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Abstract.— Plant viruses represent a significant threat to food security for many23

global populations. Cassava Brown Streak Virus (CBSV) causes immense damage24

to cassava crops in Eastern, Central and Southern Africa. The eradication of CBSV25

is a difficult challenge, as it has been shown to be fast-evolving and it is26

transmitted by flying insects that are ubiquitous in cassava growing regions. In this27

paper we demonstrate the ability of two new developments in bioinformatics that28

can be used to increase our understanding of CBSV and ultimately inform29

strategies for its combat. We reconstruct the phylogeny of 29 whole-genome virus30

isolates using the GHOST model. This phylogeny identifies three distinct clades31

among the viruses and highlights a section of the genomes that is highly influential32

in their divergence. We also perform Multiple Correspondence Analysis on the33

alignment which is consistent in recovering the three clades, and offers insight on34

the significance of the influence of a variety of external variables on the evolution of35

the viruses. Knowledge and information from this analysis will be used as a base on36

which to formulate sustainable Cassava Brown Streak Disease (CBSD)37

management strategies in Africa.38

Introduction39

It is difficult to overemphasize the importance of agriculture to people living in40
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sub-Saharan Africa. The population of sub-Saharan Africa exceeds one billion41

people, and more than 60% of the population live in rural areas (United Nations,42

2015). Beyond the obvious benefit of nutrition, agriculture is also the primary43

source of income for the majority of sub-Saharan African families, and so access to44

essentials such as health care and education depend indirectly on agriculture. As45

such, the productivity of the agricultural industry in a given country and year is a46

key indicator of the health and wellbeing of the population and the economy.47

One of the major threats to agricultural productivity comes in the form of48

crop pests and diseases. Of particular significance are the viruses of the genus49

Ipomovirus. They have the potential to devastate crops, and they infect some of50

the most economically important, commonly grown food staples across sub-Saharan51

Africa, such as cassava and sweet potato. Cassava Brown Streak Disease (CBSD) is52

caused by two closely related Ipomovirus species, Cassava Brown Streak Virus53

(CBSV) and Ugandan Cassava Brown Streak Virus (UCBSV). CBSD is widespread54

and causes significant reduction in both the quality and the yield of cassava crops,55

making it a strong barrier to food security and economic prosperity in the regions56

in which it is grown.57

Efforts to combat CBSV and UCBSV are ongoing, but there are many58

challenges. The viruses are transmitted between plants courtesy of whiteflies59
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(Bemesia tabaci) and other potential vectors (Ateka et al., 2017), so it is critical60

that infected plants are removed from crops swiftly. This indicates a critical need61

for early detection and positive diagnosis. However, traditional sequencing methods62

such as PCR and Sanger sequencing are slow and costly, with a positive diagnosis63

taking weeks or months, far too late to prevent the virus from spreading. A recent64

advance in sequencing technology has seen researchers use nanopore sequencing to65

take samples from plants, and then sequence and identify pathogens in just a few66

hours, without the need to leave a farmer’s field (Boykin et al., 2018). This enables67

the swift quarantine of infected material, protecting the rest of their crop and68

neighbouring crops.69

Efforts to isolate and destroy infected plant material are on the frontline of70

the battle against CBSV and UCBSV, but they are reactive strategies in that they71

combat the virus after plant infection has already occurred. It is necessary to72

simultaneously pursue proactive strategies, such as breeding resistant forms of73

cassava. This is not straightforward though, as it has already been shown that74

these viruses are fast-evolving (CBSV moreso than UCBSV) (Alicai et al., 2016).75

Mbewe et al. (2017) showed that in the gene tree of the P1 gene, a third distinct76

clade is found in addition to CBSV and UCBSV, which they tentatively labelled77

Tanzanian CBSV (CBSV-TZ). Critical to winning the fight against CBSD is78
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ongoing research into the evolutionary forces acting on these viruses, at both the79

molecular level and geographically.80

We made use of two new bioinformatics tools to analyse a sequence81

alignment consisting of 29 whole virus genomes, 14 CBSV and 15 UCBSV. We first82

performed phylogenetic inference under the GHOST model of sequence evolution83

(Crotty et al., 2017). The GHOST model is a mixture model which enables the84

fitting of multiple classes to a single alignment. The tree topology is common85

across all classes, but each class has its own set of branch lengths and model86

parameters. This enables subtle phylogenetic signals to be extracted from the data,87

which is especially useful when there exists a clear dominant signal, such as that88

distinguishing the two virus species in our alignment. We also applied Multiple89

Correspondence Analysis (MCA) to the alignment, following the method outlined90

in Rohrlach et al. (2018). They demonstrated MCA as an effective tool for91

decomposing the variability within categorical sequence data for visualization in92

two dimensions. Furthermore, they showed that it was possible to meaningfully93

associate the genetic diversity with geographical coordinates, allowing for informed94

hypotheses relating to the path of evolution to be constructed.95

Methods96

6

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 29, 2018. ; https://doi.org/10.1101/455303doi: bioRxiv preprint 

https://doi.org/10.1101/455303
http://creativecommons.org/licenses/by-nd/4.0/


Data97

The alignment consisted of 14 CBSV and 15 UCBSV whole genome sequences. The98

alignment was obtained from Alicai et al. (2016), in which details of its assembly99

can be found.100

Phylogenetic Analysis101

We used IQ-TREE (Nguyen et al., 2015) to fit a GHOST model to the sequence102

alignment. We used the model selection procedure outlined in Crotty et al. (2017)103

to choose the model of sequence evolution and number of classes. After performing104

the inference we analysed the site-wise probabilities of evolving under each inferred105

class to identify influential sites, contiguous regions and genes within the106

genome.107

Multiple Correspondence Analysis108

We conducted MCA following the procedure outlined in Rohrlach et al. (2018).109

Due to the fast rate of evolution present we removed all singleton sites: sites where110

the nucleotide was conserved across all but one taxon. We carried out MCA on the111

entire sequence alignment, as well as on the 14 CBSV taxa and 15 UCBSV taxa112

separately.113
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Results114

Phylogenetic Analysis115

Model selection.— In order to determine the optimal model of sequence evolution116

and number of classes when fitting the GHOST model, we experimented with a117

wide variety of substitution models, fitting each one with between two and twelve118

classes. We then identified the best fitting combinations according to both Bayesian119

Information Criterion (BIC) (Schwarz et al., 1978) and Akaike’s Information120

Criterion (AIC) (Akaike, 1974). Results can be found in Supplementary Figures S1121

and S2. The smallest BIC score was obtained using the General Time Reversible122

(GTR) model and three classes, while the smallest AIC score was obtained using123

GTR with ten classes. It is not unexpected to see such a discrepancy with the124

parameter-rich GHOST model. BIC places a relatively heavy penalty on additional125

parameters and is therefore prone to underfitting, whereas AIC imposes a relatively126

light penalty and is therefore prone to overfitting (Burnham and Anderson, 2003;127

Posada and Buckley, 2004; Dziak et al., 2012).128

Examining the recovered trees from the 3-class GHOST model (Figure 1)129

preferred by BIC, distinct and reasonable biological interpretations can be made for130

all three classes. The first class has very short branch lengths, indicating strong131
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conservation of nucleotides across all taxa. Since these viruses are closely related,132

we can think of this class as capturing the component of the phylogenetic signal133

that is common to CBSV and UCBSV. The second class shows only one branch134

length of any significance, that separating the CBSV and UCBSV clades. Within135

the two clades the branch lengths are again very short, indicating that this class136

captures the component of the phylogenetic signal relating to the divergence of137

CBSV and UCBSV. The third class distinguishes itself from the second by a clade138

of four CBSV replicates that diverges from both UCBSV and the remaining CBSV139

replicates.140

Unlike the trees of the 3-class model, the trees of the 10-class model141

(Supplementary Figure S3) preferred by AIC bear the hallmarks of overfitting, as142

described in Crotty et al. (2017). Many of the classes bear strong similarity to each143

other, most noticeably the first three classes all appear strongly conserved across all144

taxa, much like the first class of the 3-class model. In fact, it is not unreasonable to145

suggest that all 10 class trees could be loosely categorised as falling into one of the146

three categories defined above by the trees of the 3-class model. No significant new147

phylogenetic signal appears to be captured by this model, beyond those which were148

found by the 3-class model. Consequently, we concluded that the 3-class GHOST149

model with a GTR model of sequence evolution provided the best fit to this150
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Figure 1: Trees inferred by IQ-TREE using the GHOST model with three GTR
classes.
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alignment.151

Identifying regions of interest.— Having chosen the optimal GHOST model, we can152

use the results to identify regions within the genome that may be influential in the153

patterns of evolution that we observe. For convenience, we refer to the first class as154

the Common Class, since there is no significant divergence among any of the taxa;155

we refer to the second class as the UCBSV Class, since this class is characterised by156

the divergence between the CBSV and UCBSV replicates; and we refer to the third157

class as the CBSV-TZ Class. The reason for this is that the four CBSV replicates158

that diverge from the remainder in this class are also present in the study of the P1159

gene (Mbewe et al., 2017) referred to earlier. These four replicates are found in the160

third clade which they tentatively labelled CBSV-TZ, and so it seems probable161

that the phylogenetic signal captured in the third class is related to the divergence162

of CBSV-TZ from CBSV. It is worth noting here that we do not make the claim163

that CBSV-TZ is a new species of CBSV, but use these terms for convenience in164

labelling the classes, and consistency with the work of Mbewe et al. (2017). Further165

research is required in order to establish CBSV-TZ as a new vspecies of the166

virus.167

The contribution of a particular site in the alignment to the likelihood168
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function of a mixture model such as GHOST is simply the weighted sum of the169

partial likelihoods of that site under each class. We can make use of these partial170

likelihoods to determine for every site the probability distribution of evolving under171

each of the classes. Put simply, we can look at each site and identify the172

probability with which it belongs to any of the classes. This allows us to locate173

particular sites, contiguous regions and genes that belong to the CBSV-TZ class174

with high probability, thereby being identified as influential in the evolutionary175

divergence of CBSV-TZ and CBSV. In Table 1 we list the ten genes that176

consititute the genome of the viruses, the length of the genes in nucleotides as well177

as in percentage of the genome, and finally the percentage contribution of the genes178

towards the CBSV-TZ Class. Most apparent from the Table 1 is that the P1 gene179

appears to be of strong influence in the divergence of CBSV-TZ and CBSV. The180

1086 sites that make up the P1 gene, representing 12.41% of the entire genome,181

account for more than 22% of the weight of the CBSV-TZ Class. The remaining182

genes contribute to the CBSV-TZ Class approximately in proportion with their183

relative length in the genome, with the exception of the CP gene which constitutes184

12.96% of the genome but only accounts for 6.57% of the CBSV-TZ Class.185

In Figure 2, we show the cumulative probability of sites in the P1 gene186

belonging to the CBSV-TZ Class. It displays graphically the observation made187
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Gene Size % Genome % CBSV-TZ Class

P1 1086 12.41 22.08

P3 882 10.08 10.37

6K1 156 1.78 1.91

CI 1890 21.61 20.27

6K2 156 1.78 1.86

Vpg 558 6.38 7.19

NIa 702 8.03 8.45

NIb 1506 17.22 15.61

Ham1 678 7.75 5.69

CP 1134 12.96 6.57

Total 8748 100 100

Table 1: A list of the 10 genes that make up CBSV and UCBSV. Also shown is the
size of each gene in units of nucleotides and as a percentage of the entire genome.
The final column shows the percentage of the CBSV-TZ Class attributable to each
gene.
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Figure 2: A cumulative sum plot of the probability of sites belonging to the CBSV-TZ
Class, for the P1 gene. The average gradient in any contiguous region is represen-
tative of the contribution of this region to the CBSV-TZ Class. The red dashed
line indicates the average probability of the sites in the P1 gene belonging to the
CBSV-TZ Class. The blue dashed line indicates the average probability of all sites
in the genome belonging to the CBSV-TZ Class. The green box highlights a section
of the gene in which the gradient is particularly steep, indicating that this region
contributes strongly to the CBSV-TZ Class.
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from Table 1, that the average gradient of the P1 gene (represented by the red188

dotted line) is nearly double that of the average gradient across the entire genome189

(represented by the blue dotted line). Additionally, Figure 2 also demonstrates that190

the contribution to the CBSV-TZ Class is not even across the entire gene.191

Compared to the average for the entire gene, there is a noticeable increase in192

gradient, roughly between nucleotide 70 and 170. We therefore surmise this to be193

the region of highest influence within the gene of highest influence. Figures 3-5194

show the alignment for the first 80 amino acids of the P1 gene. Examining the195

region of interest identified above (amino acids 23 to 57, approximately), we notice196

in Figure 3 that there is strong conservation among the CBSV isolates, yet the197

UCBSV and CBSV-TZ isolates are relatively diverged. Similarly, Figure 4 shows198

that there is also strong conservation among the 15 UCBSV isolates in this region.199

In contrast, Figure 5 shows comparatively little conservation among the four200

CBSV-TZ isolates. In summary, while all three strains are strongly divergent from201

each other in this region, within group genetic variability is low in CBSV and202

UCBSV but high in CBSV-TZ.203

MCA analysis204

When applied to the entire dataset, Figure 6 shows that the distinction between205

15
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Figure 3: The first 80 amino acid residues in the alignment of the P1 gene of the 29
CBSV and UCBSV sequences. The top CBSV sequence is used as a reference, with
the conserved residues represented as dots.

Figure 4: The first 80 amino acid residues in the alignment of the P1 gene of the 29
CBSV and UCBSV sequences. The bottom UCBSV sequence is used as a reference,
with the conserved residues represented as dots.
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Figure 5: The first 80 amino acid residues in the alignment of the P1 gene of the 4
CBSV-TZ sequences. The top CBSV-TZ sequence is used as a reference, with the
conserved residues represented as dots.

the three strains is the dominant feature that is captured by MCA. The first206

principal dimension clearly distinguishes between CBSV (including the four207

CBSV-TZ sequences), while the second dimension distinguishes between CBSV and208

CBSV-TZ. The signals that distinguish the three strains are so dominant that it is209

difficult to observe anything additional from performing MCA on the entire210

dataset. To search for more nuanced patterns in the alignment, we performed MCA211

on meaningful subsets of the genomes.212

Figure 7 displays four scatterplots of the first two dimensions of a MCA213

performed on the 14 CBSV isolates. Each scatterplot is coloured according to a214

different variable, to aid in highlighting any patterns in the data. Once again, the215

first principal dimension captures the most dominant feature, the distinction216

between the CBSV and CBSV-TZ strains. A clear pattern is not obvious in Figures217

7 a) and b), which colour the points according to the geographic origin of the218

isolates (latitude and longtitude). The points in Figure 7 c) are coloured according219

to the sample collection date. Most samples in the dataset were collected either in220

17
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2013 (15 of 29), or in 2006 - 2008 (11 of 29). We therefore used binary colouring221

according to these two groups. The striking feature of Figure 7c), is that most of222

the CBSV-TZ isolates were collected prior to 2009 (3 of 4), whereas most of the223

CBSV isolates (8 of 10) were collected in 2013. That is, 60% of the samples224

collected before 2009 were CBSV-TZ, whereas only 11% of the samples collected in225

2013 were CBSV-TZ. A similar pattern emerges when observing Figure 7 d), in226

which points are classified as either lowlands (less than 1000m above sea level) or227

highlands (more than 1000m above sea level). The threshold was chosen as228

historically, CBSD was not found in areas that were greater than 1000m above sea229

level (Alicai et al., 2007). We see from Figure 7 d) that all of the CBSV-TZ isolates230

came from lowland areas, while the CBSV isolates are approximately evenly split231

between lowland and highland areas.232

Figure 8 is analagous to Figure 7 except that the four CBSV-TZ isolates233

have been removed from the analysis. It is here that we can first see some234

relationship between the MCA results and the geographic origin of the isolates.235

Figures 8 a) and b) show that the cluster of four isolates in the top left corner of236

the plots are at the extreme ends of the latitude (northernmost) and longtitude237

(westernmost) scales. These four isolates come from the areas that surround Lake238

Victoria, in Uganda and Northern Tanzania.239
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Figure 9 displays the MCA results for the 15 UCBSV isolates. The most240

obvious feature is that two isolates strongly distinguish themselves from the241

remaining 13 along the first principal dimension. Even though these two isolates242

are clearly distinct from the others, we can see in Figure 6 that they obviously still243

belong to the UCBSV cluster. What is most intriguing about these two outliers, is244

that they appear to share very little in common. Figure 9 indicates that they are245

separated temporally, geographically and altitudinally. There doesn’t appear to be246

any other strong patterns emerging from the MCA on the UCBSV isolates. This247

may hint to the hypothesis that UCBSV is a more versatile virus. Isolates that are248

genetically very similar are able to infect plants in relatively different249

environments.250

It must be noted here that the patterns arising from the various MCA251

analyses are somewhat speculative. MCA has been shown to be a powerful tool in252

population genetics, able to map the genetic diversity amongst a dataset to a253

geographical path of evolution (Rohrlach et al., 2018). However, the sparsity of our254

dataset ensures that strong conclusions are not possible in this case. We have 29255

isolates to represent three distinct strains of a fast evolving virus, spread over a256

wide and diverse geographical area and collected at various intervals over a 16 year257

time period. Even with such a sparse dataset, we were able to notice some258
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Figure 6: Results of Multiple Correspondence Analysis (MCA) on the full alignment.
The three distinct clusters correspond to the three strains of CBSV.

associations between variables that can be used to generate testable259

hypotheses.260

Discussion261

Our results confirm and extend the work of Mbewe et al. (2017), who found262

evidence for a third distinct clade of CBSV by analysing a subsection of the P1263
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Figure 7: Results of MCA on the fourteen CBSV sequences. The shape of the
points indicates the strain of the isolate, either CBSV or CBSV-TZ. The isolates
are coloured by: a) latitude of their collection sites; b) longtitude of their collection
sites; c) time of their collection (either before 2009 or 2013); and d) altitude of their
collection sites (lowlands or highlands).
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Figure 8: Results of MCA on the ten sequences from the CBSV strain (excluding
the CBSV-TZ isolates). The isolates are coloured by: a) latitude of their collection
sites; b) longtitude of their collection sites; c) time of their collection (either before
2009 or 2013); and d) altitude of their collection sites (lowlands or highlands).
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Figure 9: Results of MCA on the fifteen sequences from the UCBSV strain. The
isolates are coloured by: a) latitude of their collection sites; b) longtitude of their
collection sites; c) time of their collection (either before 2009 or 2013); and d) altitude
of their collection sites (lowlands or highlands).
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gene. Using two independent methods of sequence analysis we show that the264

evidence for this third clade is not restricted to the P1 gene, but is in fact present265

across the entire genome. That said, of the ten genes in the genome, the P1 gene is266

the strongest relative contributor to the signal and focusing on this gene seems267

apt.268

There are practical implications of our findings that can have an immediate269

impact for cassava farmers in East Africa. The most vital step in securing the crops270

of farmers is the swift diagnosis of infected plants. It is vital not only to know that271

a plant is infected, but also to know which strain of the CBSV it has. This272

information is important on several fronts, it can be used to:273

• select the most appropriate viral resistant cultivars for the next growing274

season.275

• generate CBSV distribution maps that can be used to guide Agricultural276

Officers on where to screen (hotspot areas) or where to multiply (low pressure277

areas).278

• inform where to deploy cassava material.279

• strengthen phytosanitary regulations on movement of cassava germplasm.280

This work is undertaken by scientists working in the field directly with farmers.281
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Current practice when sequencing viral isolates is to focus on the CP gene, which282

can effectively distinguish between CBSV and UCBSV (Monger et al., 2001;283

Mbanzibwa et al., 2011). However, as indicated in Table 1, the CP gene is the least284

influential of the ten genes in the CBSV-TZ Class. In order to effectively and285

efficiently distinguish between CBSV, UCBSV and CBSV-TZ we recommend286

biologists focus their attention on the P1 gene, in particular the first 60 amino287

acids, as shown in Figures 3-5.288

The results of the bioinformatic analyses presented here, when viewed in the289

context of the history of CBSD in East Africa, allow a speculative hypothesis of the290

evolution of the virus to be constructed. We know that historically, the prevalence291

of CBSD was negatively correlated with the altitude in which the crops were292

grown. The disease was prevalent in low-lying, coastal areas, and was never seen at293

altitudes greater than 1000m. We know from the results of the MCA that the294

CBSV-TZ strain (at least in the current dataset) has only been found at low295

altitudes, and was much more prevalent among the pre 2009 samples in our dataset296

than it was among the 2013 samples. Further, we know from previous research297

(using the same dataset as we analyse here) by Alicai et al. (2016) that CBSV is298

faster evolving than UCBSV. Finally, we showed that a relatively non-conserved299

section of the P1 gene in CBSV-TZ is strongly conserved within both CBSV and300
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UCBSV, but strongly divergent between all three clades.301

Let us denote the most recent common ancestor of the three strains as302

CBSV-Anc. We hypothesise that given it’s tendency to be found only at low303

altitudes and its apparent decreased incidence in recent years, CBSV-TZ is the304

closest of the three strains to CBSV-Anc. CBSV-Anc had low fitness at high305

altitudes, and so mutations that increased the high-altitude fitness of the virus306

would have been positively selected for on the fringes of its territory. Once these307

alleles that increase high-altitude fitness gain a foothold in the population, the308

geographical disparity in selective pressure may have precipitated a selective sweep309

of these alleles at high altitudes, but not at low altitudes. This effectively becomes310

the speciation event that spawns UCBSV.311

As time passes UCBSV spreads through high altitude cassava growing312

regions where it has no competition, but also populates low altitude areas, along313

with CBSV-Anc. After some time the process then repeats itself. CBSV-Anc again314

speciates into CBSV and CBSV-TZ. Like UCBSV before it, CBSV evolved the315

ability to radiate into high-altitude regions. It also remains prevalent in the316

low-altitude regions, resulting in the reduced prevalence of CBSV-TZ, as it now317

competes with UCBSV and CBSV.318

It can not be stated strongly enough that the above scenario is highly319
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speculative, but it is consistent with the known history of these viruses and the320

evidence we can extract from the 29 whole-genome sequences. What we have321

highlighted however, is that there are sophisticated bioinformatics tools now322

available that can greatly assist in the fight against these viruses. What is needed323

to turn our speculations into strong and robust evidence is more data. To combat324

these fast-evolving viruses, we must increase research into them on two fronts:325

1. We must amass much more systematic sequence data, covering the full326

geographic range of these viruses, with repeated sampling in each growing327

season. This will allow us to see in near real time how and where the virus is328

evolving, both geographically and on the molecular level. When sequencing329

virus isolates, detailed categorical information should be recorded, including330

the date; latitude, longtitude, and altitude of the collection site; cultivar the331

virus was found in; and detailed symptom description.332

2. The structure of the viruses must be analysed on the molecular level. Here we333

highlight a region of the P1 gene that appears to be highly influential in334

increasing the high-altitude fitness of the virus. Understanding how and why335

this works on a molecular level is critical information that could assist in336

breeding highly resistant cultivars.337
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Conclusion338

The fight to increase food security for the world’s poorest citizens is of paramount339

importance. Here we show that, given a sufficient amount of data, novel340

bioinformatics tools have a vital role to play. Excellent work is already being done341

to help farmers identify and contain virus outbreaks, but these are reactive342

strategies. In order to eradicate these viruses we must understand how they work343

and evolve. For this we need much more investment in data collection and analysis.344

Ultimately, the cost of this investment is dwarfed by the potential gain. The345

benefits of achieving food security is not limited to nutrition. The resultant346

economic boost would allow families and countries alike to invest heavily in health347

and education, providing a dramatic increase to the standard of living across East348

Africa.349
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Figure S1: Results of model test procedure to select the optimal substitution model
and number of classes, using BIC as the discriminating criterion. A total of 13
different nucleotide substitution models were tested, and each model was tested with
between 2 and 12 classes. Poorly performing models (BIC > 120000) have been
filtered out to improve resolution amongst the remaining models.
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Figure S2: Results of model test procedure to select the optimal substitution model
and number of classes, using AIC as the discriminating criterion. A total of 13
different nucleotide substitution models were tested, and each model was tested with
between 2 and 12 classes. Poorly performing models (AIC > 117000) have been
filtered out to improve resolution amongst the remaining models.
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Figure S3: Trees inferred by IQ-TREE using the GHOST model with ten GTR
classes. Tip labels are not shown for clarity. As in Figure 1, green edges form the
CBSV clade, blue edges form the CBSV-TZ clade and orange edges form the UCBSV
clade.
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