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Abstract 

Neuropathologists assess vast brain areas to identify diverse and subtly-differentiated morphologies.           

Standard semi-quantitative scoring approaches, however, are coarse-grained and lack precise neuroanatomic           

localization. We report a proof-of-concept deep learning pipeline identifying specific          

neuropathologies—amyloid plaques and cerebral amyloid angiopathy—in immunohistochemically-stained       

archival slides. Using automated segmentation of stained objects and a cloud-based interface, we annotated              

>70,000 plaque candidates from 43 whole slide images (WSIs) to train and evaluate convolutional neural               

networks. Networks achieved strong plaque classification on a 10-WSI hold-out set (0.993 and 0.743 areas               

under the receiver operating characteristic and precision recall curve, respectively). Prediction confidence            

maps visualized morphology distributions for WSIs at high resolution. Resulting plaque-burden scores            

correlated well with established semi-quantitative scores on a 30-WSI blinded hold-out. Finally, saliency             

mapping demonstrated that networks learned patterns agreeing with accepted pathologic features. This            

scalable means to augment a neuropathologist’s ability may suggest a route to neuropathologic deep              

phenotyping. 
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Introduction 

Extracellular deposition of amyloid beta (Aβ) plaques is a pathological hallmark of Alzheimer’s disease              

(AD)​1,2​, a common neurodegenerative disease. Amyloid plaques have a diverse range of morphologies and              

neuroanatomic distributions​1​. The current consensus criteria for a neuropathological diagnosis of AD​3–5            

incorporate protocols assessing plaque density and distribution; some researchers have hypothesized that            

plaques may be an initiating event in AD​5,6​. More precise measures of plaque morphologies (such as cored,                 

neuritic, and diffuse) can serve as a basis for understanding disease progression and pathophysiology,              

providing guidance and insight into disease mechanisms​2,7–10​. 

For neuropathologic diagnosis, established semi-quantitative scales are used to assess plaque burden            

(​Fig. 1a ​)​4,8,11,12​. The standard semi-quantitative criteria put forth by the Consortium to Establish a Registry for                

Alzheimer’s Disease (CERAD) based on the manual assessment of the highest density of neocortical neuritic               

plaques​4,13​. Diffuse plaques, which may be the initial morphological type of Aβ ​14,15​, can account for over 50% of                  

plaque burden in preclinical cases but are not included in CERAD​16​. Furthermore, data on anatomical location                

(​i.e. Thal amyloid phase) are based on the presence of plaques regardless of type or density​5​. The potential for                   

neuropathologic deep phenotyping efforts that account for anatomic location, diverse sources of proteinopathy,             

and quantitative pathology densities motivates the development of effective and scalable quantitative methods             

to differentiate pathological subtypes​17–19​. 

Existing quantitative methods, such as positive pixel count​20 algorithms, rely on human-defined ​21            

red-green-blue (RGB) or hue-saturation-value (HSV) ranges (​i.e.​, ​pixel color and intensity) and are thus              

sensitive to batch differences or to the variable effects of formalin fixation on tinctorial properties. Manual                

counts or stereological ​22,23 methods can be tedious, difficult to score, and time-consuming. Consequently,             

studies using limited-range scores or overall pathology burden ​3,8,13,24 are powerful but have interrater             

variability,​4,13 are difficult to adapt to statistically meaningful disease-correlation analysis, or are blind to              

selected locational vulnerability​20​. New methods introducing detailed and sensitive quantification of pathologies            

would reduce the burden placed on pathologists, increase reliability, and enable studies at a scale that is                 

currently prohibitive. 

Deep learning has transformed medical image analysis​25,26​. Convolutional neural networks (CNNs)           

have achieved expert-level performance in complex visual recognition tasks, including the diagnosis of skin ​27              

and breast​28,29 cancers. These flexible models learn to recognize intricate patterns directly from visual data               

without the need for manually-defined image features or expert-delineated templates, and can account for              

non-trivial variations in image quality and color. In neuropathology, deep learning approaches have been              

reported for the classification of AD pathophysiology in magnetic resonance and positron-emission tomography             

images​30–33​, and for relating gene expression to neuropathology datasets​34​. 

We hypothesized deep learning methods could augment neuropathological whole slide image (WSI)            

analysis​35​. Despite their strong predictive power, deep learning models have been criticized for their poor               

interpretability and reliance on massive annotated datasets​36​. At the outset, we recognized these factors              
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represented significant challenges in the development of useful tools for neuropathology. An approach tailored              

to neuropathology would require 1) careful delineation of the machine learning task; 2) construction of a                

curated image dataset with high-resolution annotations by experts; and 3) extensive model interpretability. As a               

proof of concept, we posited CNN models could be employed for recognition and classification of Aβ                

pathologies, especially plaques, with the downstream goal of providing reliable, scalable, and interpretable             

measures based on neuroanatomical location. To develop a useful tool to aid neuropathologists, we deemed it                

critical that predictive performance should result from learning meaningful patterns within the images​37​.  

In this study, we present a pipeline for the neuropathological analysis of Aβ pathologies in WSIs                

generated by digitizing glass microscope slides of temporal gyri of the human brain (​Fig. 1b​). We describe an                  

end-to-end pipeline for image processing, a custom web interface for rapid expert annotation, and training of                

CNN models that result in high performance multi-task classifiers capable of distinguishing Aβ in the form of                 

cored plaques, diffuse plaques, and cerebral amyloid angiopathy (CAA). We demonstrate how prediction             

confidence maps visualize distributions as an interpretable and complementary means to understand Aβ             

burden. Finally, we provide visual evidence that these models are interpretable, using deep learning              

introspection methods to show that trained models learn relevant features of each of these Aβ pathology                

classes. To the best of our knowledge, these studies constitute the first report of CNNs for Aβ pathology                  

analysis. 

Results 

A Platform to Rapidly Manually Annotate 77,000 Plaque Candidates 

CNNs operate most effectively when trained on datasets exceeding tens of thousands of example              

images​38​. Indeed, we found that 43 digitized glass microscope slides (WSIs, see ​Supplementary Table 1 for                

case details) used in this study yielded over 500,000 individual candidate objects of interest. We set out to                  

build a dataset of approximately 50,000 annotated images for model training (​Fig. 2​, see ​Data Availability​).                

Manual annotation at this scale would have been a daunting task through conventional, hand-drawn bounding               

boxes on a standard ~700 micron visual field. Using open-source image analysis tools (see ​Methods ​), we                

developed an automated preprocessing procedure (​Fig. 2a ​and ​Supplementary Figure 1, 2 ​) to normalize              

slide color and generate bounding boxes around all immunohistochemically (IHC)-stained objects within WSIs.             

As the native resolution of a WSI is too large (typically 50,000 by 50,000 pixels at 20x magnification) to use as                     

the direct input for CNNs, we designed the dataset to contain uniform 256x256 pixel tiles centered on individual                  

plaque candidates. 

We created a simple web interface to rapidly annotate Aβ pathology-candidate image tiles and              

deployed it on the Amazon Web Services Elastic Beanstalk​39 for reliability and scalability (illustrated in ​Fig. 2c ​).                 

An expert neuropathologist annotator used unique credentials and a rapid keystroke-entry format to annotate              

the tiles, which were stored in a standardized query language (SQL) database (see ​Supplementary Figure 3 ​).                

Using this platform, candidate images were annotated at rates up to 2,500 tiles per hour into three major                  
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categories—“cored” plaques, “diffuse” plaques, or “CAA”. Additional categories such as “not sure” or “flag”              

denoted uncertainty, image segmentation failures, or other special cases ​(​Supplementary Figure 3 ​). The             

dataset was then built in three phases (​Table 1​)​. In Phase I, 55,001 images were expert-labeled using the web                   

application. The majority of candidate images were annotated as diffuse plaque morphologies (84.8% of the               

annotations), with cored plaques (2.2%) and CAAs (1.1%) making up the minor classes. Furthermore, of the                

CAA annotated images, a second annotation step divided the group into capillary (36.3%) and non-capillary               

(63.7%). ​As class balance typically improves machine learning model performance, we sought to enrich the               

minority classes in a second phase. We trained an intermediate CNN to classify objects based on the Phase I                   

dataset, then used its predictions to prioritize an additional set of 101,671 unprocessed tiles in favor of cored                  

plaques and CAAs for manual annotation (see ​Supplementary Figure 4 ​). Thus in Phase II, an additional                

11,029 tiles were annotated, having been evaluated in rank-order of their predicted likelihood to contain either                

of the minority-class plaques. In Phase III, we annotated an additional 10,873 plaque candidate tiles extracted                

from a separate hold-out test set of 10 WSIs not in the original 33-WSI collection, without any prioritization                  

procedures. We performed manual annotation using the web application for all phases. 

Convolutional Neural Networks Effectively Discriminate Among β-Amyloid Morphologies 

We trained CNNs to classify tiles as containing cored plaque, diffuse plaque, and/or CAA. At 20x                

magnification, a single 256x256 pixel tile (128 microns) could contain more than one object, so we trained a                  

multi-task CNNs for multi-label classification: CNNs were asked to determine the presence or absence of all                

morphologies in each tile. We combined the Phase I and Phase II datasets, then randomly split the resulting                  

70,000 tiles (66,030 annotated and 3,970 IHC-negative) into ​training (from 29 WSIs) and ​validation (from 4                

WSIs) sets, while stratifying by case (​i.e.​, WSI source) to ensure that models generalize to new cases. A                  

search of CNN architectures identified a six-layer convolutional architecture with two dense layers (​Fig. 3a​)               

with strong performance. Using subsequent hyperparameter optimization we found that data augmentation ​40,41            

and minority class oversampling ​42 training procedures (​Supplementary ​Figure 5 ​, ​Methods ​) yielded a            

pronounced performance boost. For completeness, we also recapitulated the analyses without WSI color             

normalization, but saw no substantive change in performance (​Supplementary Figure 6​). 
The resulting CNN model trained on 61,370 example tiles achieved validation set performance of 0.983               

area under the receiver operator characteristic (AUROC) (​Supplementary ​Figure 7a ​) with an area under the               

precision-recall curve (AUPRC) of 0.842 (​Supplementary ​Figure 7b ​). On the strict hold-out (Phase III) test               

set, the model likewise generalized well to unseen decedent cases (AUROC = 0.993, AUPRC = 0.743, ​Fig. 4a ​,                  

4b​). CAA prediction performance was also strong on the validation set (​Supplementary Figure 7​), but was                

omitted from the Phase-III test set benchmarking in ​Fig. 4 because Phase III was derived from cases that were                   

predominantly lacking in CAA in those specific regions (e.g., ​Supplementary Figure 8 ​). The overall              

classification accuracy was 0.970 on the validation set and 0.987 on the hold-out test set (​Supplementary                
Table 3 ​). Notably, model performance was achieved using fewer than 2,000 training examples of each minority                
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class (cored plaques and CAAs). Representative accurate (​Fig. 3b​) and misclassified (​Fig. 3c​) examples from               

the 10,873 hold-out set tests illustrate cases where the model succeeded or went astray. 

Model Performance Improves Nonlinearly with the Number of Training Examples 

To determine whether similar performance could be achieved with fewer manual annotations, we             

performed two retrospective studies to investigate the effect of training dataset size. In the first study, we                 

randomly selected subsets of the 61,370-example training dataset, maintaining stratification by case (​i.e.​, WSI              

source), and plotted model performance as a function of the number of training examples (​Fig. 4c​). Each                 

random selection was repeated five times, and a fresh model trained each time, for a total of 90 independently                   

trained and evaluated CNN models with identical architectures. All models were benchmarked against the              

same hold-out (Phase III, as in ​Fig. 4a-b ​) test set. As expected, model performance positively tracked with the                  

total number of training examples. Notably, models trained on a 50% smaller training set size still achieved an                  

average AUROC above 0.99 and an AUPRC above 0.74, at minimal loss to overall performance. 

In the second study, we investigated model performance as a function of the chronological dataset               

growth during the project, where training examples were included in the order of original expert annotation                

(​Fig. 4d ​). Model performance at 15 expert-hours fell short of model performance at 50% of dataset size (​Fig.                  
4c​). Accordingly, the goal of this second study was to determine whether annotation chronology played a role                 

in CNN training. As above, performance steadily increases as the annotated dataset grows. However,              

performance trends between the studies differed in two ways. Chronologically-trained models did not converge              

in AUPRC performance as early as the equivalent-sized random-subset-trained models benefitting from later             

annotations did. Secondly, the chronology study shows a distinct AUPRC boost in Phase II, illustrating the                

positive effect of enriching for cored-plaque prevalence. 

Prediction Confidence Maps Show Plaque Localization 

To visualize the distribution and neuroanatomic location of Aβ pathologies in a broader context, we               

applied a sliding window approach ​43 to generate WSI heatmaps of predictions (​Fig. 5​). These heatmaps plot                

the confidence and location of each prediction by the CNN, which may then be visualized from the sub-tile                  

resolution (​Fig. 5c​) up to the full WSI view (​Fig. 5a​). By progressively zooming in from larger anatomical views,                   

the visualization shifts from the broad distribution of plaques to their detailed 20x morphology. A single cored                 

plaque can be distinguished from a dense region of neighboring diffuse plaques (​Fig. 5c​). In this cohort, diffuse                  

plaques are densely distributed across the grey matter, whereas cored plaques are predominantly located in               

deeper and lower cortical layers, in accordance with known neuroanatomic distributions​1​. Furthermore, CAA             

predictions predominantly appear proximal to the cortical surface where leptomeninges are present​44​, although             

predictions are made independently of the surrounding field or broader neuroanatomic context. These maps              

highlight other locational aspects of the plaques, such as their presence in the white matter immediately                

beneath the gray matter​45​. 
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Classification Performance Does Not Vary by Tissue Landmarks 

The CNNs perform classification (e.g., ​Fig. 4 ​) directly on small anatomical areas (128 microns; green               

box in ​Fig. 6a ​). Human experts typically assess larger fields of view such as ~700 microns viewed at 10x                   

magnification when conducting semi-quantitative plaque scoring. To visualize prediction performance in this            

context, we also assessed cored-plaque agreement maps on contiguous 6-by-6 tile (768 micron) regions (​Fig.               
6a​). In the leftmost column, a green box surrounds the cored plaque within the tile, as labeled by a                   

neuropathologist during the Phase-III dataset annotation (​Fig. 6a​). The middle column overlays the prediction              

map (as in ​Fig. 5c ​) onto the original IHC-stained image. Finally, the rightmost column summarizes agreement                

between the expert label and the prediction, with blue and cyan representing correct prediction areas, while red                 

and orange denote misclassification ​46​. For this analysis, we used a CNN prediction confidence threshold of               

0.90. A more permissive threshold would decrease false negatives (red) at the cost of more false positives                 

(orange). Interestingly, this agreement-map highlights the limitations of bounding-box annotations, such that            

the correct cored-plaque prediction shown is nonetheless penalized by this view (red halo) for accurately               

predicting the rounded boundaries of the actual plaque instead of anticipating its square “ground truth”               

bounding-box. 

Stepping further out to regions of 3840 microns (​Fig. 6b​), these maps (see ​Supplementary Figure 9                
for additional examples) visualize the results plotted in ​Fig. 4 ​, with the complementary addition of tissue                

landmarks, prediction clustering, and neuroanatomic localization. The model reliably rejects background tissue            

and diffuse plaque deposits, while accurately identifying most cored plaques. Model performance does not              

change based on the nearby neuroanatomic architecture in these examples, although occasional clusters of              

co-localized false-positive (orange) cored plaque predictions can appear (e.g., ​Supplementary​ Figure 9 ​). 

Machine Learning Introspection Techniques Identify Salient Plaque Features 

To investigate the CNN model’s internal logic, we performed two studies to determine the importance of                

morphology features contributing to accurate predictions (​Fig. 7​). In the first, we applied guided              

gradient-weighted class activation mapping (Guided Grad-CAM)​47 to identify salient visual features underlying            

the model’s predictions. Guided Grad-CAM follows the CNN’s gradient flow from individual tasks back onto the                

original image tile to establish an activation map, highlighting the input features most relevant to each CNN                 

prediction. ​Fig. 7 shows Guided Grad-CAM (white features on black background) on examples taken from               

cored, diffuse, and CAA plaque classes. Consistent with human expertise, Guided Grad-CAM activation maps              

predominantly highlight regions of the tiles corresponding to IHC-stained amyloid deposits. For instance, in              

Fig. 7a, ​the activation map for cored-plaque prediction highlights a dense and compact amyloid center (yellow                

arrow), whereas for the diffuse task the activation map highlights the off-center diffuse object (red arrow). By                 

contrast, the CAA activation map highlights the periphery of the image, much as CAA often forms a ring within                   

vessels, although none could be found. ​In ​Fig. 7b ​, the diffuse-task Guided Grad-CAM highlights ill-defined               

amorphous amyloid deposits, while for the cored and CAA tasks it focuses on punctate IHC staining and                 
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microglia. The CAA activation map in ​Fig. 7c ​highlights ring structures (blue arrow) within the media of the                  

cortical vessel, consistent with CAA’s defining feature; while for cored and diffuse tasks, Guided Grad-CAM               

highlights the punctate deposit (red arrow) beneath the CAA. Lastly Fig. 7d ​, which contains both a diffuse (red                  

arrow) and a cored plaque (yellow arrow), shows cored-task activation maps localizing to the amyloid core,                

with broader feature activations for diffuse and CAA tasks. Crucially, Guided Grad-CAM activation mapping              

may highlight certain image features as salient because they help determine that an object is ​not present in the                   

image: Despite strong localized activation for cored and diffuse maps in ​Fig. 7c at the punctate deposit (red                  

arrow), the CNN predicts that neither plaque is present. 

Whereas Guided Grad-CAM provides a fine-grained view of feature salience, it does not differentiate              

features indicative of a plaque from those that contradict its presence. To complement the analysis, we                

performed a feature occlusion study​48 on the same examples. In this experiment, a small occlusion patch                

(shown in ​Fig. 7a ​, black box) is systematically moved across the image, and the model makes a prediction on                   

the occluded image at each increment. Blue-to-yellow-to-red colors indicate increasing CNN prediction            

confidence from 0.0 to 1.0. ​Consequently, color shifts in occlusion maps show which image features, when                

occluded, change prediction confidence. ​When the patch occludes an important feature such as the amyloid               

core of a cored plaque (​Fig. 7a​, yellow arrow), the model fails to predict the object correctly: cored-task                  

confidence drops to zero (blue dot on red background, yellow arrow). Occluding less cored-task-relevant              

relevant regions such as within the off-center diffuse stain (red arrow) have little effect, indicated by the solid                  

red coloring in the cored-task’s confidence map for this area. Conversely, confidence maps may also show                

where occlusion of a critical feature makes an alternative class more likely. If the amyloid core in ​Fig. 7a is                    

occluded, diffuse plaque prediction becomes likely (signified by yellow arrow). 

Where more than one plaque occur within the same tile, the two feature-importance studies differ.               

Guided Grad-CAM activation maps identify salient pixels for plaque classes independently, whereas occlusion             

maps highlight the interplay of features among classes. For example, in occlusion maps, occluding the leftmost                

plaque decreases diffuse-task confidence (​Fig. 7d​, light blue region in the diffuse-task map, red arrow),               

whereas the same prediction gains confidence (red region, yellow arrow) when the cored plaque’s core is                

occluded. In the corresponding Guided Grad-CAM activation maps for the diffuse-task, however, features             

specific to the diffuse plaque are predominant. Together, these complementary maps visualize the features              

within images that motivate the CNN’s plaque predictions. 

Model-Based Whole-Slide Scores Correlate with Manual Semi-Quantitative Scores 

To compare with manual semi-quantitative approaches such as CERAD, we developed a preliminary             

neural-network derived score for Aβ deposits at a global WSI level. For the CNN-based score, we calculated a                  

count of each predicted Aβ deposit across an entire WSI by segmenting its prediction heatmap (e.g., ​Fig. 5a ​)                  

and normalizing the result by the tissue area of each slide (​Supplementary Figure 10​). The resulting                

CNN-based scores correlated strongly across the total dataset of 63 WSIs (​Supplementary Tables 1 and ​2​)                

for which we had independently-collected semi-quantitative, CERAD-like scores for each specific class (​Fig. 8              
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and Supplementary Table 4​). CNN-based scores for Aβ deposits significantly differentiated WSIs by             

CERAD-like categories (e.g., “moderate” vs. “frequent”), especially for cored plaques (​Fig. 8a​, second row).              

For instance, CNN-based WSI scores between “none” versus “frequent” CERAD-like categories were            

exponentially separated. To better assess generalization, we collected a further set of 20 WSIs              

(Supplementary Table 2​) with corresponding CERAD scores that were blinded during analysis. Combined             

with the 10 separate hold-out WSIs from Phase III, we found this 30-WSI blinded hold-out set demonstrated                 

strong correlation between the automated and manual scoring approaches, such that CNN-based scores             

significantly discriminated existing semi-quantitative categories (​Fig. 8b​). 

Discussion 

We report a scalable, quantitative, and interpretable approach to identify neuropathologies for three             

classes of Aβ deposits, motivated by the method’s downstream application to statistically powerful correlative              

analyses and neuroanatomical localization of AD pathologies. In practice, such deep-phenotyping techniques            

will have limited utility if their underlying predictions cannot be interpreted, critiqued, and refined by expert                

neuropathologist supervision. Consequently, to establish the feasibility and limitations of this approach, we             

considered multiple challenges when adapting CNNs to WSIs of archival human brain samples​49​: 1) WSIs are                

prohibitively large and can vary in color, necessitating a preprocessing pipeline for their normalization,              

segmentation, and efficient annotation; 2) deep neural networks are notoriously data-hungry; we evaluated             

how much training data a CNN requires to discriminate Aβ morphologies (cored plaque, diffuse plaque and                

CAA); and 3) it is rarely obvious how generalizable a model will be across diverse individuals, populations, and                  

conditions—to prove an enabling tool, model predictions must be interpretable and derive from meaningful              

features amenable to a neuropathologist’s critique and feedback. 

Addressing the first challenge, we developed an end-to-end pipeline to automate WSI processing and              

aid rapid image annotation (​Fig. 2a​, ​Supplementary Figure 3 ​). This pipeline performs color normalization ​50              

followed by IHC stain detection to create a preliminary library of candidate plaques at 20x magnification. The                 

logic behind stain detection was two-part: Stained objects inhabit a delimited brown hue range and objects                

comprise coherent contiguous regions exceeding a minimum size. We then generated image tiles centered on               

each candidate (​Fig. 2b​). Thus, 43 WSIs containing Aβ IHC-stained temporal gyri yielded nearly 500,000 raw                

candidate tiles at 20x resolution (details in ​Supplementary Table 1​), filtered to approximately 200,000 tiles               

containing candidate objects of sufficient size (see ​Methods ​). The next step was image annotation for               

supervised machine learning. Although web-based histopathological annotation tools exist​51,52​, we developed a            

simple platform using the cloud-based Amazon Web Services Elastic Beanstalk​39 infrastructure           

(​Supplementary Figure 3 ​) for study design flexibility and for the speed of its keystroke-based entry format.                

For instance, subsequent studies may investigate a broader field of view for annotation context or introduce                

checks on intra-rater reliability by re-presenting tiles to annotators in different orientations. Given the scope of                

the annotation task, we incorporated several aspects of gamification theory​53,54​, such as annotator leveling,              
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achievement badges, and progress-bar filling ​55,56 to acknowledge and motivate progress. Using this tool, we              

observed sustained annotation rates reaching 1.44 seconds per tile. 

The second challenge was in determining the necessary training dataset size. Having manually             

annotated 66,030 candidate tiles from 33 WSIs in two annotation phases (​Table 1​), plus 3,970 randomly                

selected IHC-negative tiles, we examined the CNN’s ability to precisely discriminate plaque and CAA              

morphologies. For this analysis, we randomly split the tiles into train and validation sets, such that train and                  

validation tiles never shared the same WSI source. Additionally, as a strict hold-out test set (Phase III) and to                   

investigate the role of nearby neuroanatomic landmarks on prediction, we annotated larger contiguous tissue              

regions corresponding to 5x the standard dimensions, for 10 previously unseen WSIs (​Supplementary Figure              
8​). Note this Phase III dataset differed from the Phase I+II train and validation datasets in that the latter’s                   

70,000 labeled tiles were randomly selected; there was no guarantee that tiles and their resulting expert plaque                 

annotations would be contiguous or comprehensively labeled for any local region of tissue. We trained               

multi-task CNNs on all 61,370 training tiles, evaluated multiple CNN architectures and hyperparameter             

choices, and found that a relatively simple model design (​Fig. 3a​) inspired by Simonyan and Zisserman’s                

VGG​57​ achieved strong classification performance (​Fig. 4a-b​). 
Given the substantial time investment, we asked whether similar performance could have been             

achieved with fewer training tiles. We evaluated this retrospectively, by progressively decreasing the training              

dataset size in two different ways (​Fig. 4c-d​). In the first study, we selected a progression of training data                   

subsets randomly and repeated the training process five times per subset size (​Fig. 4c​). In the second study,                  

we maintained the chronology of the project instead, and plot a natural history of the annotation process.                 

Intriguingly, these performance evaluations highlighted two annotation regimes (​Fig. 4d​); first, unbiased            

random-tile candidate labeling (Phase I), followed by the Phase II procedure, where cored-plaque and CAA               

candidates were purposefully enriched by bootstrapping from a Phase-I-trained CNN model. As expected,             

increasing training example counts improved model performance. Less anticipated was that           

chronologically-early annotations appeared to be less effective for model training (​Fig. 4d​); considerations             

such as the neuropathologist’s growing familiarity with the annotation tool and its visual field may be subjects                 

for further study. From a practical perspective, the steepest performance gains were achieved within the first                

15 hours of expert labeling, suggesting a reduced dataset may be pragmatically sufficient for classification of                

cored and diffuse plaques. Significantly, models trained using a comparatively small investment of a              

neuropathologist’s time can assist with new cases and potentially reduce overall expert burden. Subsequent              

refinements to the model, particularly in reinforcement feedback on incorrectly-classified examples           

encountered during the model’s use (e.g., ​Fig. 3d ​), might later be incorporated into the workflow with minimal                 

friction. 

The third challenge was human interpretability. We posited that visualizing the CNN model’s predictions              

as comprehensive confidence maps from the whole-slide level down to a focused plaque-level field (20x)               

would aid interpretability by a trained neuropathologist, given the importance of local tissue and neuroanatomic               
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context. On a neuroanatomic level, most predicted plaques are located within grey matter (​Fig. 5a​,               

yellow-to-green regions, right three columns) with some sparse densities in the white matter not appreciated               

from the raw slide (​Fig. 5a​, left column). Despite their primary localization within grey matter, studies have                 

reported plaques within white matter​1,45,58​. Furthermore, the maps predict cored plaques’ propensity for deeper              

and lower cortical layers, consistent with their known neuroanatomic distribution ​1,59​. We were likewise gratified              

to observe that individual cored plaques stand out from dense neighborhoods of diffuse plaques (​Fig. 5c​,                

cored column) and that CAA predictions made by the model on a 20x (128 microns) tile-by-tile basis                 

nevertheless localized predominantly to the leptomeninges and some within cortex grey matter. There were              

caveats, however, as for instance when clusters of diffuse plaques having staining “halos” were misclassified               

as CAAs (​Fig. 5b ​, CAA column). This was not entirely surprising as the project focused on cored plaques, so                   

the CAA dataset was comparatively small; a larger CAA dataset containing the full spectrum of its                

morphologies may be a useful subject of further projects. Indeed, CAAs can be delineated into various staging                 

schemes, such as by their location within the media of the vessel and vessel integrity​11​, which is important in                   

diagnosing CAA-related hemorrhage ​. 

Using Phase III’s larger field-of-view (3840 microns) hold-out regions, the overlays of CNN prediction              

confidence maps onto ground-truth annotations highlighted cases and context of prediction success and             

disagreement (​Fig. 6b​, ​Supplementary Figure 9 ​). Nonetheless, accurate predictions alone do not guarantee             

meaningful learning or that the model will be applicable to new scenarios or populations​60​. Plaque morphology                

can differ by neuroanatomic location—a CNN model developed from temporal gyri plaques may not be               

translatable to plaques in other anatomic areas, such as the striatum​1,61​. Although an explicit evaluation of all                 

confounders is outside the scope of this work, the feature saliency and occlusion map studies (​Fig. 7​)                 

demonstrated that the models focus on image features relevant for neuropathology. Guided Grad-CAM             

techniques near-exclusively highlighted the IHC stained regions, in patterns characteristic of the pathologies             

(​Fig. 7 ​, white-on-black maps). Complementarily, feature occlusion studies illustrated that the central amyloid             

core is the most discerning feature of a cored plaque’s correct identification, and that its occlusion transforms a                  

CNN model’s classification to diffuse plaque. Importantly, the crucial features emerging from these machine              

learning introspection techniques—dense compact amyloid centers for cored plaques, ill-defined amorphous           

amyloid deposits for diffuse plaques, and amyloid within the media of the cortical vessels for CAAs​—​all a ​gree                 

with key features used by experts​1,11,62,63​. 

We finally evaluated whether CNN models could automatically quantify Aβ burden on a whole-slide              

level in a way that would correlate with standard semi-quantitative methods for plaque assessment (i.e.               

CERAD neuritic plaque scores). As true neuritic plaques are not distinguishable using Aβ-selective IHC stains,               

we leveraged CERAD-like manual scores (none, sparse, moderate and frequent) specific to each amyloid              

class. We found that a preliminary WSI-level CNN-based score we developed (​Methods​) correlated strongly              

with manual CERAD-like scores (​Fig. 8​). CNN-based scores from one CERAD-like category were significantly              

different from WSIs in other categories (for cored plaque, ​p​<0.01). Beyond its overall correspondence with               
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CERAD, the finer-grained CNN-based metric captured subtle variations of Aβ burden within each CERAD              

category. The more detailed and sensitive measurement of Aβ burden, after appropriate validation in further               

studies, may strengthen statistical power for clinicopathological correlations​64​. Automated scores of this nature             

might be applied across entire archives of stained tissue from diverse anatomic regions, or aid in studies                 

focused on evaluating burden specific to certain neuroanatomic locales or other local landmarks. 

Several caveats, however, merit mention. Foremost among them is the intentional restriction of this              

proof-of-concept study’s scope to annotations made by a single expert neuropathologist on a single              

immunohistochemical stain within a single anatomic region. Differences in experience and annotation criteria             

will likely result in individual expert variation among “ground truth” labels. The goal and intent of this project                  

were therefore to establish the potential to extend an individual neuropathologist’s plaque-identification            

capabilities in the context of their normal workflow. Furthermore, all data used in this study were from a single                   

brain bank and retrieved and digitized under the same conditions; more diverse datasets from multiple sources                

will yield more robust and reliable models. We noted also that when the same hold-out set (Phase III) was                   

annotated by web platform (​Fig. 2c​) versus entirely by hand, this resulted in at times differing labels                 

(​S​upplementary Figure 11​). Future work may build on these foundations to investigate            

cross-neuropathologist plaque labeling, differing stains, anatomic regions, or collection centers, as well as             

region-level scoring systems to quantify bulk Aβ deposit burdens. 

Conclusion 

Taken together, the present study demonstrates a deep learning approach that can augment the              

expertise and analysis of an expert neuropathologist. Approximately 30 hours of expert labeling yield a highly                

scalable and reusable CNN model capable of novel inference on unseen WSIs—going forward, 15 hours may                

be sufficient to create new visualizations and understandings of Aβ deposit distribution. CNNs automatically              

learn relevant features from immunohistochemical image data and to exploit Alzheimer’s disease pathological             

features in agreement with human-interpretable neuropathology. Significantly, CNN-based Aβ pathology          

burden agrees with CERAD-like scoring. Many brain banks have archival materials of stained slides arising               

from neuropathological diagnosis; models such as these may capitalize on such materials to help quantify               

pathologies providing pathological deep phenotyping in a scalable way. We anticipate that collecting annotated              

datasets from multiple sources and experts will improve recall, sensitivity, and accuracy of the resulting neural                

network models and support training of more sophisticated model architectures. We hope that this proof of                

concept motivates further work in this field, where automated pathology classification could have far-reaching              

impact; to this end, we make the CNN model code and dataset openly available to the community (see ​Data                   
Availability ​). 
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Materials and Methods 

Dataset 

Case Cohort ​– All samples were retrieved from archives of the University of California, Davis               

Alzheimer’s Disease Center (UCD-ADC) Brain Bank. Archival samples analyzed in this study were 5 μm               

formalin fixed, paraffin embedded, sections of the superior and middle temporal gyrus. The tissue had been                

previously stained with an amyloid-β antibody (4G8, recognizing residues 17-24, BioLegend, formerly            

Covance) that were first pretreated with formic acid to rid samples of endogenous protein. All slides were                 

digitized using an Aperio AT2 up to 40x magnification. ​Supplementary Table 1 details overall NIA Reagan                

criteria ​65​, CAA type ​66​ 1 or 2 within the section,  and Thal Amyloid phase ​5​ of these cases. 

Dataset Splitting – A total of 33 WSIs corresponding to 33 separate decedent cases, spanning all                

clinicopathologically-assigned NIA Reagan criteria, and possessing a variety of CERAD scores (see            

Supplementary Table 1​) were used for model development and training (29 training, 4 validation images). An                

additional 10 WSIs were selected by an expert neuropathologist (BD) as a held-out test set and were not                  

released until the model development phase of the study had been completed. Finally, a further 20 blinded                 

WSIs were collected solely for use in the CERAD-like scoring comparison study (​Fig. 8b​). CERAD-like scores                

were available for all but one of the 63 WSIs used in this study; thus ​Fig. 8a uses 62 WSIs as a complete                       

dataset. 

Image Preprocessing – All initial image preprocessing was performed in the open-source library             

PyVips​67​. Images were loaded at 20x magnification, corresponding to a resolution of 0.5 microns per pixel                

(MPP). Slide color normalization was performed by the method of Reinhard et. al ​68 using a reference image                 

selected by the annotating expert (see ​Supplementary Figure 1 ​). The resulting WSIs were regularly tiled to                

1536x1536 pixel tiles, corresponding to 768x768 micron regions of tissue for further analysis, resulting in a                

total of 33,111 tiles for the training set. 

Segmentation – Image segmentation was performed using the open-source library OpenCV​69​.           

Immunohistochemically-stained entities including cored plaques, diffuse plaques, and CAAs appeared in the            

brown hue-region and segmentation was performed in the HSV colorspace utilizing a permissive colormask.              

For expert annotation, intracellular amyloid precursor protein (as denoted by cytoplasmic staining) was             

considered negative. Morphological opening and closing operations were performed to smooth the binary             

masks, and a standard “blob”-detection procedure was applied to isolate candidate objects. These unique              

components were center-cropped to a fixed size (256x256 pixels), corresponding to a region of 128x128               

microns. This procedure resulted in nearly 500,000 images. Noisy background deposits were eliminated             

through a minimum stained area threshold of 1500 pixels (375 square microns), resulting in a total of 206,888                  

tiles.  
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Plaque-labeling Web Interface 

To allow for the rapid and efficient annotation of the dataset, we developed a custom Python Flask web                  

application that we deployed on Amazon Web Services Elastic Beanstalk​39​. The web-based interface allowed              

for remote login by the expert labeler, and enables fast, multi-label annotation of images using individual                

keystrokes. In the interface, images corresponding to 128x128 microns regions were shown to the annotator. A                

bounding box in the image specified which specific candidate object was to be labeled. Several elements of                 

gamification, such as leveling, achievement badges (crown icon), and progress bar filling (green bar) were               

incorporated to motivate and track annotation task progress. A timestamp function was implemented to record               

the number of images per hour annotated by the expert (BD). All labels were stored in a SQL database using                    

the Amazon Relational Database Service. 

All images were annotated by a single neuropathologist (BD) and labeling of the image data proceeded                

in three phases: 1) In an initial phase, 55,000 images stemming from 3,811 unique tiles were labeled; 2) In the                    

second phase, images containing the minor classes of interest (cored plaques and CAAs) were enriched by                

running the CNN model built from the first-phase dataset on the remaining 101,671 images. These images                

were ranked by their predicted likelihood of containing cored plaques or CAAs. We then chose the top 11,029                  

images for labeling. The labeled data from Phase I and Phase II were combined as the entire dataset (Phase                   

I+II) for model training and evaluation. 3) In the third phase, two test sets were constructed with the same data                    

but two distinct labeling methods. A 7680 x 7680 pixel (0.5 MPP) region was selected within each of the 10                    

hold-out test set WSIs by an expert neuropathologist as the area of interest. For the first test set, 10,873                   

candidate object tiles extracted from these 10 regions were labeled using the image-labeling web interface. For                

the second test set, the cored plaques and CAAs were directly marked by a neuropathologist on the selected                  

region at a standard 10x (768 microns) visual field. 

Model Development and Training 

CNN Model Architecture and Training ​– All neural network models were trained in the open-source               

package PyTorch ​70 on four NVIDIA GTX 1080 or Titan X graphics processing units. Our optimized model used                 

a simple convolutional architecture for image classification, consisting of alternating (3x3) kernels of stride 1               

and padding 1 followed by max pooling (​Fig. 3a​), followed by two fully connected hidden layers (512 and 100                   

neurons) and rectified linear units as the nonlinear activation function. All neural network models were trained                

using backpropagation. The optimized training procedure used the Adam​71 optimizer with a multi-label soft              

margin loss function with weight decay (L2 penalty, 0.008) and dropout (probability 0.5 for the first two fully                  

connected layers and probability 0.2 for all convolutional layers). Training proceeded with mini-batches of 64               

images with real-time data augmentation including random flips, rotations, zoom, shear, and color jitter. When               

calculating the classification accuracy, a threshold of 0.91, 0.1 and 0.85 was used for cored plaque, diffuse                 

plaque, and CAA prediction respectively. Predictions with confidence above the threshold were considered to              
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be positives. 

 

Prediction Confidence Heatmaps 

A sliding window approach ​43 was applied with the trained CNN model to generate confidence              

heatmaps. At each step, the CNN model took a 256x256 pixel region as input and generated a prediction score                   

for cored plaques, diffuse plaques, and CAAs. By systematically sliding the input region across the entire                

image, the prediction scores were plotted as prediction confidence heatmaps. The color represented the              

CNN’s prediction confidence for the presence of cored plaques, diffuse plaques, and CAAs in the               

corresponding region, with yellow being the most confidence, and purple the least. We used a stride of 16, 4,                   

and 1 for ​Fig. 5a-c ​ respectively. 

Guided Gradient-Weight Class Activation Maps (Guided Grad-CAM) 

Guided gradient-weighted class activation mapping (Guided Grad-CAM)​47 was performed in PyTorch to            

generate saliency maps that highlight relevant features on the class of interest. The saliency map is a                 

pointwise multiplication of guided backpropagation and Grad-CAM. Guided backpropagation produces a           

pixel-space gradient map of predicted class scores with respect to pixel intensities of the input image. Guided                 

Grad-CAM produces a more class specific map which is the dot product of the feature map of the last                   

convolutional layer and the partial derivatives of predicted class scores with respect to the neurons in the last                  

convolutional layer. We employed an open-source implementation of Guided Grad-CAM by Ozbulak​72 along             

with our trained models to evaluate the learned features of the model on individual class examples (​Fig. 7​). 

Feature Occlusion Studies 

Feature occlusion studies​48 were performed to show the influence of occluding regions of the input               

image to the confidence score predicted by the CNN model. The occlusion map was computed by replacing a                  

16x16 pixels region of the image with a pure white patch and generating a prediction on the occluded image.                   

As systematically sliding the white patch across the whole image (stride = 1 pixel), the prediction score on the                   

occluded image was recorded as an individual pixel of the corresponding occlusion map. The color               

represented the CNN’s prediction confidence for the presence of cored plaques, diffuse plaques, and CAAs of                

the occluded image, with red being the most confidence, and blue the least. 

CNN Model WSI Scores 

CNN model WSI scores were generated through segmentation of WSI prediction heatmaps (see             

Prediction Confidence Heatmaps, above) and normalizing the predicted count by the WSI tissue area. 

Tissue Segmentation – Tissue areas from WSIs were calculated using the open-source libraries PyVips              

and OpenCV. Tissue segmentation against the slide background was performed by applying a color mask in                
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the lightness-chroma-hue (LCH) colorspace. Morphological opening and closing operations were performed to            

smooth the binary mask, and the tissue areas were calculated as the pixel sum of the refined mask. 

Segmentation on Prediction Confidence Heatmaps – ​Prediction confidence heatmaps were segmented           

using the open-source library OpenCV​69​. First, a CNN confidence threshold was applied to the heatmaps, with                

only prediction confidences higher than the threshold retained, indicating the positive predictions of plaques.              

Morphological opening and closing operations were then performed to smooth the binary masks, and              

prediction areas exceeding a second threshold set to eliminate CNN-noise provided predicted quantities of the               

Aβ pathologies by the CNN model. These hyperparameters, CNN confidence threshold (cored plaque: 0.1;              

diffuse plaque: 0.95; CAA: 0.9) and size threshold (cored plaque: 100; diffuse plaque: 1; CAA: 200), were                 

optimized by statistical analysis on the training and validation sets.  

Statistical Analyses – ​Statistical analyses were performed using the open-source library SciPy​73​.            

Spearman rank-order correlation coefficient was calculated between CNN scores and CERAD categories for             

the MTG. A two-sided, independent, two-sample ​t​-test was used to test the null hypothesis that two                

independent samples have identical expected values. CNN scores of WSIs from different CERAD categories              

were used for the test. Data were presented as box plots overlaid with individual data points. Box plots showed                   

interquartile range (top and bottom of the box), median (central band), and outliers (points beyond the                

whiskers). Individual data points were shown as specific points. ​P​ ≥ 0.05 was considered not significant (ns);               

* ​p​ < 0.05, ** ​p​ < 0.01, *** ​p​ < 0.001. 

Data Availability 

We have made the CNN model code (​https://github.com/keiserlab/plaquebox-paper​/) and the full raw            

WSI dataset and the annotated plaque-level dataset (​https://www.keiserlab.org/resources/​) openly available. 

List of Abbreviations 
Aβ - Amyloid-beta 

AD - Alzheimer’s disease 

AUPRC - area under the precision-recall curve 

AUROC - area under the receiver operator characteristic  
CERAD - Consortium to Establish a Registry for Alzheimer’s Disease  

CNN - convolutional neural network 

CAA - cerebral amyloid angiopathy 

Guided Grad-CAM - Guided Gradient-weighted Class Activation Mapping 

HSV - hue-saturation-value 

IHC - immunohistochemical 

IQR - interquartile range  

LCH - lightness-chroma-hue 

MPP - microns per pixel 
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RGB - red-green-blue 

SQL - standardized query language 

WSI - whole slide image 
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Figure Legends 

 
Figure 1. a ​. Current protocols for neuropathological assessment of WSIs typically rely on comparatively              

coarse-grained semi-quantitative scoring such as CERAD​4​. ​b​. We report an automated computational            

approach to process entire digitized immunohistochemical stained archival slides, leveraging convolutional           

neural networks for amyloid plaque classification and localization. 

 

Figure 2. ​Creation of an annotated plaque and CAA dataset for machine learning. a. Summary of the image                  

processing pipeline, including color normalization, IHC stain segmentation, and extraction of candidate objects             

(red boxes), followed by rapid expert annotation using a cloud-based web application. b. Examples of               

extracted cored plaques (top row), diffuse plaques (middle), and CAA (bottom) and their surrounding tissue               

area. Rectangles shown in red bound the candidate object during the labeling process. Scale bar=25 um. ​c. A                  

custom web interface allows for the rapid annotation of plaques by mouse or keystroke, with visualization of                 

raw (without color adjustments) and normalized images, showing the object bounding boxes around which the               

tile is automatically centered and cropped. 

 

Figure 3 ​. ​CNN models identify three Aβ deposit types in image tiles. ​a. ​The optimized CNN model architecture                   

contained six convolutional layers and two dense layers, using exclusively 3x3 kernels and alternating              

max-pooling layers. b. ​Examples ​of correct CNN predictions. The ground truth “expert label” row indicates the                

pathologies that had been manually found within the tile image. The “predicted” row shows corresponding               

model confidences for cored plaque (yellow arrow), diffuse plaque (red), and CAA (blue) classes (from left to                 

right). Model predictions range from 0.00 to 1.00, where a higher score indicates higher predicted confidence                

by the CNN for that plaque class (e.g., the 1.00 corresponds to 100% model confidence that a cored plaque is                    

present in the leftmost panel). ​c. ​Examples of CNN predictions that do not agree with the expert manual                  

annotation. Incorrect model predictions are indicated by light orange backgrounds in the “predicted” column;              

green backgrounds correspond to correct predictions. Scale bar=25 um for all images. 

 

Figure 4. ​Predictive performance on the held-out Phase-II test set. ​a​. Receiver operator characteristic (ROC)               

and ​b. ​Precision-recall curves (PRC) for cored (magenta lines) and diffuse (blue lines) plaques. The blue star                 

marks the best trade-off point where prediction confidence threshold equals 0.91. ​c. ​Summarized areas under               

the ROC and PRC (AUPRC and AUROC) of five independently-trained CNNs per point for the task of cored                  

plaque classification, as a function of training dataset size. ​Dataset was randomly subsetted at each point                

independent of the date of tile annotation. d. ​AUPRC and AUROC of CNNs for the same task of cored-plaque                   

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 11, 2019. ; https://doi.org/10.1101/454793doi: bioRxiv preprint 

https://paperpile.com/c/fU1dMD/rFqhU
https://doi.org/10.1101/454793
http://creativecommons.org/licenses/by/4.0/


classification, as a function of chronological dataset growth by annotation timestamp, over the course of the                

project, showing chronology-dependent dataset effects. Source data are provided as a Source Date file. 
 
Figure 5. ​Prediction confidence heatmaps for cored plaques, diffuse plaques, and CAAs. ​a​. Whole slide               

overview visualization, revealing broad amyloid distribution patterns. Scale bar=3 mm. ​b. ​Higher magnification             

(4x) view of the blue-boxed region from panel (a). Scale bar=750 um. ​c. Higher magnification (20x) view of the                   

blue-boxed region from panel (b). Green box marks cored plaque manual annotation. Scale bar=150 um.               

Confidence scales for each panel were bottom-capped to aid visualization, such that only confidence scores               

≥0.8 are plotted. Approximate (hand-drawn) boundaries of gray versus white matter (dotted line) and tissue               

boundaries (solid lines) are overlaid for reference. 

 

Figure 6. ​Visualization of a representative example from the cored-plaque classification tests plotted in ​Fig. 4 ​.                

a​. CNN model prediction confidence maps (middle panel, as in ​Fig. 5c ​) overlaid onto the original slide tile.                  

Bounding boxes mark cored-plaque expert annotations (left panel, green box). The combined map (right panel)               

assesses agreement between the model’s predictions and the expert labels, where pixels are colored by a                

semi-transparent overlay as true positive (blue), false positive (orange), true negative (cyan), and false              

negative (red) areas. Scale bar=150 um. ​b​. Prediction-versus-annotation agreement map generated as in (a),              

but with a larger field for greater tissue and plaque clustering context. Scale bar=750 um. 

 

Figure 7. ​Model interpretability studies using machine-learning introspection techniques. ​a​. A cored plaque             

example (top row, yellow arrow). For the task of cored-plaque prediction, the activation map (by Guided                

Grad-CAM; left, second row) and the feature occlusion map (right, second row) identify the amyloid core                

(yellow arrow) as the defining morphological feature. By contrast, the diffuse stained region (red arrow) only                

arises as a salient feature during diffuse-plaque and CAA prediction tasks (third and fourth rows, respectively).                

b. ​Diffuse plaque example where activation and feature occlusion maps focus on ill-defined amorphous              

amyloid contours for diffuse-plaque classification task (third row). ​c. ​CAA example, where the CAA task’s               

activation and feature occlusion maps (fourth row) highlight amyloid ring pixels within the media of the cortical                 

vessel (blue arrow), while for cored and diffuse tasks the small punctate IHC staining is considered salient (red                  

arrow; second and third rows). d. ​Example containing both diffuse (red arrow) and cored (yellow arrow)                

plaques in the same tile illustrate the difference between activation and feature occlusion maps. Scale bar=25                

um. 

 

Figure 8. ​Comparison of CNN-based plaque-burden scores versus manual CERAD-like semi-quantitative           

scores at a whole-slide level. a. ​The automatic and manual scores correlate well across the entire dataset of                  

62 WSIs, comprising the original Phase I-III slide set plus 20 additional blinded WSIs. ​b. ​Correlations assessed                 

only on the 20 blinded WSIs not used in any previous step of the study. Box plots show median (band inside                     
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the box), interquartile range (IQR, box), minimums and maximums within 1.5 times the IQR (whiskers), ​and                

outliers (points beyond the whiskers), with a dot per WSI. Matrices in the second row of each panel                  

exhaustively plot ​p​-values of CNN-based score distributions between all pairs of CERAD-like categories for the               

corresponding box plot, where squares are colored in log scale by ​p​<1e-4 (blue) to ​p​=0.05 (gray) to ​p​=1 (red;                   

insignificant) using Student’s ​t​-tests. Source data are provided as a Source Date file. 

 

Tables 

Table 1. ​Summary of annotated object tile dataset by project phase. 

Phase Cored plaque Diffuse plaque CAA Total 

Development Phase I 1,233 (2.24 %) 46,650 (84.82 %) 778 (1.14 %) 55,001 

Development Phase II 1,035 (9.38 %) 7,610 (69.00 %) 1,405 (12.74 %) 11,029 

Development Total 2,268 (3.43 %) 54,260 (82.17 %) 2,183 (3.31 %) 66,030 

Test (Phase III) 83 (0.76 %) 10,234 (94.12 %) 7 (0.06 %) 10,873 

 
Table 1 legend. ​ Remaining unlisted percentages correspond to “not sure” or “flagged” (see ​Methods​). 
 
 
Table 2. ​Annotated object dataset distribution by class and model performance. 

 Images Cored 
plaque 

Diffuse 
plaque CAA AUROC 

(cored) 
AUPRC 
(cored) 

Train 61,370 2,141 48,123 2227 0.993 0.981 

Validation 8,630  381 7,487 126 0.983 0.842 

Test 10,873 98 10,480 7 0.993 0.743 
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Figure 8 

b. Blinded hold-out set

a. Correlation between CNN-based and CERAD-like manual scoring. Entire dataset of 63 WSIs
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