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 30 

Abstract 31 

Despite rapid progress of next-generation sequencing (NGS) technologies, the disease-32 

causing genes underpinning about 50% of Mendelian diseases remain elusive. One 33 

main challenge is the high genetic heterogeneity of Mendelian diseases in which similar 34 

phenotypes are caused by different genes and each gene only accounts for a small 35 

proportion of the patients. To overcome this gap, we developed a novel method, the 36 

Gene Ranking, Identification and Prediction Tool (GRIPT), for performing case-control 37 

analysis of NGS data. Analyses of simulated and real datasets show that GRIPT is well-38 

powered for disease gene discovery, especially for diseases with high locus 39 

heterogeneity.  40 

 41 
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Background 46 

Mendelian diseases refer to the diseases caused by mutations in a single gene and are 47 

inherited following Mendel’s laws. It was estimated that approximately 0.4% of live-born 48 

individuals have clinically recognizable Mendelian phenotypes by early adulthood, and 49 

about eight million children worldwide are born each year with a serious genetic condition 50 

leading to disability or threatening lives [1, 2]. Identification of Mendelian disease-causing 51 

genes can directly improve molecular diagnosis and genetic counseling and also provide 52 

new insights into the genetic and pathogenic mechanisms underlying the diseases, laying 53 

the foundations for developing preventive and therapeutic methods for patients [3, 4].  54 

 55 

Traditional strategies for Mendelian disease gene discovery are primarily family-based 56 

approaches. Linkage analysis was widely used for mapping genes underlying dominant 57 

inherited diseases, while homozygosity mapping was successfully applied on recessive 58 

inherited diseases in consanguineous families [5-9]. However, family-based strategies 59 

are limited by the availability of multi-member families and cannot be effectively applied 60 

to the sporadic cases of rare diseases. On the other hand, as the recent advances in 61 

next-generation sequencing (NGS) technology and the establishment of large patient 62 

cohorts, case-control analysis of patient NGS data has provided powerful alternatives in 63 

novel disease gene discovery [7, 10]. Case-control analysis methods typically map 64 

candidate genes mutated in multiple affected patients (i.e. cases) but in wildtype form in 65 

unaffected individuals (i.e. controls). However, it remains challenging for these methods 66 

to distinguish the candidate disease genes from the genes with large numbers of rare 67 

benign variants (e.g. the highly mutable genes). Furthermore, the enormous amount of 68 

data generated by NGS brings huge analytical and computational burdens, which 69 

requires algorithms that can efficiently search through large numbers of whole 70 

genome/exome data and reliably detect the true signal of the disease gene from the 71 

massive background noise.  72 

 73 

Previously, for case-control analysis, association tests were developed to identify the 74 

relation between genotypes and the phenotype, such as rare variant vs. common complex 75 
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diseases. Particularly, the group-wise (i.e. gene/locus-based) association tests have 76 

been applied to enrich association signals and reduce the penalty for multiple testing. For 77 

example, “burden tests” or “collapsing methods”, such as Combined Multivariate and 78 

Collapsing (CMC) [11], Cohort Allelic Sums Test (CAST) [12], and Weighted-Sum method 79 

[13] aggregate prioritization information across multiple variants within a genetic region. 80 

Furthermore, the kernel-based methods, such as Sequence Kernel Association Test 81 

(SKAT)[14] and Kernel-Based Adaptive Clustering (KBAC)[15], take into account the 82 

different effect direction and magnitude of variants within a locus when grouping the 83 

variants together. However, these methods were not originally designed for Mendelian 84 

diseases. Moreover, most of these methods are mainly based on the allele frequency 85 

differences and take little account of the functional predictions of individual alleles. In 2011, 86 

a case-control analysis method named Variant Annotation, Analysis and Search Tool 87 

(VAAST) and, later, an upgraded version, VAAST2, were developed for disease gene 88 

discovery of Mendelian disorders [16, 17]. VAAST/VAAST2 measures the aggregative 89 

impact of variants within a gene based on the variant frequency differences between 90 

cases and controls, and also considers the functional effects of variants by weighting 91 

amino acid substitution frequency and phylogenetic conservation [16, 17]. However, 92 

VAAST/VAAST2 is prone to producing false positives, prioritizing the genes with large 93 

numbers of rare benign variants as the candidate disease genes. In addition, its specificity 94 

is greatly reduced when analyzing cohorts with high population stratification.  95 

 96 

So far, 3532 genes underlying 5159 Mendelian phenotypes have been discovered, 97 

according to the Online Mendelian Inheritance in Man (OMIM) database (OMIM statistics, 98 

May 11th, 2018) [18]. But the genes mutated in about 50% of the known Mendelian 99 

disorders remain elusive, and many more Mendelian phenotypes have not yet been 100 

recognized [10].  One main challenge is that the disease is often rare and genetically 101 

heterogeneous where each disease-causing gene only accounts for a very small 102 

proportion of patients with the disease [10]. To address this challenge, we developed a 103 

novel method, named the Gene Ranking, Identification and Prediction Tool (GRIPT), to 104 

identify Mendelian disease genes through analyzing genomic sequence data of patient-105 
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control datasets. By testing both simulated and real datasets, we demonstrated that 106 

GRIPT has excellent sensitivity and specificity in identifying known and novel disease 107 

genes. It significantly outperforms other state-of-the-art tools in discovering disease 108 

genes underlying patient cohorts with high locus heterogeneity. Moreover, GRIPT is quite 109 

robust and less affected by potentially confounding factors, such as patient cohort size, 110 

population stratification in cohorts, and cutoff of variant frequency filtering.  111 

 112 

Results 113 

The framework of GRIPT 114 

GRIPT is specifically designed for Mendelian disease gene discovery through prioritizing 115 

genes with significantly higher deleterious mutation load in patients than controls as the 116 

candidate genes. In implementation, GRIPT first ranks the variants within each gene for 117 

every individual in both patient and control cohorts according to the variant effect score 118 

provided by users, e.g. CADD score (Figure 1, see Methods). Based on the variant scores, 119 

a gene score is calculated for each gene measuring the deleterious mutation load of the 120 

gene in every individual under a given inheritance model, i.e. Autosomal dominant (AD), 121 

Autosomal recessive (AR), X-linked dominant (XD), or, X-linked recessive (XR) model 122 

(see Methods). Then, a Fisher’s test built upon the combination of a binomial test and a 123 

Wilcoxon rank sum test (WRST) is applied to compare the gene score distributions in 124 

patients and controls for each gene, and a significance p-value associated with the test 125 

statistic is assigned. This composite test is especially suitable to compare two highly 126 

skewed distributions with excesses of zero, such as the gene score distributions in the 127 

case and control cohorts (Figure 2, see method) [19]. Finally, GRIPT compares and ranks 128 

all genes based on the test statistic of each gene (Figure 1).  129 

 130 

Simulation analysis tests the sensitivity and specificity of GRIPT  131 

To evaluate the sensitivity and specificity of GRIPT, we simulated WES data for patient 132 

and control cohorts under both the AR and AD inheritance models based on the variant 133 

profile of the human genome in the ExAC database (see Methods). To mimic the patient 134 

cohort with high disease-locus heterogeneity where a given disease gene only accounts 135 
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for a small proportion of the patients, pathogenic mutations of the same gene was 136 

randomly selected from The Human Gene Mutation Database (HGMD) and spiked into 137 

a small proportion (e.g. 0.5%, 1%, 2%, or 3%, respectively) of individuals in the patient 138 

cohort (see methods). The size of patient cohort was set at 600 and the control cohort 139 

at 5000. The simulation for each scenario was repeated 30 times. A genome-wide 140 

statistical significance level (GWSL) of 2.7´10-6 was used as the significant p-value 141 

cutoff for multi-testing correction (given about 18500 autosomal protein-coding genes 142 

annotated by RefSeq genes). The performance of GRIPT was measured with three 143 

parameters: 1) the ranking of the disease gene with spike-in pathogenic mutations, 144 

indicating the sensitivity of the tool; 2) the percentage of simulation runs in which the 145 

disease gene passes GWSL, indicating the statistical power of the tool; and 3) the 146 

number of significant autosomal candidate genes, indicating the specificity of the tool. 147 

Furthermore, the performance of GRIPT was compared with four popular cohort 148 

analysis tools, including the Mendelian disease gene finder, VAAST2, and three group-149 

wise association tests, the CMC (burden test), SKAT and KBAC (kernel model), on the 150 

same datasets. 151 

 152 

The sensitivity and specificity of GRIPT under the AR and AD models  153 

To test the performance of GRIPT in identifying AR disease gene, RPE65 was used as 154 

an example. RPE65 is a well-studied gene with mutations known to cause AR Leber 155 

congenital amaurosis (LCA) and Retinitis Pigmentosa (RP) [20-22]. The performance of 156 

the four tests was summarized in Figure 3 and Supplementary table S1. Figure 3A-C and 157 

table S1 demonstrate that GRIPT has great sensitivity and specificity in detecting RPE65, 158 

even when the proportion of RPE65 patients was very low, mimicking the scenario of 159 

patient cohort with high locus heterogeneity. When the RPE65 patient proportion was as 160 

low as 0.5%, GRIPT ranked RPE65 on average sixth, achieving 66.67% power. When 161 

the RPE65 patient proportion reached ≥ 1%, GRIPT ranked RPE65 first in all trials with 162 

100% power. Across the range of RPE65 patient proportions, GRIPT identified on 163 

average three significant candidates per simulation. In contrast, with a low proportion of 164 

RPE65 patients, the other four algorithms had significantly lower sensitivity and power 165 
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than GRIPT (WRST, p-value see Supplementary table S1). For example, when the 166 

RPE65 patient proportion was ≤ 1%, the powers of the other four tests were ≤ 10% and 167 

the mean rank of RPE65 was between 38 and 3068. Each of the other four methods 168 

identified on average zero or one significant candidate gene. 169 

  170 

In parallel, the performance of GRIPT in identifying AD disease gene was tested using 171 

TINF2 as an example. TINF2 is a known, disease-causing gene of AD Revesz syndrome 172 

and Dyskeratosis congenital [23-25]. As shown in Figure 3D-F and table S1, GRIPT 173 

lacked power when the TINF2 patient proportion was very low, but its performance was 174 

greatly improved as the TINF2 patient proportion increased. Specifically, as TINF2 patient 175 

proportion increased from 0.5% to 1%, the power of GRIPT increased from 3.33% to 176 

53.33%. When the TINF2 patient proportion reached ≥ 2%, TINF2 was always ranked 177 

first by GRIPT with 100% power. On average, GRIPT identified about two significant 178 

candidate genes. In comparison, the other four methods had significantly worse 179 

performance than GRIPT (WRST, p-value see Supplementary table S1). For example, 180 

when TINF2 patient proportion increased from 0.5% to 1%, the power of VAAST2 181 

increased from 0% to 13.33%, CMC from 0% to 36.67%, SKAT from 0% to 6.67%, and 182 

KBAC from 0% to 6.67%.  183 

 184 

Benchmark on 400 randomly selected known disease genes 185 

To further expand the evaluation of GRIPT, we performed simulation using 400 Mendelian 186 

disease-causing genes randomly selected from the OMIM database, including 200 AR 187 

and 200 AD disease genes. For each gene, we simulated the patient cohorts with a size 188 

of 600 and used the same simulated control cohort with a size of 5000. The results were 189 

summarized in Figure 4 and Supplementary table S2. 190 

 191 

Consistent with the results for RPE65, GRIPT showed outstanding sensitivity and 192 

specificity in detecting the 200 AR genes even when the proportion of patients attributed 193 

to the same disease gene was very low (Figure 4A-C). Consistently, VAAST2, CMC, 194 

SKAT and KBAC showed significantly worse performance than GRIPT when patient 195 
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cohort had high locus heterogeneity (Figure 4A-C, WRST, p-value see Supplementary 196 

table S2). When the proportion of patients attributed to the same disease gene was as 197 

low as 0.5%, the disease genes were ranked on average 24th by GRIPT achieving 52.5% 198 

power, whereas the other four methods had 0% power. When the patient proportion 199 

equaled to 1%, the disease genes were ranked on average first by GRIPT with 97% power. 200 

In contrast, the power of the other four methods were between 0.5% and 11.5%. When 201 

the patient proportion reached ≥ 2%, the disease genes were always ranked first by 202 

GRIPT with 100% power. In comparison, the power of the four methods were between 203 

11.5% and 97.5%. Across the range of patient proportions, GRIPT identified on average 204 

one significant candidate gene compared to zero or one candidate by each of the other 205 

four methods. 206 

  207 

Consistent to the results of TINF2, the overall performance of GRIPT was better than or 208 

comparable to the other four methods in detecting the 200 AD genes (WRST, p-value see 209 

Supplementary table S2). When the proportion of patients attributed to the same disease 210 

gene was ≤ 1%, GRIPT and the other four tests have very low power, i.e. ≤ 29.5% for 211 

GRIPT, ≤ 13% for VAAST2, ≤ 21.5% for CMC, ≤ 31% for SKAT, ≤ 4.5% for KBAC (Figure 212 

4D-F). When the patient proportion attributed to the same gene increased to 2%, the 213 

disease genes were ranked on average third by GRIPT with 87% power. In comparison, 214 

the power of the other four tests were between 68% and 85.5%. When the patient 215 

proportion reached 3%, the disease genes were ranked first in 97.5% of simulations by 216 

GRIPT with 99% power. Comparably, the power of the other four tests increased to 93% 217 

- 99%. Across the range of patient proportions, on average one to two significant 218 

candidate genes were identified by GRIPT compared to between zero and five candidates 219 

by the other four methods.  220 

 221 

Simulations suggest GRIPT is highly robust 222 

The performance of case-control cohort analysis can be potentially impacted by several 223 

confounding factors, such as patient cohort size, population stratification, and the cutoff 224 

of variant filtering frequency, and the control cohort size. To assess their impact, we 225 
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performed simulations using RPE65 and TINF2 as examples under the AR and AD 226 

models respectively, and compared GRIPT with VAAST2, CMC, SKAT and KBAC using 227 

the same datasets under each scenario. In addition, we tested the effect of different 228 

variant score systems on the performance of GRIPT.  229 

 230 

The sample size of the patient cohort 231 

We simulated the patient cohorts in a range of sizes, i.e. 50, 100, 300, 600, and 800, with 232 

2% of patients carrying the pathogenic mutations of the same disease genes, and control 233 

cohorts with a size of 5000. The results were summarized in Figure 5 and Supplementary 234 

table S3. 235 

 236 

As shown in Figure 5A-C, under the AR model, GRIPT maintains high sensitivity for 237 

patient cohorts with a variety of sizes and high locus heterogeneity although its specificity 238 

decreased for small patient cohorts with high locus heterogeneity. In comparison, the 239 

other four methods performed significantly worse than GRIPT under the same situations 240 

(WRST, p-value see Supplementary table S3). Specifically, as the patient cohort size 241 

increased from 50 to 300 with 2% of patients carrying the RPE65 pathogenic mutations, 242 

the mean rank of RPE65 increases from 31 to 1 by GRIPT with 100% power. The number 243 

of significant candidates identified by GRIPT decreased from 107 to 8. When the patient 244 

cohort size reached ≥ 300, GRIPT always ranked RPE65 first with 100% power. The 245 

average number of significant candidates decreased to between one and eight. In 246 

contrast, the power of the other four methods was 0% when the patient cohort size < 300. 247 

When the patient cohort size reached ≥ 300, the power was 33.33%-100% for VAAST2, 248 

0%-40% for CMC, 3%-56.67% for SKAT, and 0%-16.67% for KBAC. And the average 249 

number of significant candidates identified by each of the four methods was between 0 250 

and 26.  251 

 252 

Under the AD model, when patient cohort was small and had high locus heterogeneity, 253 

GRIPT had low sensitivity and specificity, but its performance was greatly improved as 254 

the patient cohort size increased (Figure 5D-F). The other four methods performed 255 
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comparably or significantly worse under the same scenarios (Figure 5D-F, WRST, p-256 

value see Supplementary table S3). Specifically, when the patient cohort size increased 257 

from 50 to 100 with 2% of patients attributed to TINF2, the power of GRIPT increased 258 

from 6.67% to 33.33% and the average number of significant candidates decreased from 259 

79 to 28. When the patient cohort size increased to ≥ 300, TINF2 was ranked on average 260 

first by GRIPT with 100% power. The average number of significant candidates by GRIPT 261 

was between two and eight. In comparison, when the patient cohort size < 300, the power 262 

increased from 6.67% to 36.67% for CMC and remained at 0% for VAAST2, SKAT and 263 

KBAC. When the patient cohort size reached ≥ 300, the power was between 3.33% and 264 

100% for the four tests. The average number of significant candidates by each of the four 265 

tests was between 0 and 103.  266 

 267 

Population stratification of cohorts 268 

It was observed that the variant spectrum of a disease-gene is different among 269 

populations with different ethnicities and that high population stratification could impair 270 

the performance of cohort analysis [16]. To test the impact of population stratification on 271 

GRIPT, we simulated patient cohorts as an admixture of African and Latino individuals 272 

and control cohorts with Latino individuals only, based on the allele frequency in ExAC 273 

database with corresponding ethnicity (see Methods). The unmatched proportion 274 

between case and control cohorts were simulated at 0%, 20%, 40%, 60%, 80% and 100%. 275 

The size of patient cohort was set at 500 and the control cohort at 5000. The proportion 276 

of patients carrying the pathogenic mutations of the same gene was set at 1%. The results 277 

were summarized in Figure 6 and Supplementary table S4. 278 

 279 

As shown in Figure 6A-F, the sensitivity and specificity of GRIPT slightly decreased as 280 

unmatched ethnicity proportion between cases and controls increased. However, GRIPT 281 

is significantly less affected by population stratification than the other four methods even 282 

when patient cohort had high locus heterogeneity (WRST, p-value see Supplementary 283 

table S4). Specifically, under the AR model, as the unmatched ethnicity proportion 284 

between patients and controls increased from 0% to 100% (namely, from the completely 285 
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matched to the completely unmatched), the mean rank of RPE65 dropped from 1 to 32 286 

by GRIPT but always with 100% power (Figure 6A-C). Specificity was reduced as the 287 

average number of significant candidate genes increased from 2 to 111 (Figure 6A-C). In 288 

comparison, the powers of CMC, SKAT and KBAC were between 0% and 20%. The 289 

average number of significant candidate genes increased from 1 to 1929 for CMC, from 290 

0 to 2603 for SKAT, and from 0 to 1921 for KBAC. In addition, as the unmatched ethnicity 291 

proportion increased, the running time for VAAST2 dramatically increased (e.g. needs 292 

120-240 hours with 5 parallel CPUs to finish one simulation run), VAAST2 was only tested 293 

for the unmatched ethnicity proportion ranging from 0% to 60%. Under those scenarios, 294 

the power of VAAST2 was between 10% and 26.7%. The average number of significant 295 

candidate genes identified by VAAST2 increased from 0 to 1502. 296 

 297 

Under the AD model, GRIPT is also significantly less affected by population stratification 298 

(WRST, p-value see Supplementary table S4). As the unmatched ethnicity proportion 299 

increased from 0% to 100%, the mean rank of TINF2 dropped from two to nine by GRIPT 300 

with 96.67%-100% power (Figure 6D-F). The mean number of significant candidate 301 

genes increased from 3 to 19. In comparison, the mean rank of TINF2 dropped from 3 to 302 

75 for VAAST2, from 7 to 57 for CMC, and from 44 to 166 for SKAT, and from 3 to 33 for 303 

KBAC. The power was 0%-13.33% for VAAST2, 53.33%-66.67% for CMC, 0%-3.33% for 304 

SKAT, and 0%-6.67% for KBAC. The average number of significant candidate genes 305 

increased from zero to five for VAAST2, from 4 to 35 for CMC, from zero to two for SKAT, 306 

and from zero to one for KBAC. (Figure 6D-F).  307 

 308 

Variant frequency filtering 309 

Mendelian disease-causing mutations are expected to be very rare in the population, and 310 

common human variants are likely benign for rare Mendelian diseases. Therefore, to 311 

reduce the analysis/computation complexity, variants from WES are conventionally first 312 

filtered out common human genome variants based on allele frequency in large database 313 

of human genome variants, e.g. gnomAD and ExAC. To mimic this scenario, the above 314 

patient and control cohorts were simulated using the variants whose maximum population 315 
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frequency ≤ 0.5% in ExAC database for the AR model, and whose maximum population 316 

frequency ≤ 0.01% for the AD model. Here, we examined the impact of a relaxed (i.e. 317 

higher) frequency filtering cutoff on the disease gene identification methods. We 318 

simulated the WES data of patient and control cohorts using a range of variant frequency 319 

cutoffs respectively: ≤ 0.5%, ≤ 1% and ≤ 2% for the AR model, and ≤ 0.01%, ≤ 0.5% and 320 

≤ 1% for the AD model. The proportion of patients attributed to the same gene was set at 321 

1%. The size of patient cohort was set at 600 and control cohort at 5000. The results 322 

show that inclusion of more variants/noise per individual by using higher frequency 323 

filtering cutoff had little impact on GRIPT’s performance under the AR model, but it 324 

reduced its power under the AD model. The performance of the other four methods were 325 

largely compromised and were significantly worse than or comparable to that of GRIPT 326 

(Figure 7A-F, Supplementary table S5).  327 

 328 

Specifically, under the AR model, as the frequency filtering cutoff increased from 0.5% to 329 

2%, GRIPT ranked RPE65 first in 98.89% of the simulations, always achieving 100% 330 

power. The mean number of significant candidate genes was about three (Figure 7A-C).  331 

In contrast, the ranking of RPE65 by the other four tests was largely decreased, with ≤ 332 

10% power for VAAST2, 0% power for CMC, SKAT and KBAC. Under the AD model, as 333 

the variant frequency cutoff increased from 0.01% to 1%, the average rank of TINF2 334 

dropped from 5 to 590 by GRIPT with power decreasing from 53.33% to around 3%. The 335 

average number of significant candidate genes was between zero to two (Figure 7D-F). 336 

The power of VAAST2 decreased from 13.33% to 10%, CMC from 36.67% to 0%, SKAT 337 

from 6.67% to 0% for SKAT, and KBAC from 6.67% to 0%.   338 

 339 

The effect of the control cohort size 340 

Theoretically, the variant spectrum of a gene in a large control cohort should be less 341 

biased and closer to the true distribution than that in a small control cohort. Thus, large 342 

control cohorts can better serve as the control/baseline, for example, to exclude the genes 343 

with large numbers of rare benign variants in population. To test the effect of control 344 

cohort size, we simulated smaller control cohorts with a size of 600 and used the previous 345 
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case cohorts with a size of 600 to repeat the analysis. The results were summarized in 346 

Figure 8 and Supplementary table S6. 347 

 348 

Under the AR model, GRIPT remained sensitive in ranking RPE65. When the RPE65 349 

patient proportion increased from 0.5% to ≥ 2%, the mean rank of RPE65 increased from 350 

45 to 1. However, the p-value of RPE65 did not pass the GWSL in any of the simulations, 351 

showing GRIPT with 0% power. Consistent to the results with larger control cohort, the 352 

other four tools performed significantly worse than GRIPT (Figure 8A-C, WRST, p-value 353 

see Supplementary table S6). For example, when the RPE65 patient proportion equaled 354 

to 1%, the mean rank of RPE65 was 981 for VAAST2, 6243 for CMC, 7611 for SKAT and 355 

2892 for KBAC. Similarly, the p-values of RPE65 from the other four tests did not pass 356 

the GWSL for the majority of the simulations either, shown as the test power below 357 

13.33%.  358 

 359 

Under the AD model with the small control cohorts, the rankings of TINF2 by GRIPT and 360 

the other four methods were consistent to that with the large control cohorts (Figure 8D-361 

F, Supplementary table S6). The five methods gave TINF2 a low ranking when the TINF2 362 

patient proportion was low. But the ranking of TINF2 rose as the TINF2 patient proportion 363 

increased. When the TINF2 patient proportion increased to 3%, all five methods ranked 364 

TINF2 to the top. However, similar to the results under the AR model, the p-value of TINF2 365 

by the five methods did not pass the GWSL in the majority of the simulations under the 366 

AD model, shown as the power below 36.67% (Figure 8D-F).  367 

 368 

The effect of different variant scoring systems 369 

To test whether the performance of GRIPT will be affected by different variant score 370 

systems, besides CADD score, we applied the DANN and REVEL scores to annotate the 371 

variant scores in GRIPT respectively, and repeated the aforementioned analyses. DANN 372 

scoring system shares the same feature set and training data as CADD (which was 373 

trained with a linear kernel support vector machine, SVM) but was trained with a non-374 

linear deep neural network. DANN achieves about a 19% relative reduction in the error 375 
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rate and about a 14% relative increase in the area under the curve (AUC) metric over 376 

CADD’s SVM methodology [26]. REVEL is an ensemble method for predicting the 377 

pathogenicity of missense variants by integrating the individual tools, including MutPred, 378 

FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, 379 

GERP, SiPhy, phyloP, and phastCons. REVEL outperformed (p < 10-12) individual tools 380 

and seven ensemble methods (i.e. MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, 381 

and Eigen) in analyzing independent test sets, and also showed the best performance for 382 

distinguishing pathogenic from rare neutral variants with allele frequencies <0.5% [27]. As 383 

shown in the Supplementary Figure S2-S5 and Supplementary Table S2-S5, the 384 

benchmark analysis with 400 AR and AD genes, the analyses of the impacts of patient 385 

cohort size, population stratification, and variant frequency filtering all showed that the 386 

results based on DANN and REVEL scores are consistent with the previous results based 387 

on CADD score. The consistency based on different variant score systems demonstrated 388 

the reliability and robustness of the statistic test framework of GRIPT.  389 

 390 

Comparison to the traditional GWAS single variant test  391 

To compare the performance of GRIPT with the traditional GWAS single variant test, we 392 

simulated the basic scenario with 0.5%-3% of patients carrying the pathogenic mutations 393 

of RPE65 and TINF2 respectively, and applied GRIPT and Fisher’s exact test to the data. 394 

As shown in Figure 9 and Supplementary table S1, Fisher’s exact test performed much 395 

worse than GRIPT. Under the AR model, when the RPE65 patient proportion was 0.5%, 396 

RPE65 was ranked on average sixth by GRIPT with 66.67% power. When the RPE65 397 

patient proportion was ≥ 1%, RPE65 was always ranked first by GRIPT with 100% power. 398 

In contrast, the average ranking of RPE65 by Fisher’s exact test was in the range of 890 399 

to 32000, always with 0% power. Under the AD model, as TINF2 patient proportion 400 

increased from 0.5% to 1%, the power of GRIPT increased from 3.33% to 53.33%. When 401 

the TINF2 patient proportion was ≥ 2%, GRIPT always ranked TINF2 first with 100% 402 

power. In comparison, as the proportion of TINF2 patients increased, the average ranking 403 

of TINF2 by Fisher’s exact test was improved from 12675th to 23th, but the test power 404 

remained at 0%. The reasons may be: 1) GRIPT is a gene-wise test that ranks the 405 
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functional effects of variants and incorporates the Mendelian inheritance models to 406 

compute the gene score. In contrast, the traditional single variant test considers one 407 

variant in a gene each time, and is mainly based on the allele frequency difference 408 

between cases and controls. Thus, the single variant test does not have sufficient power 409 

to detect the heterogeneous rare deleterious variants in Mendelian disease cohorts, 410 

although it might be suitable for common complex diseases. 2) the multiple test correction 411 

requests a much more stringent p-value cutoff for the single variant test than the gene-412 

wise GRIPT due to the larger number of tests applied in the single variant test than in 413 

GRIPT (i.e. variants vs. genes).  414 

 415 

Analysis of real patient cohort data display GRIPT’s excellent performance 416 

To further validate the performance of GRIPT, we applied it to real WES data of three 417 

different patient cohorts respectively, including a Leber’s congenital amaurosis (LCA) 418 

cohort, a Retinitis pigmentosa (RP) cohort, and a congenital disorder of glycosylation 419 

(CDG) cohort. Both the LCA cohort and RP cohort were composed of the patients carrying 420 

the pathogenic mutations of different genes, and the proportion of patients attributed to 421 

each disease gene was small. Furthermore, the patient ethnicity of the LCA cohort or RP 422 

cohort was an admixture of Caucasian, African American, Latino, and Asian. Whereas, 423 

the CDG cohort was composed of the patients all attributed to PGM3 from two families. 424 

The performance of GRIPT was also compared with VAAST2, CMC, SKAT and KBAC on 425 

the same datasets. 426 

 427 

The LCA cohort 428 

LCA is a genetic heterogeneous disease and can be caused by mutations in at least 22 429 

genes ( http://www.sph.uth.tmc.edu/RetNet, accessed as September 3rd, 2017). We 430 

performed WES on 115 sporadic LCA patients. As LCA is a rare Mendelian disorder, 431 

variants with maximum population allele frequency > 0.5% were filtered out based on 432 

the allele frequency in the large public databases of normal populations (i.e. 1000 433 

genome, dbSNP, ESP6500, ExAC, gnomAD) and an internal database. We only 434 

focused on rare protein-changing variants including nonsense variants, splicing 435 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2018. ; https://doi.org/10.1101/454975doi: bioRxiv preprint 

https://doi.org/10.1101/454975


 16 

donor/acceptor variants, missense variants, and small INDELs, since they are more 436 

likely to be the disease-causing mutations. One previously simulated control cohort 437 

(n=5000) was used as the control cohort for these tests.  438 

 439 

GRIPT showed high sensitivity for the LCA cohort with high locus and ethnicity 440 

heterogeneity. It successfully detected the disease gene that only accounted for ≤ 1% of 441 

the patients. Specifically, the first nine candidate genes ranked by GRIPT were all known 442 

retinal disease genes (Table 1). Among a total of 203 significant candidates, 19 genes 443 

were known disease genes, each of which accounted for 0.87%-6.09% (one to seven 444 

patients) of the cohort. Most interestingly, GRIPT was able to identify novel retinal disease 445 

genes, i.e. POMGNT1 (p = 2.81 ´ 10-10) and MFSD8 (p = 2.81 ´ 10-10). POMGNT1 was 446 

a gene causing non-syndromic RP newly discovered in 2016 [28], and accounted for one 447 

patient of this cohort, who carried a stop-gain mutation and a missense mutation in 448 

POMGNT1. Mutations in MFSD8 have been linked to Macular Dystrophy recently [29] 449 

and accounted for one patient of the LCA cohort, who carried a splice donor mutation and 450 

a missense mutation in MFSD8.  451 

 452 

In comparison, the other tools lacked power in detecting the disease genes accounting 453 

for small proportions of this cohort. A total of 7 significant candidates were identified by 454 

VAAST2, 27 by CMC, 6 by SKAT, and 1 by KBAC. Among them, 5 genes by VAAST2 455 

were known disease genes, 3 genes by CMC, 2 genes by SKAT, and 1 genes by KBAC, 456 

each of which accounted for 2.61%-6.09% (three to seven patients) of the cohort. 457 

However, none of these known genes were the recently identified novel retinal disease 458 

genes.  459 

 460 

The RP cohort 461 

RP is an inherited retinal disease with even greater genetic heterogeneity compared to 462 

LCA. So far, mutations in more than 65 genes were found to cause the disease 463 

( http://www.sph.uth.tmc.edu/RetNet, accessed by September 3rd, 2017). WES was 464 

performed for 154 sporadic RP patients. After filtering, the WES data of the real patient 465 
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cohort and a simulated control cohort (n=5000) were subjected to analysis. GRIPT again 466 

showed excellent power in identifying low frequency disease genes underlying the cohort 467 

with high locus and ethnicity heterogeneity. As shown in Table 2, eight genes whose 468 

rankings ranged from first to eleventh by GRIPT were known retinal disease genes. 469 

Among the 157 significant candidates (p < 2.7e-6) identified by GRIPT, 17 are known 470 

disease genes, each of which explained 0.649%-8.44% (1 to 13 patients) of the cohort. 471 

Furthermore, GRIPT was able to identify three novel retinal disease genes recently 472 

published, i.e. POMGNT1 (p = 3.95 ´ 10-15), TRNT1 (p = 6.25 ´ 10-8) and HGSNAT 473 

(p=2.10 ´ 10-7). Mutations in POMGNT1 [28] accounted for two patients of the cohort, 474 

who carried two different homozygous missense mutations. Mutations in HGSNAT, a 475 

gene causing nonsyndromic RP[30], explained two patients in this cohort. One patient 476 

carried two missense mutations, and the other carried a disruptive inframe deletion and 477 

a missense mutation. Mutations in TRNT1, a gene causing RP and erythrocytic 478 

microcytosis[31], accounted for one patient in the cohort, who carried a frameshift 479 

mutation and a missense mutation in TRNT1.   480 

 481 

In comparison, the other tools had weak power in detecting the low frequency disease 482 

genes underlying this cohort. A total of 4 significant candidate genes were identified by 483 

VAAST2, 25 by CMC, 6 by SKAT, and 2 by KBAC. Among them, 2 genes by VAAST2 484 

were known disease genes, 0 by CMC, 1 by SKAT and 0 by KBAC, each of which 485 

accounted for 5.19%-8.44% (8 to 13 patients) of the cohort. And none of these known 486 

genes were the novel retinal disease genes recently identified. 487 

 488 

The CDG cohort 489 

The CDG cohort was composed of six patients from two families who all carry the 490 

pathogenic mutations of PGM3 gene. The WES data were downloaded from dbGaP 491 

(phs000809.v1.p1). Thus, this cohort serves as a real data example of a genetic 492 

homogeneous disease with extremely small case cohort size from an independent 493 

external source. After filtering and annotation, the real WES data and a simulated control 494 

cohort (n = 5000) were analyzed by the five tools. GRIPT showed the highest accuracy 495 
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and efficiency in analyzing this homogeneous external cohort. GRIPT correctly ranked 496 

PGM3 first (p =0), taking less than 30 minutes with one CPU. VAAST2 also ranked PGM3 497 

first (p= 2.50 ´ 10-6) but took about 6 hours with 5 parallel CPUs. CMC ranked PGM3 11th 498 

(p = 3.79 ́  10-64) and took 2.5 hours with one CPU. The p-value of PGM3 by SKAT equals 499 

to 0 but is the same as the other 162 genes (p = 0), taking 9.3 hour with one CPU. The 500 

p-value of PGM3 by KBAC equals to 2 ´ 10-6 but is the same as the other 62 genes (p = 501 

2 ´ 10-6), taking 7.8 hour and one CPU. 502 

 503 

Discussion 504 

In this study, we developed a novel computational method named GRIPT for Mendelian 505 

disease gene discovery through analyzing the NGS data of patient-control cohorts. The 506 

null hypothesis of GRIPT is that a non-disease gene should have similar deleterious 507 

mutations load in cases and in controls. GRIPT scores and compares the deleterious 508 

mutations load of each gene in the genome between patients and controls using a 509 

composite Fisher’s test, and prioritizes the genes that have significant higher deleterious 510 

mutation loads in cases than in controls as the candidate disease genes.  511 

 512 

Both simulation and real data tests indicate that GRIPT has great sensitivity and 513 

specificity and is highly reliable in discovering Mendelian disease genes. For example, as 514 

shown in the benchmark of 400 known disease genes, under the AR model, GRIPT 515 

ranked the disease gene first in 97.5% of the simulations for a patient cohort with a size 516 

of 600 and with only 1% of patients carrying the pathogenic mutations of the same gene. 517 

In addition, the disease gene was usually the only significant candidate gene identified 518 

by GRIPT (Figure 4A-C). Under the AD model, GRIPT ranked the disease genes in the 519 

top three in 93.5% of the simulations when 2% of patients (cohort size =600) were 520 

attributed to the same gene (Figure 3D-F). The average number of significant candidates 521 

was about two. Furthermore, the results from analysis of real patient data were consistent 522 

with the benchmark results. For the LCA cohort (size n = 115), GRIPT was able to 523 

systematically and accurately identify 19 disease genes (5 genes by VAAST2, 3 genes 524 

by CMC, 2 genes by SKAT, and 1 by KBAC). The candidates ranked from first to ninth 525 
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were all real disease genes. For the RP cohort (size n = 154), GRIPT was able to 526 

accurately identify 17 genes (2 genes by VAAST2, 0 genes by CMC, 1 genes by SKAT, 527 

and 0 by KBAC) with seven of the top 10 candidates being real disease genes. Each of 528 

the disease genes identified by GRIPT only accounted for 0.649%-8.44% (1 to 13 patients) 529 

of patients in the LCA or RP cohort. Moreover, as shown in the simulation, GRIPT reached 530 

around 100% power and always ranked the genes to the top for large patient cohorts (e.g. 531 

size n ≥ 300) and/or more homogeneous patients (e.g. the same gene explaining ≥ 3% 532 

of the patients), which was also demonstrated by the analysis of the CGD cohort with a 533 

size of six and all attributed to the gene PGM3. Most interestingly, GRIPT was able to 534 

discover four newly reported disease genes in the analysis of real patient data. Each of 535 

these newly discovered genes only accounted for one or two (0.649%-1.3%) patients in 536 

the patient cohort. Overall, GRIPT shows the great power in discovering known and novel 537 

Mendelian disease genes. It is especially well suited to analyze diseases with high locus 538 

(and ethnicity) heterogeneity, which is a major challenge for solving the underlying 539 

genetics mechanisms of Mendelian disorders.  540 

 541 

GRIPT is also more robust and significantly less affected by potential confounding factors 542 

than other disease gene finders. For example, GRIPT remained powerful for small patient 543 

cohorts with high locus heterogeneity. In simulation, under the AR model, for a patient 544 

cohort with a size of 100 and only two (2%) patients carrying the pathogenic mutations of 545 

the same gene, the disease gene was ranked on average third by GRIPT with 100% 546 

power. In contrast, the mean ranking of the disease gene by other tools was between 547 

~150 and ~3300 and all with 0% power. This result was also consistent with results from 548 

real data as previously discussed. Furthermore, using higher allele frequencies as the 549 

variant filtering cutoff, which presumably adds more noise to the analysis, had little impact 550 

on the performance of GRIPT under the AR model. In the simulation, for a patient cohort 551 

with a size of 600 and with six (1%) patients attributed to the same gene, as the cutoff of 552 

variant frequency filtering increased from 0.5% to 2%, the disease gene was ranked first 553 

in 98.89% of simulations by GRIPT with 100% power. In comparison, the mean rank of 554 

the gene was between 11 and 38 by VAAST2, between 2953 and 4420 by CMC, between 555 
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269 and 2095 by SKAT, and between 1306 and 1655 by KBAC, all of which had power 556 

below 10%. More importantly, GRIPT is significantly less affected by the combined effect 557 

of population stratification and high locus heterogeneity, which occur frequently in real 558 

data and severely impair the performance of other tools as shown in the simulation and 559 

real data analysis. In the simulation of the worst-case scenario where the ethnicity of the 560 

patient cohort was completely unmatched by that of the control cohort and with only 1% 561 

of the patient cohort (with a cohort size of 500) attributed to the same disease gene under 562 

the AR model, GRIPT ranked the disease gene, on average, 32th with 100% power 563 

although it generated around 107 significant candidates. In contrast, the mean ranking of 564 

the disease gene by other tools was greater than 3500 (power ≤ 20%), each of which 565 

generated more than 1500 significant candidates. Consistently, the other tools displayed 566 

lack of power in the real LCA and RP cohorts with mixed ethnicity and high locus 567 

heterogeneity. 568 
 569 
The performance advantage of GRIPT might be partly due to that it scores the mutation 570 

load of a gene according to the Mendelian inheritance rule. Under the AR model, for each 571 

individual, GRIPT only considers/scores genes with at least two variants, which could 572 

exclude the false positive signals from the genes merely carrying one pathogenic allele 573 

in an individual. Furthermore, the Fisher’s test built upon the combination of a binomial 574 

test and a WRS test equipped GRIPT the excellent statistical power for comparing highly 575 

skewed distributions of gene score (Figure 1 and Methods). In comparison, 576 

VAAST/VAAST2, CMC, SKAT and KBAC takes into account the genes carrying at least 577 

one variant in an individual. In addition, CMC, SKAT, and KBAC group all the variants 578 

within a gene to compute the deleterious mutation load of the gene, which makes genes 579 

with large number of rare variants in case cohort (e.g. benign or due to chance) ranked 580 

high and creates false positives. As shown in simulation, this impact on the other tools 581 

was more pronounced when the true signal was diluted by high locus heterogeneity 582 

and/or was compromised by large background noises, e.g. population stratification (or 583 

sequencing platform/variant calling difference) or relaxed cutoff of variant filtering 584 

frequency.  585 

 586 
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Simulation results also suggest that to optimize the performance of GRIPT, the following 587 

conditions should be considered. First, as one of the key factors affecting sensitivity is the 588 

proportion of patients attributed to the same gene, it is highly desirable to increase the 589 

homogeneity of patient cohort. One possible approach is to perform detailed phenotyping 590 

and gather the patients who share similar phenotypes and are likely due to mutations in 591 

one or a small number of genes. Second, while maintaining the homogeneity of the patient 592 

cohort, increasing the patient cohort size can also improve sensitivity. For example, by 593 

increasing the patient cohort size from 50 to 100 while maintaining 2% of patients carrying 594 

disease mutations of the same gene under the AR model, the average rank of the disease 595 

gene increased from 31 to 3 by GRIPT. Third, using the correct inheritance model when 596 

running GRIPT can leverage its power. If the inheritance model of the diseases is unclear, 597 

GRIPT should be run using different models, including AD, AR, XD and XR, respectively. 598 

Fourth, reduction of the noises in the input variants will improve the outcome. For example, 599 

large databases of “normal” populations, e.g. gnomAD and ExAC should be used to pre-600 

filter variants and remove common benign variants that are unlikely to cause diseases, 601 

while filtering with internal databases can weaken the error/bias from the sequencing 602 

platforms and variant callers. Furthermore, under different inheritance models, the 603 

mutations should be pre-filtered with different frequency cutoffs (for example, the variant 604 

filtering frequency for AD model should be more stringent, namely lower than for AR 605 

model). Additionally, removing the genes that are highly mutable but known not causing 606 

diseases can reduce noise as well. Fifth, the accuracy of variant function/pathogenicity 607 

prediction will also impact the performance of GRIPT. Currently GRIPT applies the well-608 

established integrative allele prediction score, i.e. CADD score, to predict the 609 

pathogenicity of variants. However, as the scoring system of GRIPT is flexible, users can 610 

easily substitute the CADD score with any other score generated by better algorithms for 611 

variant pathogenicity prediction. In aforementioned analysis, we also used DANN and 612 

REVEL scores as the variant score, which generates the consistent results, suggesting 613 

the reliability and robustness of the statistic test framework of GRIPT. The thumb of rules 614 

for using variant score systems is: 1) the scoring systems should reliably and 615 

quantitatively predict the deleteriousness of variants. 2) the scores should be 616 
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scaled/normalized into a genome-wide ranked score to allow the comparison 617 

implemented in the statistic test of GRIPT. 3) The score system should be comprehensive 618 

and cover all the possible SNP and INDEL in the genome.  619 

 620 

Although GRIPT does not directly identify pathogenic mutations, by identifying candidate 621 

(novel) disease genes, it will dramatically reduce the number of variants to be considered 622 

for each patient and therefore greatly facilitate the identification of potential mutations.  623 

Once the candidate genes are identified, the causal variants of the genes can be further 624 

prioritized with the conventional steps: 1) The individuals carrying at least two (recessive 625 

mode) or one (dominant mode) rare variants of the candidate gene should be identified 626 

from the patient cohort. 2) Multiple variant effect prediction systems can be applied to 627 

estimate and compare deleteriousness of the variants in affecting protein function, mRNA 628 

splicing or other regulation processes of the gene (e.g. CADD score, SIFT, Polyphen, 629 

MetaLR/SVM, PROVEAN, REVEL, phyloP100way_vertebrate, 630 

phastCons100way_vertebrate, ada_score, NNsplice). 3) The sanger validation and 631 

segregation tests of the patients and additional relatives should be performed for the 632 

candidate variants. 633 

 634 

Conclusions 635 

In summary, we developed a highly accurate and robust case-control analysis method, 636 

GRIPT, for discovery of Mendelian disease genes. It is especially powerful in detecting 637 

disease genes underlying diseases with high locus heterogeneity and is less affected by 638 

population stratification. It is also efficient, portable, and flexible. In addition, we generated 639 

a WES data simulator which is capable of unbiasedly simulating the WES data of control 640 

cohorts with any sample size, gender ratio, and population ethnicity for the usage of 641 

GRIPT or other tools. As NGS technology advances (e.g. the decrease in cost and time) 642 

and greater amounts of large cohort data become available, we envision that GRIPT will 643 

make a significant contribution to the discovery of novel Mendelian disease genes and 644 

pave the way for better understanding, diagnosis, prevention, and treatment of Mendelian 645 

diseases.  646 
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 647 

Methods 648 

Each variant is scored to quantify the deleteriousness 649 

The hypothesis that GRIPT tests is whether the deleterious mutation loads of a disease-650 

causing gene is significantly higher in case cohort than in control cohort. To quantify the 651 

deleteriousness of variants, in this study, we applied Combined Annotation Dependent 652 

Depletion (CADD v1.3) score to each variant of each gene in every individual [32]. CADD 653 

score is an integrative score derived from the integration of diverse annotations and is 654 

highly predictive of molecular functionality and pathogenicity [32]. Higher CADD score 655 

indicates more deleteriousness of the mutation. In addition, CADD not only provides 656 

integrative prediction scores for SNVs but also for INDELs which are missing for most 657 

other variant effect prediction tools. We further normalized the variant score on a scale of 658 

0 to 1 as	𝑠 = 1 − 10'(/*+. C is the PHRED-like scaled C-score as described in CADD. 659 

Moreover, CADD score can be easily replaced by any other score that users provide in 660 

order to better predict the variant’s deleteriousness. To test the reliability and robustness 661 

of the statistic test framework of GRIPT, the ranked REVEL and DANN scores were also 662 

applied as the variant scores respectively. The CADD score was downloaded from 663 

https://cadd.gs.washington.edu/download. The ranked DANN score was extracted from 664 

dbNSFP3.4a downloaded from https://sites.google.com/site/jpopgen/dbNSFP. The 665 

ranked REVEL score was downloaded from 666 

https://sites.google.com/site/revelgenomics/downloads.  667 

 668 

Each gene is scored under different inheritance models 669 

Under the autosomal recessive (AR) model, only the genes with at least two variants in 670 

an individual will be assigned a positive score. The sum of the two highest scores of 671 

variants within a gene is used as the score of that gene in the individual. If two variants 672 

of a gene are in cis (namely, the two variants reside on the same chromosome) in an 673 

individual, only the variant with the higher score will be considered. If a gene carries ≤ 674 

one variant in an individual, the score of this gene will be 0 for that individual. Under the 675 

AR model, the maximum score for a gene is 2, and the minimum is 0.  676 
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 677 

Under the autosomal dominant (AD) model, only the genes with at least one variant in an 678 

individual will be assigned a positive score. The highest score of variants within a gene is 679 

used as the score of that gene in the individual. Under the AD model, the maximum score 680 

for a gene is 1, and the minimum is 0.  681 

 682 

Similarly, under the X-linked recessive model, the sum of the two highest variant-scores 683 

is used as the score of each gene on the X chromosome in an individual. And under X-684 

linked dominant model, the highest variant-score is used as the score of each gene on 685 

the X chromosome in an individual. 686 

 687 

Gene score distribution is highly skewed for rare Mendelian disorders 688 

As mentioned above, each gene has a score in each case or control individual, ranging 689 

from 0 to 1 (for dominant models) or 2 (for recessive models). Then, for each gene, we 690 

compare the gene score distribution in case cohort to that in control cohort. The null 691 

hypothesis is that the deleterious mutations load of a gene is not significantly different 692 

between cases and controls. Thus, the significance of the one-tailed alternative 693 

hypothesis that the deleterious mutations load is higher in cases than controls could 694 

suggest the likelihood of the gene associated with the disease. 695 

 696 

To choose the appropriate statistic test, we first characterized the gene score distribution. 697 

We found that the score distributions of most genes are highly skewed with excesses of 698 

zeros. This is expected mainly because Mendelian diseases are rare and so are the 699 

disease-causing mutations. Usually, after filtering out known common human variants 700 

which are likely benign, only a small number of rare variants (e.g. MAF ≤ 0.5%) in cases 701 

and controls will be kept. Moreover, among the filtered rare variants, only some of them 702 

have deleterious effects, therefore, only these rare, deleterious variants will have positive 703 

variant-scores. In addition, the recessive model requires a biallelic state to assign a 704 

positive gene score in one individual. Thus, the scores of a gene in most case individuals 705 

and control individuals are zeros. An example of USH2A gene score distributions in our 706 
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retinal disease patient cohort (n = 250) and an internal control cohort (n = 250) is shown 707 

in Figure 2.  708 

 709 

Combining two separate statistical tests with Fisher’s test 710 

To compare the highly skewed distributions of gene scores in case and control cohorts 711 

derived above, we test a composite null hypothesis by applying a Fisher’s test to 712 

combine two separate tests including a binomial test and a WRS test [19]. The 713 

composite null hypothesis is designed to answer two questions. The first question is 714 

whether the proportions of non-zero scores are similar in case cohort and control cohort 715 

(Z1 =0). The second question is whether the values of non-zero scores are similar in 716 

case cohort and control cohort (Z2 = 0). Namely, Fisher’s method will test the H0: Z1 =0 717 

and Z2 =0 versus the one-tailed alternative H1: Z1 > 0 and/or Z2 >0[19].  718 

 719 

Let N1 and N2 be the total number of cases and controls. Let n1 and n2 be the number of 720 

non-zero score in cases and controls respectively.  721 

 722 

The first statistic, Z1, represents the proportion difference of non-zero scores between 723 

cases and controls. Given	𝑛* + 𝑛. = 𝑛 and 𝑟 = 𝑁./𝑁* , 𝑛* is approximately distributed 724 

as 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 1 + 𝑟 '*) under H0. Hence, a one-tailed p-value 𝑝* can be obtained as 725 

the tail area under the 𝑁 0, 1  p.d.f to the right  of  726 

𝑍* =

𝑛*
𝑛* + 𝑛.

− 1
1 + 𝑟

𝑟
1 + 𝑟 (1 + 𝑟) 𝑛* + 𝑛.

 727 

 728 

The second statistic, Z2, represents the difference of the non-zero scores between 729 

cases and controls. The standardized Wilcoxon rank sum test was applied to test 730 

whether the gene cores in cases are significantly higher than those in controls. Let 𝑝. 731 

denote the corresponding one-tailed p-value.  732 

 733 
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Finally, Fisher’s method is used to test the composite null hypothesis H0: Z1 =0 and Z2 734 

=0 at one-tailed level 𝛼 based on a combination of Z1 and Z2 or 𝑝* and 𝑝. as follow: 735 

 736 

Reject H0 if 𝑝 < 𝛼, where 𝑝 = 𝑃(𝜒@. > 	−4𝑙𝑜𝑔D 𝑝*𝑝. ) 737 

 738 

Here, 𝜒@. is a 𝜒. distribution with 4 d.f., therefore the p value can be calculated using a 739 

𝜒. distribution. 740 

 741 

The program of GRIPT is written in Java and R. 742 

 743 

A WES data simulator based on ExAC database 744 

The VCF file of ExAC database (ExAC.r0.3.1.sites.vep.vcf) was downloaded from 745 

http://exac.broadinstitute.org/downloads [33]. We collected the variants recorded in the 746 

VCF file which were not indicated as filtered by ExAC. For each of these variants, we 747 

extracted information on the genomic position, the allele count, the chromosome 748 

number, and the allele frequency in each subpopulation, including AFR (African/African 749 

American), AMR (American), EAS (East Asian), FIN(Finnish), NFE (Non-Finnish 750 

European), SAS (South Asian), OTH (Other), adjusted population, and raw data. We 751 

only considered the ExAC variants that were missense or loss-of-function mutations 752 

(e.g. missense mutations, stop-gained mutations, splicing donor/acceptor mutations, 753 

and frameshift mutations). We also downloaded the CADD scores for the ExAC variants 754 

from http://cadd.gs.washington.edu/download [32] and annotated each collected ExAC 755 

variant with its corresponding CADD score. Next, we wrote a WES data simulator 756 

program in PERL. Briefly, the script simulated the WES data per person individually. For 757 

each individual, the simulator will go through the variants recorded in the ExAC 758 

database which satisfy the variant filtering criteria (e.g. MAF ≤ 0.5%) one by one and 759 

output the reference nucleotide or the altered nucleotide according to the allele 760 

frequency of that variant in ExAC. For example, in the position chr1:10000, if the allele 761 

frequency of “A>T” is 0.2% and the allele frequency of “A>G” is 0.5%, then in the 762 

simulated WES data of one person, there is 0.2% of chances the simulator will output 763 
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the SNP “A>T”, 0.5% of chances will output the SNP “A>G”, and 99.3% of chances the 764 

simulator will generate “A>A”, namely not output any SNP in chr1:10000. Thus, each 765 

generated variant follows a multinomial distribution according to its frequency in the 766 

user-selected ethnic population based on the ExAC database. For a given number (N) 767 

of individuals with a given sex ratio, the simulator will generate “N” WES data file 768 

individually. Each WES data file includes information such as reference nucleotides, 769 

altered nucleotides, the coordinates in the genome, and the CADD scores of the 770 

variants.  771 

 772 

Simulation of patient and control cohorts 773 

To evaluate the performance of GRIPT, we performed the simulation tests on GRIPT 774 

and similar tools, i.e. VAAST2, CMC, SKAT and KBAC. The WES data of the patient 775 

cohort and control cohort were first generated using the WES data simulator mentioned 776 

above. Given the rare frequency of Mendelian disease-causing variants in normal 777 

population, for the AR model, the WES data were simulated based on the variants 778 

whose maximum population frequency was ≤ 0.5% in ExAC database by default, while 779 

for the AD model, based on the variants whose maximum population frequency was ≤ 780 

0.01% in ExAC database by default, unless otherwise specified. We used “adjusted” 781 

average population frequency as the default variant frequency, unless otherwise 782 

specified. Then, we randomly selected pathogenic variants of a given disease gene 783 

from HGMD database with MAF ≤ 0.5% in ExAC database, and inserted them into a 784 

given percentage of individuals randomly selected from the patient cohort to mimic the 785 

patient cohort with genetic heterogeneity. In the AR model, two variants were 786 

respectively selected from HGMD and spiked into each selected individual. Thus, the 787 

two variants spiked into the same individual can be the same (homozygous) or different 788 

(heterozygous). In the AD model, only one variant was randomly selected and spiked 789 

into each selected individual. Therefore, under the AR or AD model, the pathogenic 790 

mutations of a given gene can be the same or different within and between the patients. 791 

No additional mutations were spiked into the control cohort. For each spike-in 792 
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percentage level per scenario, 30 simulation runs were repeated (Supplementary figure 793 

S1).  794 

 795 

The implementation of VAAST2, CMC, SKAT, KBAC and Fisher’s exact test 796 

The latest release of VAAST2 was obtained from http://www.yandell-797 

lab.org/software/vaast.html [16, 17]. The CMC, SKAT and KBAC were implemented 798 

through the “Rvtests” software package downloaded from 799 

https://genome.sph.umich.edu/wiki/Rvtests#Download [34]. The p-values of VAAST2, 800 

SKAT, and KBAC were obtained using 400000 permutations. The Fisher’s exact test 801 

was implemented through the PLINK v1.90b5.2 package from https://www.cog-802 

genomics.org/plink/1.9/ [35]. The intermediate steps were carried out using PERL and R 803 

scripts. 804 

 805 

Preprocessing the variants in cis 806 

To reduce false positive, we recommend the users to handle the variants in cis before 807 

inputting data into GRIPT . However, given that it is not always possible to obtain accurate 808 

phasing information, GRIPT can tolerate imperfect phasing as shown in the 809 

aforementioned simulation and real data analyses. Currently, a preprocessing script 810 

included in the GRIPT package was used to handle variants in cis, which perform the 811 

following operations: 812 

 813 

1) If the genomic coordinates of two variants are within 100bp, Fisher’s exact test will be 814 

performed to determine whether the two variants are in cis by comparing the ratio of the 815 

variant base sequencing coverage to the reference base sequencing coverage of the two 816 

variants. If the two variants are in cis and within 100bp, they can be covered by a large 817 

number of the same sequencing reads, therefore their read coverage ratios would be 818 

similar and Fisher’s exact test p-value would be large. In contrast, if they are in trans and 819 

close to each other, they would be covered by different sequencing reads, thus the read 820 

coverage ratios of the two variants would be different and Fisher’s exact test p-value 821 

would be small. We take Fisher’s exact test p ≥ 0.4 as the cutoff to deduce the read 822 
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coverage ratios of the two variants are similar, namely, the two variants as in cis, 823 

otherwise as in trans. Using different p-value cutoff does not significantly impact on the 824 

result. For example, we have used p < 0.05 as the cutoff to assign the variants in trans, 825 

and p ≥ 0.05 to assign the two variants in cis. Although this could mistakenly assign a few 826 

in-trans variants as in-cis, the results remained consistent. Because GRIPT is built on the 827 

mutation burden in case cohort and control cohort but not a single case, a few imperfect 828 

phasing cases can be tolerated. If the two variants are determined to be in cis by Fisher 829 

test, the variant with higher variant score (e.g. CADD score) will be passed on to the 830 

subsequent analysis, while the one with lower variant score will be ignored.  831 

 832 

2) For each gene in every individual, all variants within the gene will be searched against 833 

the same gene in the rest individuals of the case cohort. If a gene has ≥ 2 variants present 834 

concurrently in ≥ 2 individuals, it is likely that these variants are in cis. Because given the 835 

sample size of case cohorts (n = 115 for LCA, 154 for the RP cohort, and currently 836 

available case cohort size mostly ≤ 5000) and the rare frequency of Mendelian disease-837 

causing mutations (allele frequency ≤ 0.5%), the chance for two or more rare variants co-838 

occurring in unrelated individuals is very small ( 5000 * (0.005*0.005)^2 << 2) , unless 839 

these variants are in cis or the disease is specifically caused by the combination of the 840 

variants. Although our preprocessing script does not fit the latter situation, it can help 841 

clean up the former one. If a gene has ≥ 2 variants co-occurring in ≥ 2 individuals, among 842 

the concurrent variants, the script will only keep the variant with highest variant score and 843 

ignore the other concurrent variants in the subsequent analysis.  844 

 845 

List of abbreviations  846 

AFR: African/African American  847 

AMR: American   848 

AR: Autosomal recessive 849 

AD: Autosomal dominant 850 

CADD: Combined Annotation Dependent Depletion 851 

CAST: Cohort Allelic Sums Test 852 
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CMC: Combined Multivariate and Collapsing 853 

DANN: Deleterious Annotation of genetic variants using Neural Networks 854 

EAS: East Asian 855 

ExAC: Exome Aggregation Consortium 856 

FIN: Finnish 857 

gnomAD: genome Aggregation Database 858 

GRIPT: Gene Ranking, Identification and Prediction Tool 859 

GWSL: Genome-wide significant level 860 

HGMD: Human Gene Mutation Database 861 

KBAC: Kernel-Based Adaptive Clustering 862 

LCA: Leber’s congenital amaurosis 863 

NFE: Non-Finnish European 864 

NGS: Next generation sequencing 865 

NSAG: Number of significant autosomal genes 866 

OMIM: Online Mendelian Inheritance in Man 867 

OTH: Other 868 

REVEL: Rare Exome Variant Ensemble Learner 869 

RP: Retinitis pigmentosa 870 

SAS: South Asian 871 

SKAT: Sequence Kernel Association Test 872 

VAAST: Variant Annotation, Analysis and Search Tool 873 

VCF: Variant Call Format 874 

WES: Whole exome sequencing 875 

WGS: Whole genome sequencing 876 

WRST: Wilcox rank sum test 877 
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 912 

Figure legends  913 

Figure 1. The logic flowchart of GRIPT 914 

First, the samples of the case and control cohorts will be collected and be subjected to 915 

NGS, e.g. WES. After variant calling, the known common and/or benign variants will be 916 

filtered out based on the variant annotation and their allele frequency in large databases 917 

of normal populations. Thus, for each gene, only a few rare variants will be left. Then 918 

GRIPT will annotate and rank the deleteriousness of each variant, e.g. using CADD 919 

score. Based on the variant scores, a gene score will be calculated to measure the 920 

deleterious mutation load of each gene in every individual according to a given 921 

inheritance model (see Methods). Next, a Fisher’s test built upon the combination of a 922 

binomial test and a Wilcoxon rank sum test (WRST) will be calculated to measure the 923 

difference of gene score distributions between patient cohort and control cohort for each 924 

gene, and a significance p-value associated with the test statistic will be assigned. This 925 

composite test is especially well suited to measure the difference of two highly skewed 926 

distributions with excesses of 0, such as the gene score distribution in the 927 

patient/control cohort computed by GRIPT (Figure 2). Finally, according to the test 928 

statistic of each gene, GRIPT compares and ranks all genes. 929 

 930 
Figure 2. The example of gene score distribution. 931 

This figure shows the gene score distributions of USH2A in a retinal disease cohort of 932 

250 patients (in red) and in a control cohort of 250 individuals (in blue). X axis: the gene 933 

score of USH2A per individual. Y axis: The numbers of patients or controls with the 934 

corresponding score.  Like the gene USH2A, the gene score distributions of most genes 935 

are highly skewed with excesses of zeros. 936 

 937 

Figure 3. Simulation analysis of GRIPT, VAAST2, CMC, SKAT and KBAC under the 938 

AR and AD models. The AR and AD models were tested with 0.5%, 1%, 2%, and 3% of 939 

patients carrying the pathogenic mutations of RPE65 or TINF2, respectively. The patient 940 

cohort size was 600. The control cohort size was 5000. The performance of GRIPT, 941 

VAAST2, CMC, SKAT and KBAC are shown in red, blue, green, purple, and orange, 942 
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respectively. a) The ranking of RPE65 under the AR model were shown in boxplot. b) The 943 

power of the five tools were measured as the proportion of simulation runs in which 944 

PRE65 passed the GWSL shown in dot plot. c) The number of significant autosomal 945 

candidate genes under the AR model were shown in boxplot. d) The ranking of TINF2 946 

under the AD model. e) The power of the five tools for TINF2. f) The number of significant 947 

autosomal candidates under the AD model. The rankings of RPE65/TINF2 generated by 948 

GRIPT were compared to those generated by the other four methods respectively with 949 

one-tailed WRST. The methods that generated significantly worse ranking than GRIPT 950 

were marked with ‘ * ’ if p-value < 0.05, ‘ ** ’ if p-value < 0.01, and ‘ *** ’ if p-value < 0.001. 951 

 952 

Figure 4. Benchmark of GRIPT, VAAST2, CMC, SKAT and KBAC on 400 Mendelian 953 

disease genes. The AR and AD models were tested with 0.5%, 1%, 2%, and 3% of 954 

patients carrying the pathogenic mutations of each of 200 AR genes and each of 200 AD 955 

genes, respectively. The patient cohort size was 600. The control cohort size was 5000. 956 

The performance of GRIPT, VAAST2, CMC, SKAT and KBAC are shown in red, blue, 957 

green, purple, and orange, respectively. a) The ranking of 200 AR genes. b) The power 958 

of the five tests for 200 AR genes. c) The number of significant autosomal candidates 959 

under the AR model. d) The ranking of 200 AD genes. e) The power of the five tests for 960 

200 AD genes. f) The number of significant autosomal candidates under the AD model. 961 

The rankings of AR/AD genes generated by GRIPT were compared to those generated 962 

by the other four methods respectively with one-tailed WRST. The methods that 963 

generated significantly worse ranking than GRIPT were marked with ‘ * ’ if p-value < 0.05, 964 

‘ ** ’ if p-value < 0.01, and ‘ *** ’ if p-value < 0.001. 965 

   966 

Figure 5. The impact of patient cohort sizes  967 

The patient cohort sizes were tested at 50, 100, 300, 600 and 800. The control cohort 968 

size was set at 5000. The percentage of patients carrying the pathogenic mutations of 969 

RPE65 or TINF2 was set at 2%. The performance of GRIPT, VAAST2, CMC, SKAT and 970 

KBAC are shown in red, blue, green, purple, and orange, respectively. a) The ranking of 971 

RPE65 under the AR model. b) The power of the five tests for RPE65. c) The number of 972 
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significant autosomal candidates under the AR model. d) The ranking of TINF2 under the 973 

AD model. e) The power of the five tests for TINF2. f) The number of significant autosomal 974 

candidates under the AD model. The rankings of RPE65/TINF2 generated by GRIPT 975 

were compared to those generated by the other four methods respectively with one-tailed 976 

WRST. The methods that generated significantly worse ranking than GRIPT were marked 977 

with ‘ * ’ if p-value < 0.05, ‘ ** ’ if p-value < 0.01, and ‘ *** ’ if p-value < 0.001. 978 

  979 

Figure 6. The impact of population stratification  980 

The unmatched proportions between patient cohort and control cohort were tested at 0%, 981 

20%, 40%, 60%, 80% and 100%. The percentage of patients carrying the RPE65 or 982 

TINF2 pathogenic mutations was set at 1%. The patient cohort size was 500. The control 983 

cohort size was 5000. The performance of GRIPT, VAAST2, CMC, SKAT and KBAC are 984 

shown in red, blue, green, purple, and orange, respectively. a) The ranking of RPE65 985 

under the AR model. b) The power of the five tests for RPE65. c) The number of significant 986 

autosomal candidates under the AR model. d) The ranking of TINF2 under the AD model. 987 

e) The power of the five tests for TINF2. f) The number of significant autosomal 988 

candidates under the AD model. The rankings of RPE65/TINF2 genes generated by 989 

GRIPT were compared to those generated by the other four methods respectively with 990 

one-tailed WRST. The methods that generated significantly worse ranking than GRIPT 991 

were marked with ‘ * ’ if p-value < 0.05, ‘ ** ’ if p-value < 0.01, and ‘ *** ’ if p-value < 0.001. 992 

 993 

Figure 7. The impact of variant frequency filtering  994 

The cutoff of variant filtering frequency was tested at 0.5%, 1%, and 2% under the AR 995 

model, and at 0.01%, 0.5%, and 1% under the AD model. The percentage of patients 996 

carrying the RPE65 or TINF2 pathogenic mutations was set at 1%. The patient cohort 997 

size was 600. The control cohort size was 5000. The performance of GRIPT, VAAST2, 998 

CMC, SKAT and KBAC are shown in red, blue, green, purple, and orange, respectively. 999 

a) The ranking of RPE65 under the AR model. b) The power of the five tests for RPE65. 1000 

c) The number of significant autosomal candidates under the AR model. d) The ranking 1001 

of TINF2 under the AD model. e) The power of the five tests for TINF2. f) The number of 1002 
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significant autosomal candidates under the AD model. The rankings of RPE65/TINF2 1003 

generated by GRIPT were compared to those generated by the other four methods 1004 

respectively with one-tailed WRST. The methods that generated significantly worse 1005 

ranking than GRIPT were marked with ‘ * ’ if p-value < 0.05, ‘ ** ’ if p-value < 0.01, and 1006 

‘ *** ’ if p-value < 0.001. 1007 

 1008 

Figure 8. The effect of control cohort sizes  1009 

The AR and AD models were tested with 0.5%, 1%, 2%, and 3% of patients carrying the 1010 

pathogenic mutations of RPE65 or TINF2, respectively. The patient cohort size was 600. 1011 

The control cohort size was 600. The performance of GRIPT, VAAST2, CMC, SKAT and 1012 

KBAC are shown in red, blue, green, purple, and orange, respectively. a) The ranking of 1013 

RPE65 under the AR model. b) The power of the five tools for RPE65. c) The number of 1014 

significant autosomal candidates under the AR model. d) The ranking of TINF2 under the 1015 

AD model. e) The power of the five tools for TINF2. f) The number of significant autosomal 1016 

candidates under the AD model.  The rankings of RPE65/TINF2 generated by GRIPT 1017 

were compared to those generated by the other four methods respectively with one-tailed 1018 

WRST. The methods that generated significantly worse ranking than GRIPT were marked 1019 

with ‘ * ’ if p-value < 0.05, ‘ ** ’ if p-value < 0.01, and ‘ *** ’ if p-value < 0.001. 1020 

 1021 

Figure 9. The comparison of the performance of Fisher’s exact test with GRIPT.  1022 

The AR and AD models were tested with 0.5%, 1%, 2%, and 3% of patients carrying the 1023 

pathogenic mutations of RPE65 or TINF2, respectively. The patient cohort size was 600. 1024 

The control cohort size was 5000. The performance of GRIPT and Fisher’s exact test are 1025 

shown in red and blue, respectively. a) The ranking of RPE65 under the AR model. b) 1026 

The power of the two tests for RPE65. c) The number of significant autosomal candidate 1027 

genes under the AR model. d) The ranking of TINF2 under the AD model. e) The power 1028 

of the two tests for TINF2. f) The number of significant autosomal candidates under the 1029 

AD model. The rankings of RPE65/TINF2 generated by GRIPT were compared to those 1030 

generated by the other four methods respectively with one-tailed WRST. The methods 1031 
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that generated significantly worse ranking than GRIPT were marked with ‘ * ’ if p-value < 1032 

0.05, ‘ ** ’ if p-value < 0.01, and ‘ *** ’ if p-value < 0.001. 1033 

 1034 

 1035 

 1036 

Tables 1037 

Table 1. Known disease genes were given high ranks and significant P-values by 1038 

GRIPT in a LCA cohort. The listed genes are the correctly identified retinal disease 1039 

genes among the top 20 candidate genes by GRIPT in the LCA cohort. Parameters: 1040 

115 cases, 5000 controls, the AR inheritance model.  1041 

Genes # of patients (%) 
GRIPT VAAST2 CMC SKAT KBAC 

Rank p-value Rank p-value Rank p-value Rank p-value Rank p-value 
NMNAT1 4 (3.48%) 1 6.97E-39 7 2.50E-06 12 2.52E-09 18 1.78E-04 3 1.50E-05 
GUCY2D 6 (5.21%) 2 3.40E-32 2 2.50E-06 102 1.15E-03 14 1.13E-04 35 1.84E-03 

AIPL1 3 (2.61%) 3 2.03E-29 8 5.00E-06 100 1.08E-03 24 3.01E-04 40 2.15E-03 
RPE65 3 (2.61%) 4 2.18E-29 4 2.50E-06 16 2.44E-08 4 0 2 7.00E-05 

CEP290 7 (6.09%) 5 1.55E-26 1 2.50E-06 5 3.94E-11 2 0 1 2.00E-05 
CRB1 3 (2.61%) 6 3.41E-22 12 2.44E-05 427 0.0231 77 2.14E-03 230 2.22E-02 

RPGRIP1 4 (3.48%) 7 3.41E-22 3 2.50E-06 464 0.025 164 6.30E-03 168 1.50E-02 
SPATA7 3 (2.61%) 8 4.55E-22 20 1.57E-04 1391 0.0838 534 3.16E-02 371 3.72E-02 
TULP1 2 (1.74%) 9 6.53E-20 2689 0.158 15160 0.7198 879 0.06 2203 0.2324 
ADAM9 1 (0.87%) 12 7.33E-20 325 0.0198 790 0.0483 588 0.0357 243 0.0240 
IFT140 4 (3.48%) 18 5.51E-13 499 0.0297 11474 0.5064 3835 0.3333 7951 0.7111 
TRNT1 1 (0.87%) 23 2.81E-10 7801 0.594 17607 0.8925 8191 0.6 5775 0.5283 

 1042 
 1043 

 1044 

 1045 

 1046 

 1047 

 1048 

 1049 

 1050 
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 1051 

Table 2. Known disease genes were given high ranks and significant P-values by 1052 

GRIPT in a RP cohort 1053 

The listed genes are the correctly identified retinal disease genes among the top 20 1054 

candidate genes by GRIPT in the RP cohort. Parameters: 154 cases, 5000 controls, the 1055 

AR inheritance model.  1056 

 1057 
Genes # of patients (%) GRIPT VAAST2 CMC SKAT KBAC 

Rank p-value Rank p-value Rank p-value Rank p-value Rank p-value 

TULP1 3 (1.95%) 1 2.87E-22 15 1.57E-04 878 0.0429 279 0.0158 186 0.0190 

EYS 8 (5.19%) 2 5.67E-18 2 2.50E-06 2718 0.1231 255 0.0143 504 0.0556 

POMGNT1 2 (1.30%) 5 3.95E-15 854 0.0396 12243 0.5391 8407 0.6 7477 0.6315 
CNGA1 2 (1.30%) 6 3.95E-15 73 2.85E-03 18620 0.9801 4650 0.375 4150 0.3769 

RDH5 2 (1.30%) 7 3.95E-15 2430 0.119 2009 0.0924 1089 0.0769 900 0.0946 

USH2A 13 (8.44%) 9 2.27E-14 1 2.50E-06 44 6.31E-05 6 0 6 0.0001 
CRB1 3 (1.95%) 10 3.65E-11 114 4.66E-03 222 0.0063 428 0.028 92 0.0082 

MERTK 3 (1.95%) 11 6.20E-11 19 0.0003 6523 0.2699 76 0.0023 1325 0.1384 

BBS4 2 (1.30%) 13 8.51E-10 645 0.0297 13022 0.5874 1309 0.0968 2036 0.1984 
MAK 1 (0.649%) 17 6.25E-08 1694 0.0792 13033 0.5874 11162 0.75 3899 0.3573 

 1058 

 1059 

Supplementary Figures (.pdf format) 1060 

Supplementary Figure S1: The main procedure of simulation analysis 1061 

Supplementary Figure S2: Benchmark of GRIPT with REVEL and DANN scores on 400 1062 

Mendelian disease genes. 1063 

Supplementary Figure S3: Test the impact of patient cohort sizes with REVEL and 1064 

DANN scores 1065 

Supplementary Figure S4: Test the impact of population stratification with REVEL and 1066 

DANN scores 1067 

Supplementary Figure S5: Test the impact of variant frequency filtering with REVEL and 1068 

DANN scores 1069 
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 1071 

Supplementary Tables (.xls format) 1072 

Supplementary Table S1: The sensitivity and specificity of GRIPT and other tests under 1073 
the AR and AD models 1074 
 1075 
Supplementary Table S2: Benchmark on 400 randomly selected known disease genes 1076 
 1077 
Supplementary Table S3: Test the effect of the patient cohort sample size 1078 
 1079 
Supplementary Table S4: Test the effect of Population stratification in cohorts 1080 
 1081 
Supplementary Table S5: Test the effect of variant frequency filtering 1082 
 1083 
Supplementary Table S6: Test the effect of the control cohort size  1084 
 1085 
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Figure 3 GRIPT VAAST2 CMC SKAT KBAC
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Figure 4 GRIPT VAAST2 CMC SKAT KBAC
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Figure 5 GRIPT VAAST2 CMC SKAT KBAC
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Figure 6 GRIPT VAAST2 CMC SKAT KBAC

 

 

a

0% 20% 40% 60% 80% 100%
Unmatched ethnic proportion for RPE65

0

1

2

3

4

T
he

 lo
g 1
0 

( 
ra

n
k 

) 
o

f 
 R
P
E
65

b

0% 20% 40% 60% 80% 100%
Unmatched ethnic proportion for RPE65

0.0

0.2

0.4

0.6

0.8

1.0

P
o
w
e
r

 

 

c

0% 20% 40% 60% 80% 100%
Unmatched ethnic proportion for RPE65

0

500

1000

1500

2000

2500

N
u

m
b

e
r 

o
f 
si

g
n

ifi
ca

n
t

ca
nd

id
at

e 
ge

ne
s

 

 

d

0% 20% 40% 60% 80% 100%
Unmatched ethnic proportion for TINF2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
he

 lo
g 1
0 

( 
ra

n
k 

) 
o

f 
 T
IN
F
2

e

0% 20% 40% 60% 80% 100%
Unmatched ethnic proportion for TINF2

0.0

0.2

0.4

0.6

0.8

1.0
P
o
w
e
r

 

 

f

0% 20% 40% 60% 80% 100%
Unmatched ethnic proportion for TINF2

0

10

20

30

40

N
u

m
b

e
r 

o
f 
si

g
n

ifi
ca

n
t

ca
nd

id
at

e 
ge

ne
s

***
***

***

***

***

***

***
***

***
***

****** ***
***
****** ********* *********

* *
***

***

***

***

*

*****

***

***
***
***

***

***

***
***

***

***

***
***

***

***

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2018. ; https://doi.org/10.1101/454975doi: bioRxiv preprint 

https://doi.org/10.1101/454975


Figure 7 GRIPT VAAST2 CMC SKAT KBAC
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GRIPT Fisher’s exact testFigure 9
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