEG data to obtain 72 

more potential spindle events, creating a larger label set which is then reviewed by human visual 73 

inspection. The revised label set is then used to perform parameter adjustment of the algorithm 74 

for better alignment, and the machine-detection-human-inspection process can be performed 75 

iteratively. For new datasets, the Revision process can start with generalized, low-false negative 76 

machine detection, eliminating the need for initial manual labeling. This system effectively 77 
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reduces the human workload from a searching task to binary classification of spindles, and, 78 

aside from improving human consistency in labeling, can facilitate generation of large labeled 79 

datasets that can be used in future training of machine-learning models. 80 

 81 

Materials and Methods 82 

Obtaining of EEG recordings 83 

The EEG data analyzed in this study was provided by Dr. Soonwook Choi at the Broad Institute 84 

of MIT and Harvard. 85 

 86 

Automatic spindle detection algorithm 87 

An automatic spindle detection algorithm was implemented using MATLAB (R2018a, 88 

Mathworks, Inc.) based on the Short-Time Fourier Transform (STFT) (Gorur, 2002), achieving 89 

fast machine labeling of spindles (~1 minute of running time for 6 hours of EEG recording). 90 

The EEG data was first preprocessed by smoothing and noise reduction. Previously sleep-91 

scored non-REM segments of sleep were then transformed by STFT with a 300ms Hamming 92 

window and 250ms overlap. The power of the spindle frequency band (8-16 Hz) was calculated 93 

relative to the total power of the signal, and a double-threshold was applied on this power ratio 94 

for spindle detection. Segments 0.5-3 seconds long that crossed a lower threshold during their 95 

entire lengths and crossed an upper threshold at least once in their durations were considered 96 

spindles. 97 

 98 

Integrated interface 99 

A custom, integrated interface was also developed using MATLAB for EEG data and sleep 100 

spindle visualization, manual labeling, and revision. In the interface, EEG data were displayed 101 
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in customizable and scrollable lengths per screen, with the time axis labels marking 1-second 102 

increments and the vertical axis ranging from the minimum to maximum voltages recorded in 103 

the EEG data. Both preprocessed, non-REM segments and their corresponding filtered (band 104 

pass, 8-18 Hz) signals were displayed with linked time axes for reference. 105 

 For spindle labeling, human labelers could click on the start and end times of the spindle on 106 

the graph, and record the corresponding spindle events. Labelers were able to reference 107 

previously labeled events throughout one labeling session, and could modify their labels by 108 

deleting events or updating start/end points. Labelers could also continue with a new session 109 

by loading previously saved matrices containing the corresponding timestamps for labeled 110 

spindles. Initial labeling of a segment usually took 3-6 times the length of the EEG recording. 111 

 For fast spindle revision, reviewers could choose to accept, reject, or modify the start/end 112 

points for each potential spindle event shown, based on surrounding graphs of the EEG signal 113 

and the corresponding band pass filtered signal. Reviewers were blinded from the origin of the 114 

events shown (from the machine set, the human set, or both). Revision of one spindle usually 115 

took 2-3 seconds, and the time spent during revision depended largely on the size of the revision 116 

set. 117 

 118 

Performance evaluation 119 

Since an overwhelming majority of the EEG recording does not correspond to any spindle 120 

events, a by-sample performance analysis would yield an extremely large TN, causing inflation 121 

of the overall performance measurements. Thus, for the purposes of this study, a by-event 122 

performance evaluation was adopted, categorizing each spindle event marked by either side 123 

being evaluated as one of the following: True Positive (TP), False Positive (FP), and False 124 

Negative (FN). These criteria, especially the FN rate, was used extensively when measuring the 125 

performance of various algorithm parameter pairs. 126 
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 As not all marked spindles perfectly overlapped with each other, it was necessary to 127 

determine whether to implement a threshold for overlapping. However, it was found that, when 128 

comparing the machine labeled sets to the initial human labeled sets, nearly all spindle events 129 

had sufficiently large overlapping percentages. Moreover, this overlap was found to have 130 

increased in the following rounds of revision. Therefore, it was unnecessary to implement an 131 

overlapping threshold but rather to accept an event as TP as long as there existed an overlap of 132 

sorts between the two sets. 133 

 When comparing two manually labeled or revised sets that did not solely consist of machine-134 

generated labels, it was meaningless to define spindle events as FP or FN. Thus, recall and 135 

precision between the two sets were calculated, where 136 

Recall =
𝑇𝑃

|𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑆𝑒𝑡|
, and 137 

Precision =
𝑇𝑃

|𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑆𝑒𝑡|
. 138 

 The harmonic means of recall and precision were calculated so that the F1 score would 139 

provide a measurement of the similarity of any two sets, and would remain independent of the 140 

order of the two sets. 141 

 142 

Statistical tests 143 

Statistical analyses, in the form of t-tests (one-tailed, two-tailed, or one-sample test for mean), 144 

were performed using MATLAB. The significance thresholds used were 𝛼 = 0.05 for (*), 𝛼 =145 

0.01 for (**), and 𝛼 = 0.001 for (***). Averages are plotted as mean ± standard deviation. 146 

See Table 1 for a summary of the statistical analyses used. 147 

 148 

Code Accessibility 149 
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The custom code described in the paper for automatic spindle detection, performance analysis, 150 

labeling, and Selection-Revision is freely available online at https://github.com/dashengbi/siris. 151 

For this study, the code was run on a Windows 10 computer with an Intel i5 CPU and 8.00 GB 152 

RAM. 153 

 154 

Results 155 

Integrated system for EEG analysis 156 

The EEG data obtained was passed through a systematic process of manual and machine 157 

labeling, performance evaluation, and Revision, to repeatedly add to or delete from a “standard” 158 

set of spindles (See Figure 1). The iterative system for spindle detection is based upon two 159 

processes: Selection and Revision. Selection is the process during which machine sets with 160 

certain parameters (that can achieve appropriate alignment of algorithm-labeled spindles with 161 

those in the standard set) are chosen, and Revision is the process during which a large spindle 162 

set (including spindles from both humans and the machine) is reviewed and its spindles 163 

accepted or rejected. Selection can be applied either following an initial generation of a manual 164 

labeled set, or following a Revision process, and this Revision-Selection sequence may be 165 

applied iteratively to adjust both algorithm parameters and the standard set in order to achieve 166 

better consistency of detection. 167 

 168 

Alignment between different human and algorithm labeled sets 169 

Upon obtaining several standard sets and machine labeled sets, the spindle events were cross-170 

analyzed. Some sample spindle events labeled by different humans and by the automatic 171 

detector are shown in Figure 2(a). It was found that although some characteristic spindles were 172 

labeled by most or all of the humans and the machine, the agreement between different detectors 173 

varied largely for other events. To evaluate the performance of the algorithm, machine-labeled 174 
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sets with different parameters were compared with the standard sets, and plots specifying the 175 

recall versus precision rates of the machine labeled sets relative to one standard set were drawn 176 

(See Figure 2(b)). The outermost curve on the Recall-Precision plots represents the intrinsic 177 

tradeoff between the two statistics that the machine algorithm embodies. The plots of the 178 

agreement between different human sets are also shown.  Initially, the agreement rates between 179 

different initial sets were lower than those with the machine set with optimal performance 180 

(shown by the point on the outermost curve furthest from the origin). After multiple rounds of 181 

revision coupled with their respectively selected machine sets, the agreement between revised 182 

sets from different initial sets increased greatly to points higher than those of the optimal 183 

algorithm sets. 184 

 185 

Selection of machine labeled set for Revision 186 

To select an appropriate machine set for Revision, both false negative (FN) and false positive 187 

(FP) rates needed to be considered. The respective FP rates and machine label set sizes relative 188 

to various FN thresholds (so that the FN rate of the system would not exceed such a threshold) 189 

were plotted. Higher FN rates would cause the iterative Revision system to have more inherent 190 

false negatives relative to the ground truth, as the algorithm may not be able to detect certain 191 

spindle events the human marked as negative. Higher FP rates were correlated with much larger 192 

sets of spindles for humans to review, thus decreasing the efficiency of the Revision system. 193 

During revision, if the machine set with the optimal F1 score was selected, on average, the first 194 

round of Revision would have a FN rate of 0.5069—that can also be seen as approximately the 195 

rate of spindles not detected by humans that would also be neglected by the machine (See 196 

Figure 3(a)). Previous studies have shown that the FN rates between different human experts 197 

are around 0.25-0.3 (Warby et al., 2014); thus it would suffice to use a machine labeled set with 198 

FN rate <0.2 to cover most spindles in the ground truth. The mean number of spindles in a 199 

1200s segment of non-REM sleep detected using the optimal-F1 score machine parameters was 200 
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53, while the mean number of spindles detected by machine algorithms while limiting their FN 201 

rate to less than 0.2 was 147 (See Figure 3(b)). 202 

 203 

Significant increase in correlation between differently obtained spindle sets upon Revision 204 

It was found that iterative Revision could increase the alignment between resulting spindle sets 205 

from largely different initial human labeled sets (See Figure 4(a)). A measurement of the 206 

alignment between different spindle sets at a given time could be obtained by calculating the 207 

average F1 score between all possible pairs of spindle sets. A measurement of the disparity 208 

between all spindle sets could be obtained by calculating the standard deviation of the F1 score 209 

between all possible pairs of spindle sets. Using a one-tailed t-test assuming unequal variances 210 

between different revision rounds, it was found that the average cross-compared F1 score 211 

significantly increased as a result of the first round of Revision (𝑃 = 0.0417). The average 212 

cross-compared F1 score significantly increased between the two subsequent rounds of 213 

Revision (𝑃 = 0.0021). However, the average cross-compared F1 scores were not significantly 214 

different between the second and third rounds of Revision (𝑃 = 0.1970). Thus, by applying 215 

iterative Revision, the agreement between spindle sets labeled by different humans could 216 

converge to one standard set. 217 

 As a result of the increased alignment between spindle sets, the algorithm parameter sets 218 

selected using iteratively revised sets also showed signs of convergence (See Figure 4(b)). In 219 

particular, the upper threshold of the algorithm showed a decreasing trend in standard deviation 220 

as Revision was applied continuously. 221 

 222 

Overfitting of F1 score and breakdown of standard set with high-FN Selection schemes 223 

For two Selection schemes, three rounds of Revision-Selection were performed, starting with 224 

three different initial sets. The F1 scores obtained for the Revision rounds were found to be 225 
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significantly different (See Figure 5(a)), with those for the Selection scheme of choosing the 226 

optimal machine set (as measured by F1 score relative to the standard set obtained from each 227 

previous round) being higher (one-tailed t-test, 𝑃 = 0.0019). Examining the size of the revised 228 

standard sets obtained after several rounds of revision (See Figure 5(b)), it was found that there 229 

was a significant decrease in the revised set sizes relative to the sizes of the initial human-230 

labeled sets (one-tailed t-test, 𝑃 = 0.0118). For the standard sets obtained by Revision after 231 

Selection with a FN threshold of < 0.2, there was not a significant deterioration of the set size 232 

(one-tailed t-test, 𝑃 = 0.2328). Therefore, Selection schemes with higher FN tend to introduce 233 

overfitting of the standard set with machine sets, and can cause revised standard sets to 234 

significantly decrease in size, deviating away from the ground truth; it is necessary to adopt a 235 

Selection scheme with low FN to utilize the Revision process fully. 236 

Indeed, by iteratively applying Revision with Selection scheme of 𝐹𝑁 < 0.2, it was found that 237 

the agreement rate between revised standard sets from different initial sets steadily increased 238 

(See Figure 6).  239 

 240 

Revision is generalizable to extended datasets by applying algorithms with Selected 241 

parameters for initial labeling 242 

To test whether pure algorithm labeling could be applied to novel datasets with minimal loss of 243 

spindles, separate rounds of Revision, both on the previously mentioned dataset and a new 244 

dataset, were performed with the initial labeling being generated using the automatic detection 245 

algorithm. The parameters of the algorithm (lower threshold = 0.21, upper threshold = 0.47) 246 

were determined based on the previously obtained standard sets with manual initial labeling 247 

after three rounds of Revision so that the FN rate of the initial algorithm set would not exceed 248 

0.1. The correlation between the revised sets from initial algorithm and manual labeling were 249 

obtained (See Figure 7(a)). 250 
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 It was found that Revision greatly increased the alignment between standard sets revised from 251 

initial algorithm and manual labeled sets (one-tailed t-tests: 𝑃 < 0.001 from Initial to Revision 252 

1 and 𝑃 = 0.0476 from Revision 1 to Revision 2). After two rounds of Revision, the agreement 253 

rate did not change significantly (two-tailed t-test, 𝑃 = 0.3952). Furthermore, it was found that 254 

for each round of Revision, the mean agreements between the revised sets obtained from initial 255 

algorithm labeling were not significantly different from those obtained from initial human 256 

labeling (two-tailed t-tests: 𝑃 = 0.3358, 𝑃 = 0.4749, 𝑃 = 0.7019, and 𝑃 = 0.3174 for the 257 

initial round, and the first three rounds of Revision, respectively). 258 

 To further demonstrate the generalizability of the convergent nature of Revision to other 259 

datasets of EEG, three rounds of Revision (with Selection scheme of FN<0.2) were performed 260 

on another dataset using two different initial sets (manual labeling and machine labeling). By 261 

comparing the F1 scores between the two (See Figure 7(b)), it could be seen that the agreement 262 

rates increased through repeated Revision. Moreover, it was found that for each of these rounds 263 

of Revision, there was no significant difference in the F1 scores between the standard sets from 264 

two methods of initial labeling across the datasets (two-tailed t-tests: 𝑃 = 0.0557, 𝑃 = 0.5388, 265 

𝑃 = 0.1373 , and 𝑃 = 0.3392  for the four rounds, respectively). Therefore, the machine 266 

labeled initial sets, when combined with iterative Revision, are able to generate reliable 267 

standard sets. Thus, the method can generalize well to novel datasets. 268 

 269 

Discussion 270 

It was found that after a process of iterative Selection-Revision to adjust initial human labeled 271 

spindle sets with the introduction of certain machine-detected events, the agreement rates 272 

between different standard sets improved greatly. It was also found that a FN rate threshold was 273 

necessary for effective adjustment of the initial human set, as higher FN would cause 274 

deterioration of the spindle set size after several rounds of Revision. 275 
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 The system of iterative Selection-Revision improves the quality of standard sets resulting 276 

from an initial set that need not be very carefully labeled by human experts. Though generally, 277 

the FP and FN rates of machine detection were high, once an appropriate machine set (with a 278 

controlled FN rate) was combined with a manually labeled set, spindle events that were 279 

previously undetected by humans could be noticed during revision. Furthermore, the Revision 280 

process also limits the introduction of false-positives into the system, as each spindle event is 281 

subjected to multiple rounds of scrutiny. 282 

 The most pressing issue that the Selection-Revision system addresses is that of time. 283 

Previously, accurate labeling of sleep spindles required laborious searching of EEG traces by 284 

human experts (Ventouras et al., 2005); with the system of Selection-Revision, an initial set 285 

without such time-consuming manual labeling may be applied and revised iteratively until the 286 

resulting standard set evolves towards the ground truth. During Revision, human validation of 287 

machine-labeled spindles is much easier to perform as compared to manual detection. For a 20-288 

minute long segment of non-REM EEG, applying two rounds of Revision requires only around 289 

10 minutes, while estimated times for careful manual labeling spindles in such data can be as 290 

long as 2 hours (based on the author’s own experience). This indicates that iterative Revision 291 

may reduce the human workload by as much as tenfold. 292 

 However, there are several aspects that should be taken into consideration. These include the 293 

potential bias of the human reviewer, who may be inclined to label and revise spindles with 294 

inconsistent standards, and the inherent FN/FP rate tradeoff of the Revision system, caused by 295 

the limitations of the machine detection algorithm (Ventouras et al., 2005; Tan et al., 2015). 296 

These concerns may be addressed by introducing certain “confusion” spindle events to evaluate 297 

the possibility of human bias during Revision, and by implementing more algorithms that are 298 

able to analyze different aspects of the EEG signal. By combining these algorithms that focus 299 

on distinct spindle characteristics, it would be able to provide more accurate machine-300 

augmentations, reducing the human workload even more. Ultimately, the human-machine 301 
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coupled Selection-Revision system may generate large training sets at a fast speed, thus 302 

facilitating machine-learning models for large-scale spindle detection. 303 

 Despite convergence being observed between revised spindle sets and between selected upper 304 

threshold parameters of the algorithm, convergence of the lower threshold was not observed. 305 

This may be caused by the complex relationship between algorithm parameters and spindle sets, 306 

and that automatic detection may be more sensitive to upper thresholds than to lower thresholds. 307 

More systematic tests are needed to determine whether such a relationship exists. For practical 308 

purposes, however, two rounds of Revision is often sufficient to obtain reliable gold-standard 309 

spindle sets. 310 

 In conclusion, this study has introduced a novel method for efficient sleep spindle detection 311 

based on a mechanism of iterative machine-augmented human Revision. It has shown that 312 

through multiple rounds of Revision, largely different spindle sets that were initially coarsely 313 

labeled by humans could evolve and converge into standard sets more closely aligned with each 314 

other. This method of iterative Selection-Revision can be applied as a systematic means of fine-315 

tuning automatic detection algorithm parameters with the absence of a meticulously generated 316 

gold standard, and can also be used to expedite the process of gold-standard label generation 317 

for training machine-learning models of spindle detection. 318 
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 392 

Legends 393 

Figure 1 | Diagram for iterative EEG analysis system.  394 

I is the spindle label set generated from initial human labeling (only needed once), {𝑴} is the 395 

set of all machine label sets with different parameters, 𝑀𝑖 is the machine set with parameters 396 

obtained from Selection  (𝑖 ∈ 𝑁 ∪ {0}), and 𝑅𝑖  is the revised standard set after 𝑖 rounds of 397 

Revision (𝑖 ∈ 𝑁+). During each round of Revision, spindles are either accepted or rejected; 398 

thus 𝑅𝑖+1 is necessarily a subset of 𝑅𝑖 ∪𝑀𝑖. 399 

 400 

Figure 2 | Recall-Precision Plots for Different Algorithm Parameters and Human Label 401 

Sets. 402 

(a) Several spindles in three different initial human labeled sets and an algorithm set optimized 403 

for performance on one of the human sets are shown. (b) Each point on the plot corresponds to 404 

the recall and precision of one spindle set relative to the standard set from one human labeler 405 
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after different rounds of revision. Black points are results from machine labels with different 406 

parameters, and red/blue points refer to revised spindle sets starting with different initial spindle 407 

sets.  408 

 409 

Figure 3 | Tradeoff Between False Positive Rate, Time Efficiency, and FN Rate. 410 

Three different initial non-REM segments of 1200s length, labeled by different human experts, 411 

are shown in different colors. The stars represent the statistics obtained for the respective 412 

machine sets with the optimal F1 score performance. (a) Minimum FP value achieved by 413 

algorithm while maintaining FN rate below certain thresholds. (b) The number of spindles in 414 

machine labeled set for each of the corresponding FN thresholds. The number of machine-415 

labeled spindles is directly related with the time required for Revision.  416 

 417 

Figure 4 | Convergence of Cross-Compared F1 Scores and Upper Threshold After 418 

Multiple Rounds of Revision 419 

(a) Scattered circles show the F1 score between all possible pairs of initial sets or revised 420 

standard sets under two different Selection schemes (FN < 0.2 or Optimal F1 score). There 421 

were 3 points in the initial round and 21 points in all following rounds of Revision. Blue filled 422 

points show the average cross-compared F1 scores in a given round, and blue lines show the 423 

standard deviation of cross-compared F1 scores in that round. (b) Scattered triangles show the 424 

values of the “threshold” parameters of the optimal algorithm parameter sets selected with 425 

respect to the standard sets after various times of Revision. 426 

 427 

Figure 5 | Optimal F1 Score of Algorithm-Labeled Sets After Multiple Rounds of Revision 428 

(a) Points show the optimal F1 scores that the algorithm can obtain through parameter 429 

adjustment (with respect to differently obtained initial human sets or revised sets during the 430 
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same round of Revision). The connected circles show the trends of the average performance of 431 

the algorithm within each Selection scheme changing over time. (b) Points show the sizes of 432 

the initial or revised standard sets (𝐼 or 𝑅𝑖, where 𝑖 ∈ {1, 2, 3}). Connected circles show the 433 

trends of the average sizes of the revised standard sets under different Selection schemes. 434 

 435 

Figure 6 | Increased Agreement between Standard Sets with Different Initial Sets 436 

Heatmap with color coding showing three different sets in their respective rounds of Revision. 437 

Each scaled grid shows the agreement (F1 score) between two spindle sets. 438 

 439 

Figure 7 | Convergence of Revised Spindle Sets Starting with Algorithm Labeling 440 

(a) Points show the F1 score between a standard set revised with initial human labeling and a 441 

standard set revised with initial algorithm labeling. Blue filled points and lines show the average 442 

F1 score of the algorithm initial/revised set relative to human initial/revised sets of the same 443 

Revision round. (b) Points show the F1 scores between a standard set revised with initial human 444 

labeling and a standard set revised with initial algorithm labeling for a different trace, with the 445 

algorithm parameters used being the same as those in (a). 446 

 447 

Table 1 | Summary of Statistical Analyses 448 

Table shows a summary of all statistical analyses performed in this study. Columns denoting 449 

the type of data being analyzed, the type of statistical test used in the analysis, and the 450 

resulting 𝑃-values are shown.  451 
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Figures and Tables 452 

 453 

Figure 1 | Diagram for iterative EEG analysis system.  454 

I is the spindle label set generated from initial human labeling (only needed once), {𝑴} is the 455 

set of all machine label sets with different parameters, 𝑀𝑖 is the machine set with parameters 456 

obtained from Selection  (𝑖 ∈ 𝑁 ∪ {0}), and 𝑅𝑖  is the revised standard set after 𝑖 rounds of 457 

Revision (𝑖 ∈ 𝑁+). During each round of Revision, spindles are either accepted or rejected; 458 

thus 𝑅𝑖+1 is necessarily a subset of 𝑅𝑖 ∪𝑀𝑖. 459 
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 461 

Figure 2 | Recall-Precision Plots for Different Algorithm Parameters and Human Label 462 

Sets. 463 

(a) Several spindles in three different initial human labeled sets and an algorithm set optimized 464 

for performance on one of the human sets are shown. (b) Each point on the plot corresponds to 465 

the recall and precision of one spindle set relative to the standard set from one human labeler 466 

(a)

(b)
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after different rounds of revision. Black points are results from machine labels with different 467 

parameters, and red/blue points refer to revised spindle sets starting with different initial spindle 468 

sets.  469 

  470 
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 471 

Figure 3 | Tradeoff Between False Positive Rate, Time Efficiency, and FN Rate. 472 

Three different initial non-REM segments of 1200s length, labeled by different human experts, 473 

are shown in different colors. The stars represent the statistics obtained for the respective 474 

machine sets with the optimal F1 score performance. (a) Minimum FP value achieved by 475 

algorithm while maintaining FN rate below certain thresholds. (b) The number of spindles in 476 

machine labeled set for each of the corresponding FN thresholds. The number of machine-477 

labeled spindles is directly related with the time required for Revision.  478 
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 480 

Figure 4 | Convergence of Cross-Compared F1 Scores and Upper Threshold After 481 

Multiple Rounds of Revision 482 

(a) Scattered circles show the F1 score between all possible pairs of initial sets or revised 483 

standard sets under two different Selection schemes (FN < 0.2 or Optimal F1 score). There 484 

were 3 points in the initial round and 21 points in all following rounds of Revision. Blue filled 485 

points show the average cross-compared F1 scores in a given round, and blue lines show the 486 

standard deviation of cross-compared F1 scores in that round. (b) Scattered triangles show the 487 

values of the “threshold” parameters of the optimal algorithm parameter sets selected with 488 

respect to the standard sets after various times of Revision. 489 
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 491 

Figure 5 | Optimal F1 Score of Algorithm-Labeled Sets After Multiple Rounds of Revision 492 

(a) Points show the optimal F1 scores that the algorithm can obtain through parameter 493 

adjustment (with respect to differently obtained initial human sets or revised sets during the 494 

same round of Revision). The connected circles show the trends of the average performance of 495 

the algorithm within each Selection scheme changing over time. (b) Points show the sizes of 496 

the initial or revised standard sets (𝐼 or 𝑅𝑖, where 𝑖 ∈ {1, 2, 3}). Connected circles show the 497 

trends of the average sizes of the revised standard sets under different Selection schemes. 498 
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 500 

Figure 6 | Increased Agreement between Standard Sets with Different Initial Sets 501 

Heatmap with color coding showing three different sets in their respective rounds of Revision. 502 

Each scaled grid shows the agreement (F1 score) between two spindle sets. 503 
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 505 

Figure 7 | Convergence of Revised Spindle Sets Starting with Algorithm Labeling 506 

(a) Points show the F1 score between a standard set revised with initial human labeling and a 507 

standard set revised with initial algorithm labeling. Blue filled points and lines show the average 508 

F1 score of the algorithm initial/revised set relative to human initial/revised sets of the same 509 

Revision round. (b) Points show the F1 scores between a standard set revised with initial human 510 

labeling and a standard set revised with initial algorithm labeling for a different trace, with the 511 

algorithm parameters used being the same as those in (a). 512 
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Table 1 | Summary of Statistical Analyses 514 

Data Structure Type of Test Power 

Correlation between spindle sets from manual initial 

labeling between rounds of iSR , measured by average F1 

scores 

2-sample, one-tailed t-

tests, unequal variance 

T1: 𝑝 = 0.0417 

T2: 𝑝 = 0.0021 

T3: 𝑝 = 0.1970 

Correlation between optimal machine label set and spindle 

sets of the same round of iSR, measured by F1 scores 

2-sample, one-tailed t-

test, unequal variance 

𝑝 = 0.0019 

Size of spindle sets obtained from iSR, measured by number 

of events detected 

1-sample, one-tailed t-

test, with 𝜇𝐻0= mean of 

initial set sizes 

T1: 𝑝 = 0.0118 

T2: 𝑝 = 0.2328 

Correlation between spindle sets from machine initial 

labeling between rounds of iSR, measured by average F1 

scores 

2-sample, one-tailed t-

tests, unequal variance; 

2-sample, two-tailed t-

test, unequal variance 

T1: 𝑝 < 0.001 

T2: 𝑝 = 0.0476 

T3: 𝑝 = 0.3952 

Similarity between correlations of spindle sets from manual 

or machine labeling in each round of iSR, measured by 

average F1 scores 

2-sample, two-tailed t-

tests, unequal variance 

T1: 𝑝 = 0.3358 

T2: 𝑝 = 0.4749 

T3: 𝑝 = 0.7019 

T4 : 𝑝 = 0.3174 

Similarity between correlations of spindle sets in different 

datasets in each round of iSR, measured by average F1 

scores 

1-sample, two-tailed t-

tests, with 𝜇𝐻0= F1 score 

between spindle sets 

obtained from manual 

and machine initial 

labeling 

T1: 𝑝 = 0.0557 

T2: 𝑝 = 0.5388 

T3: 𝑝 = 0.1373 

T4: 𝑝 = 0.3392 

 515 
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