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ABSTRACT9

Species Distribution Models (SDMs) are used to generate maps of realised and potential ecological
niches for a given species. As any other machine learning technique they can be seen as “black boxes”,
due to a lack of interpretability. Advances in other areas of applied machine learning can be applied
to remedy this problem. In this study we test a new tool relying on Local Interpretable Model-agnostic
Explanations (LIME) by comparing its results of other known methods and ecological interpretations from
domain experts. The findings confirm that LIME provides consistent and ecologically sound explanations
of climate feature importance during the training of SDMs, and that the sdmexplain R package can be
used with confidence.
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INTRODUCTION18

In recent years an increased focus has been placed on making machine learning more interpretable19

(Doshi-Velez and Kim, 2017; Garcı́a et al., 2009). The main reason for this is that black-box models20

are often not trusted by domain experts (Ribeiro et al., 2016). Moreover, the visualisation of feature21

importances can often yield valuable insights. Such an analysis might help a scientist decide which data22

points are not necessary (so that data collection can be improved), or more importantly, uncover new23

details about what is contributing to the study phenomenon. In the very least, it can act as a sanity check24

that the model is learning the right things and successfully avoids bias.25

Species Distribution Modeling (SDM) is the application of machine learning on estimating the species26

habitat based on occurrence data and associated environmental features (temperature, humidity etc.) (Elith27

and Leathwick, 2009). Such models can be used to guide conservation efforts, estimate the effects of28

climate change and answer other environmental hypotheses (Guisan et al., 2013; Austin and Van Niel,29

2011). A field of such importance for ecology can benefit greatly from becoming more explainable.30

Domain experts and people in the field rely on the maps produced by those models, and their trust in their31

accuracy can be increased if they understand more clearly how models make decisions.32

Some of the most important breakthroughs in explainable machine learning include the LIME Ribeiro33

et al. (2016) and IML (Fails and Olsen Jr, 2003) projects1. For this study we chose the former, due to its34

more accessible API (Application Programming Interface).35

Those are the motivations behind the creation of the sdmexplain package (Angelov, 2018a). This R36

package has functions that enable a user to train SDMs and understand which features are most important37

with various visualisations and an interactive map. In order to prove that the LIME explanations used are38

indeed consistent with ecological observations, an analysis of two species was performed. Additionally,39

the LIME results were compared to a standard method for computing feature importance in order to40

determine in the patterns generated are statistically similar.41

1From this point onwards “interpretable” and “explainable” will be used interchangeably.
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METHODS42

Study species43

In order to ecologically prove the explainability calculations the two species were selected based on their44

relatively strong dependence on specific climate conditions. The occurence (observation) data points are45

shown on the map in Figure 1.46

Figure 1. Occurence map for raw GBIF data (red: Eleutherodactylus planirostris, blue: Trachemys
scripta

Eleutherodactylus planirostris47

Eleutherodactylus planirostris, otherwise known as greenhouse frog, is a mostly terrestrial amphibian.48

It occurs natively in Bahamas, the Cayman Islands, Cuba, and invasively in Jamaica, Guam, and the49

southeastern United States. An important characteristic of this species is that for its eggs to hatch, 100%50

humidity is required (Rödder and Lötters, 2010).51

Trachemys scripta52

Otherwise known as slider turtle, or common slider, Trachemys scripta is native to the United States, but53

invasive in many parts of the world, including Southern Europe, Israel, South Africa and others. Because54

of the negative effects of its invasive nature, this organism and its response to environmental conditions55

has been widely studied. The slider turtle is heavily dependent on water availability throughout the year.56

It’s feeding is strongly temperature-dependent. The hibernation of neonates in nests is very sensitive to57

low temperatures as well (Rödder et al., 2009).58

Species records59

Species records have been obtained by using the sdmbench package (Angelov, 2018b). In the back-60

ground it obtains data from GBIF (https://www.gbif.org/) and performs additional domain-specific61

preprocessing steps (such as removing occurences with impossible, incomplete or unlikely coordinates62

(based on the scrubr package, Chamberlain (2016)).63

Climate data64

Environmental data has been obtained from WorldClim (http://www.worldclim.org/bioclim) by using65

the sdmbench package. In order to create variables that are biologically relevant, monthly temperature66

and rainfall data are processed. Those derived variables are more representative of seasonal and limiting67

climate characteristics. This preprocessing enables successful downstream species distribution modeling.68

Species distribution models69

Random Forests was chosen as the algorithm to create the main species distribution model for the LIME70

explanations. It is a popular modeling technique that is known to perform well out-of-the box, with a71

good balance between efficiency, speed and high tolerance for missing data Breiman (2001). It is also one72

2/7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2018. ; https://doi.org/10.1101/454991doi: bioRxiv preprint 

https://doi.org/10.1101/454991
http://creativecommons.org/licenses/by/4.0/


of the MLR “learners” that allow for the calculation of feature importance. The R package MLR (Bischl73

et al., 2016) is used because of its ease of use and accessible API. In order to compare the results from74

different methods, several other algorithms which support feature importance computation were also run:75

RF SRC (Random Forests for Survival), GBM (Gradient Boosting) and rpart (Recursive Partitioning And76

Regression Trees). Additionally, the Maximum Entropy (MaxEnt, Phillips et al. (2006)) algorithm was77

also used in the comparison. It is one of the most popular and widely-used SDM techniques, and the78

contribution of environmental features to the model performance can be extracted from the model.79

Feature importances were compared between the MLR models, MaxEnt and LIME. For LIME the80

individual predictions were gathered and the average contribution values per feature computed. For the81

MLR models the importances are represented by the mean decrease of the Gini impurity index, shown in82

Equation 1, where p(i| j) is the proportion of samples of class c for a particular node t of the decision tree.83

IGini( j) = ∑
i

p(i| j)(1− p(i| j)) (1)

For LIME, a single explanation is computed in Equation 2, where G ∈ G is the model, λ ( f ,g, pix)84

is the ”unfaithfulness” in how the the model approximates the locality pix and Ω(g) is the complexity85

measure.86

ε(x) = arcmin
g∈G

λ ( f ,g, pix)+Ω(g) (2)

For MaxEnt, the feature importance is represented internally by the software as percent contribution.87

This is the result of algorithm modifying a single MaxEnt feature coefficient and assigning the gain to the88

environmental variable the MaxEnt feature depends on (Phillips et al., 2006).89

RESULTS90

Model Training91

The data consists of the aforementioned WorldClim environmental variables and a label (or target92

variable). The latter contains the observations (encoded as a ”positive” label). A common issue in species93

distribution modeling is the lack of true absences recorded (”negative” label). In those cases, in order to94

build a classifier, we need to artificially create those by sampling the background data, thus generating95

pseudo-absences (Barbet-Massin et al., 2012).96

Before model training the data was randomly split into train and test sets (70% and 30% of the whole97

dataset respectively). This is a common method to make sure that we are not training and testing a model98

on the same data, which can result in overfitting (the model learns the data and its noise too well, and99

is prone to generealize poorly). For both species the models achieved good accuracy (% of correctly100

classified occurences) and Area under the curve (AUC 2) on the test set.101

Feature Importance Analysis102

The example visualisations of LIME importances (Figure 2) show that there are two types of contributions103

a feature can make for a prediction: positive and negative, also with different magnitudes. Additionally,104

we are provided with feature rules (i.e. bio5≥ 42). Those add a new layer of interpretability to the model.105

A first look at those visualisations show that often a few key features are often contributing the most to the106

probability of occurrence at a given location. Those are quantified on Figure 3, where the mean feature107

importances per model are shown.108

In order to test that the feature importances between the different methods are in agreement, ANOVA109

was performed on a multiple linear regression of species feature importance versus model type. The110

alternative hypothesis (that there is a significant difference between model types) was rejected with111

p > .05 for both species.112

For Eleutherodactylus planirostris the most important features were bio4 and bio17, while for113

Trachemys scripta those were bio19, bio17, and bio3. Those results are summarized in Table 1.114
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Figure 2. Example LIME plots

Figure 3. Feature importances calculated by different models (represented by shapes)

DISCUSSION115

We can think of the model interpretability in three stages (Figure 4). In the first stage we are dealing with116

the raw data. Depending on how descriptive and intuitive the features are (i.e. the bioclimatic variables117

from WorldClim might be derived, but still can make sense to a domain expert), a user can already see118

some patterns in the data. Thus we can label this phase as a having a “medium” level of interpretability.119

The next step in a normal pipeline consist of the training of a SDM. This is the least understandable part120

of the pipeline, and most of the traditional model output is focused on various performance metrics. Some121

specific models, such as the ones in this study, allow for feature importance calculation (those are the122

various “tree-based” algorithms), but even this might not be enough, since all you get are averages across123

2A standard method of estimating the performance of a binary classifier.
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Species Features Description
Eleutherodactylus planirostris bio4, bio17 Temperature Seasonality (stdev×

100), Precipitation of Driest Quar-
ter

Trachemys scripta bio3, bio17, bio19 Isothermality ( bio2
bio7×100), Precipita-

tion of Driest Quarter, Precipitation
of Coldest Quarter

Table 1. Most important features for both species

Figure 4. Levels of interpretability in machine learning

the whole dataset. Thus we can label this second phase as being the “black-box” and having a “low”124

interpretability. The final phase is the one that can shed a light on the black box model is the application125

of LIME (or similar methods) on the model, as used in the current study. Here we can achieve a very fine126

understanding of feature importance per observation. This can further allow for better understanding of127

the model mechanism, a simple sanity check that the model is learning the right things, and maybe further128

ecological hypothesis generation.129

In statistical terms, the machine learning algorithms used are operating by using different mechanisms130

(despite all of them being tree based). Moreover the exact measures of “importance” also differ between131

the MLR methods, LIME and MaxEnt. Nevertheless, there is no statistically significant difference in132

results obtained across them, increasing our confidence that LIME is statistically similar.133

In the case of Eleutherodactylus planirostris, humidity was determined to be the most important factor134

in limiting the species distribution. Since the hatching of the eggs requires ∼ 100% humidity this is to be135

expected. For Trachemys scripta temperature and water availability can have dramatic consequences on136

the behavior and reproduction of the species, and this is also confirmed by the study.137

Conclusions138

This study provides scientific support for the usage of the sdmexplain package by confirming that139

LIME explanations are statistically sound and ecologically meaningful. The most important functionality140

of sdmexplain is the generation of interactive and explainable SDM maps, as shown on Figure 5. Such141

maps can be very useful for understanding SDMs, and providing guidance for experts in the field. Model142

explainability is a topic of hot research and there is a variety of new methods appearing in the field. Those143

can and should be evaluated in the context of species distribution modeling, especially on species of144

critical interest and importance.145
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Figure 5. Interactive map with explainable occurences
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