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Abstract 
Summary: Radiation therapy is among the most effective and widely used modalities of cancer              
therapy in current clinical practice. With the advent of new high throughput genomic             
technologies and the continuous inflow of transcriptomic data, there has been a paradigm shift in               
the landscape of radiation oncology. In this era of personalized radiation medicine, genomic             
datasets hold great promise to investigate novel biomarkers predictive of radiation response. In             
this regard, the number of available gene expression based signatures built under oxic and              
hypoxic conditions is getting larger. This poses two main questions in the field, namely, i) how                
reliable are these signatures when applied across a compendium of datasets in different model              
systems; and ii) is there redundancy of gene signatures. To address these fundamental             
radiobiologic questions, we curated a database of gene expression signatures predictive of            
radiation response under oxic and hypoxic conditions. RadiationGeneSigDB has a collection of            
11 oxic and 24 hypoxic signatures with the standardized gene list as a gene symbol, Entrez gene                 
ID, and its function. We present the utility of this database through three case studies: i)                
comparing breast cancer oxic signatures in cell line data vs. patient data; ii) comparing the               
similarity of head and neck cancer hypoxia signatures in clinical tumor data; and iii) gaining an                
understanding of hypoxia-associated miRNA. This valuable, curated repertoire of published gene           
expression signatures provides a motivating example for how to search for similarities in             
radiation response for tumors arising from different tissues across model systems under oxic and              
hypoxic conditions, and how a well-curated set of gene signatures can be used to generate novel                
hypotheses about the functions of non-coding RNA.  
 

Availability and implementation: RadiationGeneSigDB is implemented in R. The source code           
of this package and signatures can be downloaded from the GitHub: 
https://github.com/vmsatya/RadiationGeneSigDB  
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1 Introduction  
The two pillars driving the field of personalized radiation oncology are: i) treatment delivery and               
dose conformity arising from technological improvements, which include particle therapies and           
advanced image guidance techniques; ii) novel biomarker-guided tools, integrating concomitant          
chemotherapy [1] . To tailor radiation therapy, it is crucial to build predictive assays that are more                
confidently able to stratify patients, and concomitantly have associated impactful          
radiotherapeutic regimens. This could augment the existing radiobiological treatment strategies          
to more biologically-driven personalized radiation treatment to individual patients. The evolution           
of high throughput technologies and the continuous inflow of transcriptomic data have created             
new avenues to understand complex biological events induced by radiation, through data driven             
analysis, at a level beyond the gross clinical variables of an individual, and instead, at the                
individual tumor level. The ever-expanding arsenal of transcriptomic data holds great promise to             
investigate novel biomarkers that are predictive of radiation response. In the literature, several             
studies have attempted to associate radiosensitivity with molecular/genomic features [2] , and this            
number is getting larger. But, there have been no systematic efforts to build a database of                
radiation response gene expression signatures validated or designed for clinical use. 
 
In the literature, many groups conducted comprehensive gene expression profiling and built            
signatures for radiation response under oxic and hypoxic conditions. Two methods have been             
used to identify these gene signatures, namely, data-driven (bottom-up) and hypothesis-based           
(top-down) approaches. The performances of these transcriptomic signatures have been          
evaluated on various datasets with limited to no independent validation. Moreover, there is only              
minimal overlap between these gene signatures. This may be attributed to the different platforms,              
such as microarray or RNA-sequencing, training sets, and statistical tools used to build these              
signatures. Furthermore, in order to develop biomarkers reproducible and appropriate for clinical            
translation, a database should be built to house these predictive models. At present, there is no                
radiation response signature database that could potentially address these fundamental questions.           
A wealth of molecular data [3,4] and gene expression signatures [5] are publicly available              
through diverse online resources. In this study, we manually curated a number of radiation              
response gene signatures from the literature, known as the RadiationGeneSigDB, and           
implemented this as an R package. This database will facilitate users, i) to compare radiation               
response signatures across pan-cancer datasets; ii) to investigate the prognostic value of these             
signatures on a compendium of clinical datasets using meta-analysis; and, iii) to investigate the              
tissue specificity of radiation response using these signatures across different transcriptomic           
platforms. Ultimately, the goal of this work is to improve the development, and spur a greater                
understanding of how transcriptomic signatures can be used to augment precision radiation            
oncology, for improved patient outcomes, and more effectively designed clinical trials. 
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2 Methods 
2.1 Curation of RadiationGeneSigDB 
In most online resources, gene signatures are often included in tables or figures embedded in               
publications. These signatures often use non-standard gene identifiers, making comparison to           
other gene signatures, or even to the original data a significant challenge. To be of maximal                
value, these gene signatures should be available through an easily accessible database resource             
that provides gene sets in a more standard format. Radiation response gene expression based              
signatures are identified in Pubmed. In our first release, we collected 11, 24 oxic and hypoxic                
signatures respectively, and these are described in Supplementary Tables 1 and 2. We manually              
annotated them with gene symbol, Entrez Gene ID, and gene function, which can be downloaded               
from the GitHub as an excel file, or as an R object. The molecular subtyping for breast cancer,                  
computation of signature score and the quality control of signatures used in this study is               
discussed in the Supplementary methods. 
 
2.2 Datasets  
Cancer cell lines were profiled at the genomic level and the processed data are available for                
download from a public database, The Cancer Cell Line Encyclopedia (CCLE) [6] . For this              
study, we used all breast cancer lines (26 in total) from the CCLE dataset. The METABRIC                
dataset was used for patient data [3] and selected only those patients treated with radiation               
therapy. Out of 1992 patients, 232 patients were reportedly treated with radiation. We retrieved              
head and neck squamous cell carcinoma (HNSCC) primary tumor transcriptomic data from the             
Tumor Cancer Genome Atlas (TCGA) [4] , and selected only the patients treated with radiation              
(99 in total).  
  
2.3 Predictive Model to Obtain Hypoxia-Associated miRNA 
Genomic data involving the mRNA and miRNA expression of a cohort of 7,738 patient samples               
was downloaded from the Cancer Genome Atlas (TCGA) project, accessed through the Broad             
Institute Firebrowse portal at http://www.firebrowse.org [4] . Data used were RSEM-normalised          
gene expression and mature miRNA normalised expression. In the same method as Dhawan et al.               
[7] , (In press, Nature Communications), we considered all cancer types which were epithelial or              
glandular with respect to histology, and with at least 200 unique patient samples with paired               
mRNA and miRNA-sequencing data (Supplementary Table 3).  
  
In the same method of Dhawan et al., 2018, mRNA gene signature scores, scored as the median                 
value of gene expression for the genes of a given signature, were taken. These values were used                 
as the response variables in two series of predictive models. In the first, every miRNA with                
non-zero expression across at least 80% of all tumour samples was considered for its correlation               
with the gene signature score, across all samples of a given cancer type. miRNAs showing at                
least moderate univariate predictive ability for the signature summary score, were considered            
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going forward. Subsequently, each of these miRNA passing the first filter were taken as              
predictors for a linear model, fitting the gene signature scores. Fitting was done by the same                
approach as taken by Dhawan et al. 2018, Nature Communications. That is, multivariable linear              
regression with L1/L2 penalty, optimized by 10-fold cross-validation was used to identify the             
miRNAs which showed the greatest predictive ability for each hypoxia gene signature score             
across each of the cancer types considered. miRNA which showed the strongest predictive             
ability, in positive or negative association with the gene signature score were obtained for each               
signature, by aggregating the linear model coefficients across cancer types, and considering the             
rank product statistic. Those miRNA that consistently had greater positive coefficients in each             
linear model across cancer types, than chance alone could predict, were taken as significantly              
positively associated to a given gene signature. These significantly-associated miRNA were then            
ranked in order of p-value obtained by rank product statistic, for each gene signature considered. 
 
Subsequently, these miRNA were aggregated across all gene signatures, to identify that            
recurrently positively or negatively associated with each gene signature, using the rank product             
taken over all gene signatures. 
 
3 Results 
We present here three case studies utilizing the radiation response gene signature database,             
highlighting its utility, and the associated R code is provided in the Github. 
 
3.1 Comparison of oxic breast gene signatures in cell lines and patients 
The objective of this case study is to conduct an unbiased comparison of two different prognostic                
breast cancer signatures (namely, Piening et al. [8] , Speers et al. [9] ) predictive of radiation               
response under oxic conditions. We compared the signature scores in cell line data as well as in                 
patients, and assessed the similarities and differences in their behavior across these datasets.             
Importantly, the overlap of genes between these two signatures is minimal, attributable to the              
different platforms, training sets, and statistical methods used in their generation. We computed             
signature scores across the 26 breast cancer cell lines from the the CCLE RNA-seq database, as                
well as for all patient samples from the METABRIC dataset. Before proceeding further with this               
analysis, we first assayed the quality of gene signature application on each of these datasets using                
sigQC. Interestingly, this precursor analysis, with summary radar plots (Figure 1), showed that             
there are significant variations in quality between the signatures on different datasets. That is, the               
signatures appeared to have strongest quality when applied on CCLE data or TNBC data, but not                
the ER-low subtype.  
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Figure 1: Radar plots produced for sigQC summary metric evaluation of Piening and Speers              
signatures on CCLE and METABRIC datasets. Each ray of the radar plot evaluates one of the                
summary metrics checked by sigQC for gene signature quality prior to application on a dataset.  

Briefly, this plot reveals that the Piening signature on the TNBC dataset (solid red line) is among                 
the highest-quality application, along with the Piening signature on the CCLE dataset (solid             
purple line). Among the lowest performing signature-dataset combinations are the Speers and            
Piening signatures on the ER-High and ER-Low datasets, as poorer performance is observed on              
nearly every metric considered. Signature-dataset combinations are ranked in the legend by            
quality, with the numeric value in brackets representing the area contained within the radar chart               
lines for each signature-dataset combination. 
 
Next, the signature scores for both the Piening and Speers signatures were then compared              
directly with the Spearman correlation coefficient (Figure 2). We observed a moderate Spearman             
correlation ( ~0.69) between the signature scores in the cell line data. However, we observed ρ              
significant differences when comparing signature scores in patient data. We observed that for             
clinical data, when stratified by molecular subtype, the Spearman correlation has moderate value             
for triple negative breast cancer, HER2 and ER-low cancers. For the ER-high subtype, the              
Spearman correlation between the signatures is weak ( ~0.25). The moderate correlation       ρ     
between the two breast cancer signatures can be attributed to: i) different statistical tools              
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implemented on different platforms, with a small overlap in genes; ii) different experimental             
assays and protocols used to generate dose-response data; iii) inconsistent experimental           
methodologies to generate radiation data across labs; iv) signature development underpowered           
due to lack of sample size along with enough replicates . This could also have implications with                
regard to the evaluation of radiation response in an in-vitro setting and translating it to the                
clinical practice. Hence, there is a dire need to build robust radiation signatures that are               
independent of platforms and technology. 
 

 
Figure 2: Cell line vs. Patient model systems. Comparison of breast cancer radiation response 

signature scores in CCLE breast cancer cell lines and in METABRIC patient cohort. 
 

3.2 Comparison of HNSCC hypoxia gene signatures in patients 
In this case study, we aimed to compare three HNSCC hypoxia gene expression signatures in the                
TCGA cohort. The first hypoxia signature is identified by Toustrup et al. [10] , which was               
validated in a HNSCC cohort. The second hypoxia signature is developed by Eustace et al. [11]                
on laryngeal tumors, which was validated in HNSCC cohort. Lastly, the third signature was built               
by Lendahl et al. [12] , which was derived to determine a pan-cancer signature for radiation               
response in hypoxia. Firstly, comparing the composition of each of these signatures, we noted              
that there is just a single common gene between the three signatures. Next, we performed a                
quality analysis, to ensure legitimacy when applying these signatures on the TCGA dataset with              
sigQC and noted that all three signatures show good quality on this dataset and are consistent                
between each other (Figure 3).  
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Figure 3: Radar plots produced for sigQC summary metric evaluation of Toustrup, Lendahl, and              
Eustace signatures on TCGA HNSCC dataset. Each ray of the radar plot evaluates one of the                
summary metrics checked by sigQC for gene signature quality prior to application on a dataset.  

Briefly, this plot reveals that each of the three signatures has approximately similar quality when               
applied on this dataset, with the Eustace signature showing a slight reduction in quality, owing               
primarily to differences in signature gene score correlation, likely owing to model-specificity in             
its use. Signature-dataset combinations are ranked in the legend by quality, with the numeric              
value in brackets representing the area contained within the radar chart lines for each              
signature-dataset combination. We found that the Toustrup and Lendahl, and the Toustrup and             
Eustace hypoxia signatures were strongly correlated ( ~0.8), whereas the Lendahl and Eustace      ρ       
signatures were weakly correlated ( ~0.46) (Figure 4-Left panel), which is consistent with [13] .    ρ          
Having identified differences in their genetic composition, but relative similarity in the behavior,             
we next asked whether similar biological processes could be defining these signatures. To             
achieve this, we performed pathway analysis using the GO terms from the MSigDB [5] . For an                
FDR < 10%, 13, 37, and 51 transcriptional pathways were found to be enriched using Toustrup,                
Eustace, Lendahl signatures respectively. We found only 3 pathways that were commonly            
enriched between all the 3 signatures (Figure 2- Right panel), namely, GO:Oxidation Reduction             
Process”, “GO:Glucose Metabolic Process,” GO:Monosaccharide Metabolic Process. We found         
2 pathways to be enriched related to oxygen levels using Toustrup and Lendahl signatures, but               
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not enriched using the Eustace signature (Figure 4-Right panel). 

 

 
Figure 4: Comparison of hypoxia gene signatures in TCGA HNSCC. Left panel: Correlation 

of signature scores. Right panel:  Venn diagram illustrating the transcriptional pathways 
enriched using the three head and neck hypoxia signatures (FDR<10%). 

 

3.3 Hypoxia gene signatures used to identify hypoxia-associated miRNA 
mRNA gene signatures, as generated over the past decade have enabled a greater understanding              
of cellular processes and phenotypic responses to environmental changes, such as hypoxia. Using             
RadiationGeneSigDB, the curated hypoxia gene signatures at the mRNA level were used to infer              
the function of miRNA using a robust pan-cancer statistical approach. Briefly, as described in the               
methods section, a graduated linear modelling approach with a pan-cancer dataset was used to              
identify those miRNA with significant and recurring statistical association to the overall            
behaviour of the hypoxia gene signatures. Using a strong, broadly-representative, and curated            
database of hypoxia gene signatures is essential to this approach, as the strength of the miRNA                
associations determined through the linear model. 
 
As such, using the curated database of 24 hypoxia gene signatures and data from patient samples                
from 15 epithelial tumour types, we obtain a set of miRNA highly associated both positively and                
negatively to these hypoxia gene signatures. As a result of both the high quality of the signatures                 
considered, as well as the robust statistical approach considered, the miRNA obtained as             
signature-associated include many of those that have been already independently validated, as            
summarised in Table 1, and as summarised in Figure 5. Importantly, the strength of this approach                
is its versatility - with any such well-curated list of gene signatures, or indeed a different set of                  
genomic data, novel associations of miRNA to phenotype can be discovered, underlying the             
utility of this resource as a tool for biological discovery.  
 

miRNA positively associated with hypoxia miRNA negatively associated with hypoxia 
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miRNA Rank Product p 
value miRNA Rank product p 

value 

hsa-miR-210-3p 3.15E-42 hsa-miR-374a-5p 2.83E-31 

hsa-miR-15b-5p 1.98E-27 hsa-miR-29c-5p 3.04E-21 

hsa-miR-130b-5p 1.03E-21 hsa-miR-1307-3p 1.91E-18 

hsa-miR-93-5p 2.38E-18 hsa-miR-30e-3p 4.23E-15 

hsa-miR-21-3p 5.99E-16 hsa-miR-30e-5p 1.46E-14 

hsa-miR-106b-5p 1.94E-10 hsa-let-7i-3p 1.65E-12 

hsa-miR-21-5p 2.96E-10 hsa-miR-26a-5p 1.12E-11 

hsa-miR-223-3p 3.15E-10 hsa-let-7a-3p 1.27E-11 

hsa-miR-15b-3p 9.14E-10 hsa-miR-362-5p 8.40E-11 

Table 1: miRNA significantly positively and negatively associated with hypoxia gene signatures            
(top 10 displayed). miRNA are identified as significantly associated by way of linear modelling              
schema, as outlined in the methods section, and by considering the association between miRNA              
expression and hypoxia gene signature score across each of the 24 gene signatures curated into               
RadiationGeneSigDB. 
 

 
Figure 5: Overview of approach used to identify hypoxia-associated miRNA; figure adapted            
from Dhawan et al., Nature Communications. Figure depicts on left side an overview of the               
linear model used in fitting, wherein each gene signature and cancer type are considered, and the                
miRNA significantly associated with a given signature across cancer types are stored.            
Subsequently, those miRNA which associate the strongest with all gene signatures are next             
considered before obtaining the final list of hypoxia-associated miRNA, as presented in Table 1.  
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4. Conclusions 
In this era of personalized medicine, an area of current excitement in the field of radiation                
oncology is the study of changes in the transcriptome induced by radiation therapy, termed              
radiogenomics . With the evolution of sequencing technologies, radiogenomics has emerged as a            
new field to identify the biomarkers that are predictive of radiation response. Due to the               
continuous growth of transcriptomic studies across multiple cancers, the number of biomarkers            
predictive of radiation response is ever-increasing. The lack of genomic indicators of radiation             
response has impeded the administration of radiation to individual patients. Moreover, if a             
predictive biomarker were to be integrated into the clinical practice, it would require a              
reproducible assay that is agnostic to platforms and technologies. This study is an effort to build                
a database of radiation response gene signatures under oxic and hypoxic conditions. This             
repertoire of gene expression signatures are publicly available as an open source package in R.               
This will facilitate comparison of radiation response signatures across cancer types, and also             
enable us to investigate the prognostic value of these signatures using meta-analysis approaches.             
We hope and envision that this package will help users to compare their own signature to those                 
in the RadiationGeneSigDB database, and help build better biomarkers by using multiple            
datasets in the discovery, or pre-clinical phase. Furthermore, RadiationGeneSigDB coupled with           
RadioGx, a novel computational platform of radiogenomics datasets [14] , will enable us to build              
reliable and clinically-verifiable genomic predictors of radiation response. 
 

Availability of data and material 
RadiationGeneSigDB is implemented in R. The source code of this package and signatures can              
be downloaded from the GitHub: https://github.com/vmsatya/RadiationGeneSigDB 
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Supplementary Material 
 
Supplementary Methods: 
 
We used the SCMOD2 model [1] to assign each tumor sample into the four established               
molecular subtypes of breast cancer: Basal-like (TNBC), Her2-enriched, Luminal A (ER-high)           
and Luminal B (ER-low). We used the SCMOD2 implementation available in the genefu R              
package. We computed a signed average (the sign being determined by the sign of the gene                
coefficient or direction) using the sig.score function in genefu . We computed the correlation             
between the the published gene signatures using the Spearman correlation coefficient. To assay             
the quality of gene signatures, we used our recently developed method siqQC [2]. 
 
Supplementary Tables: 
 
Supplementary Table 1 presents the original study, number of genes in the signature and the               
histology for the radiation response gene expression signatures under oxic conditions (fully            
oxygenated).  
 

Signature Number of genes Histology 

Piening et al. [3] 281 Breast Cancer 

Nuyten et al. [4] 335 Breast Cancer 

Torres-Roca et al.  [5]  10 Pan-cancer 

Speers et al. [6] 51 Breast Cancer 

Pitroda et al. [7] 4 Carcinoma 

Kim et al. [8] 31 Pan-cancer 

De-Jong et al. [9]  1177 Head  and Neck Squamous Cell 
Carcinoma 

Amundson et al. [10] 21 Pan-cancer 

Abazeed et al. [11]  2248 Squamous Cell Lung Cancer 

Weichselbaum et al. [12] 49 Squamous Cell Carcinoma 

Tang et al. [13] 26 Soft Tissue Sarcoma 
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Supplementary Table 2 presents the original study, number of genes in the signature and the               
histology for the radiation response gene expression signatures under hypoxic conditions           
(absence of oxygen).  
 

Signature Number of genes Histology 

Toustrup et al. [14] 15 Head and Neck Cancer 

Eustace et al. [15] 26 Head and Neck Cancer 

Lendahl et al. [16]  30 Head and Neck Cancer 

Winter et al. [17] 99 Pan-Cancer 

Buffa et al. [18] 51 Pan-Cancer 

Hu et al. [18,19] 13 Breast Cancer 

Sorensen et al. [20] 28 Squamous Cell Carcinoma 

Yang et al. [21] 28 Prostate Cancer 

Fjeldbo CS et al. [22] 6 Cervical Cancer 

Lang et al. [23] 24 Bladder Cancer 

Ragnum et al. [24] 32 Prostate Cancer 

Seigneuric et al. [25] 
(Early 0% hypoxia) 

72 Mammary Epithelial 

Seigneuric et al. [25] 
(Late 0% hypoxia) 

71 Mammary Epithelial 

Seigneuric et al. [25] 
(Early 2% hypoxia) 

34 Mammary Epithelial 

Seigneuric et al. [25] 
(Late 2% hypoxia) 

32 Mammary Epithelial 

Starmans et al. [26] 
(Cluster 1) 

69 Breast Cancer 

Starmans et al. [26] 
(Cluster 2) 

246 Breast Cancer 

Starmans et al. [26] 157 Breast Cancer 
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(Cluster 3) 

Starmans et al. [26] 
(Cluster 4) 

95 Breast Cancer 

Starmans et al. [26] 
(Cluster 5) 

162 Breast Cancer 

Starmans et al. [26] 
(Cluster 6) 

14 Breast Cancer 

Starmans et al. [26] 
(Cluster 7) 

28 Breast Cancer 

Ghazoui et al. [27] 70 ER+ Breast Cancer 

Van Malenstein et al. [28] 7 Hepatocellular Carcinoma 

 
Supplementary Table 3 presents the breakdown of histologic subtypes in the TCGA dataset. All              
cancer types which were epithelial or glandular with respect to histology, and with at least 200                
unique patient samples with paired mRNA and miRNA-sequencing data. 

 

Dataset mRNA samples miRNA samples miRNA and mRNA 

Breast Cancer 782 755 499 

Ovarian Cancer 307 461 291 

Lung adenocarcinoma 517 452 449 

Uterine Corpus Endometrial 
Carcinoma 

177 412 174 

Kidney renal clear cell 
carcinoma 

534 255 255 

Head and Neck squamous 
cell carcinoma 

520 486 478 

Lung squamous cell 
carcinoma 

501 342 342 

Thyroid carcinoma 501 502 500 

Prostate adenocarcinoma 497 494 493 
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Colon adenocarcinoma 286 221 221 

Ovarian serous 
cystadenocarcinoma 

415 389 270 

Bladder Urothelial 
Carcinoma 

408 409 405 

Liver hepatocellular 
carcinoma 

373 374 369 

Kidney renal papillary cell 
carcinoma 

291 292 291 

Cervical squamous cell 
carcinoma and endocervical 

adenocarcinoma 

304 307 304 
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