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Summary
Integral control is commonly used in mechanical and electrical systems to ensure perfect adap-

tation. A proposed design of integral control for synthetic biological systems employs the seques-
tration of two biochemical controller species. The unbound amount of controller species captures
the integral of the error between the current and the desired state of the system. However, imple-
menting integral control inside bacterial cells using sequestration feedback has been challenging
due to the controller molecules being degraded and diluted. Furthermore, integral control can only10

be achieved under stability conditions that not all sequestration feedback networks fulfill. In this
work, we give guidelines for ensuring stability and good performance (small steady-state error) in
sequestration feedback networks. Our guidelines provide simple tuning options to obtain a flexible
and practical biological implementation of sequestration feedback control. Using tools and metrics
from control theory, we pave the path for the systematic design of synthetic biological circuits.

1 Introduction
The field of synthetic biology has focused on the development of novel organisms, devices and sys-
tems for the purposes of improving industrial processes [Savage et al., 2008,Clomburg and Gonzalez,
2010, Dunlop et al., 2010, Hemme et al., 2010, Narcross et al., 2016], discovering the principles of
natural biological systems [Gardner et al., 2000, Elowitz and Leibler, 2000, Guo et al., 2014], and20

performing biomolecular computation [Qian et al., 2011,Thubagere Jagadeesh, 2017]. Current appli-
cations of synthetic biology include industrial fermentation [Georgianna and Mayfield, 2012], toxin
detection [McBride et al., 2003,Wang et al., 2009], biosensor development [Hsiao et al., 2016], diag-
nostics detection [Pardee et al., 2014], materials production [Cherny and Gazit, 2008,Moon et al.,
2010, DeLoache et al., 2015], novel protein design [Dahiyat and Mayo, 1996, Arnold, 1998,Kuhlman
et al., 2003], and biological computation [Moon et al., 2012, Daniel et al., 2013]. The applications
and capabilities of synthetic biology are still expanding because it is a relatively novel field. However,
synthetic systems have a unique set of challenges and limitations.

An important goal of synthetic biology is to engineer reliable, robust, and well-performing systems
from standardized biological parts that can easily be combined together [Canton et al., 2008,Arkin,30

2008,Kwok, 2010,Khalil and Collins, 2010,Qian and Del Vecchio, 2018]. Nonetheless, synthetic systems
can lack robustness and be sensitive to their biological implementation [Yeung et al., 2014,Del Vecchio,
2015,Yeung et al., 2017]. Differences in their biological parts, different model organism implementa-
tions [Klumpp et al., 2009], or different experimental conditions can cause synthetic systems to cease
to function properly [Purnick and Weiss, 2009,Gomez et al., 2016]. This limits their applicability, as
well as the engineering of more complex synthetic systems.

The development of synthetic biological systems is limited by the lack of consistent functionality,
performance, and robustness. These limitations are also present in mechanical and electrical engineer-
ing. However, tools and concepts have been developed to ameliorate them [Levine, 2010, Friedland,
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2012,Doyle et al., 2013,Aström and Murray, 2008]. For example, the engineering design cycle described40

in Figure 1 is a framework for the iterative design, build, testing, and learning of engineered systems.
The engineering design cycle can also be iteratively applied to synthetic systems to achieve the desired
performance standards. In this paper, we employ engineering principles and tools to the design of a
class of well-performing, robust synthetic biological systems.

A widely used tool to improve the performance of mechanical and electrical systems is feedback
control. Feedback control allows a system to take corrective action based on the measured differences
between the current and desired performance [Levine, 2010,Aström and Murray, 2008]. The foremost
benefit feedback control provides to biological, mechanical, and electrical systems is robustness to
uncertainty. Should the system undergo a change such an external disturbance, the feedback controller
ensures that the system retains good performance properties such as small steady-state error and fast50

response time by correcting for the change. Additionally, feedback control stabilizes an unstable process
and accelerates a slow process. Yet, if poorly designed, feedback control can inadvertently amplify noise
and exacerbate instability [Levine, 2010,Del Vecchio and Murray, 2015,Aström and Murray, 2008].

Feedback is ubiquitous in natural biological systems, where it serves to regulate their behavior.
Examples of feedback control found in natural biological systems include the regulation of body tem-
perature [Werner, 2010], circadian rhythms [Rust et al., 2007], calcium [El-Samad et al., 2002], and
glycolysis [Chandra et al., 2011]. In this paper, we explore the use of a feedback controller for synthetic
biological systems that relies on the sequestration reaction of two biological species. This sequestration
feedback controller is illustrated in Figure 2. Examples of synthetic systems that use sequestration
feedback include the concentration tracker in [Hsiao et al., 2014], the two bacterial growth controllers60

in [McCardell et al., 2017], and the gene expression controller in [Annunziata et al., 2017]. An example
of a natural sequestration feedback system uses sigma factor σ70 and anti-sigma factor Rsd [Jishage
and Ishihama, 1999] for the two sequestering species.

The sequestration feedback introduced in Figure 2 has been a promising implementation of feedback
control that can achieve perfect adaptation. Perfect adaptation (whose engineering counterpart is
integral control) ensures adaption to disturbances with no steady-state error. A biological system with
perfect adaptation displays excellent robustness and performance in terms of steady-state error. Perfect
adaptation is a desirable property that can be found both in natural biological systems and in synthetic
systems [Ferrell Jr, 2016,Goentoro et al., 2009,El-Samad et al., 2002,Yi et al., 2000,Del Vecchio and
Murray, 2015]. Briat et al. [Briat et al., 2016] studied stochastic sequestration feedback systems70

with no controller species degradation and demonstrated that they can achieve perfect adaptation
under certain conditions of stability. Nevertheless, we and others have found the assumption of zero
controller species degradation to be too restrictive for the practical implementation of sequestration
feedback [Ang et al., 2010,Ren et al., 2017,Qian and Del Vecchio, 2018,Olsman et al., 2018].

Hence, current synthetic sequestration controllers may or may not be able to achieve perfect adap-
tation in a practical biological implementation. In Section 2.2.2, we suggest another possible implemen-
tation of sequestration feedback that accounts for the controller species’ degradation and dilution and
ensures zero steady-state error if the closed loop system is stable. Nevertheless, this implementation
depends on an exact relationship between the controller and the process network parameters, which
renders it also inflexible and impractical. In Section 2.3, we relax the requirement that the sequestra-80

tion controller achieve perfect adaptation and we simulate and design sequestration feedback controllers
with small steady-state error, large stability margin, and good disturbance rejection properties. These
controllers are advantageous because they do not require an extremely precise implementation.

Previous research on sequestration feedback networks has determined conditions for their stability,
along with their performance and robustness properties [Briat et al., 2016,Qian and Del Vecchio, 2018,
Baetica, 2018,Olsman et al., 2018]. The current paper uses these properties of stability, performance,
and robustness to find optimal designs for sequestration feedback networks. In Section 2.1, we introduce
a model of sequestration feedback networks with controller species degradation and dilution. Then
we summarize and expand their properties of stability, performance, and robustness of sequestration
networks in Section 2.2. In Section 2.3, we discuss how the choice of biological parts impacts these90

properties. Additionally, we solve a case study design problem for a sequestration feedback network
with two process species. Finally, we develop general guidelines for design of sequestration controllers
when the process network is already specified by challenging experimental constraints.

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/455493doi: bioRxiv preprint 

https://doi.org/10.1101/455493
http://creativecommons.org/licenses/by-nc-nd/4.0/


Design

BuildLearn

Test

Performance 
gap

Biological 
parts

A

The engineering design cycle

Performance gap
smaller steady-state error

Mathematical model
ODE model

Model analysis
stability vs performance tradeoff

Adjust performance
move in parameter space

B

Biological circuit design

Biological parameters 
optimized reaction rate values

Biological parts
transcriptional implementation

Figure 1: The engineering design cycle is an iterative approach to improving the performance of
engineered and biological systems. A. The engineering design cycle is an approach by which an engineering
or biological system is iteratively designed, built, tested, and learned until it becomes sufficiently improved in
performance. When there is a gap in performance, we find a new biological design and associated biological parts
for its implementation. B. An example of a performance gap is when the biological system’s steady-state error
is larger than desired. Provided that the structure of the biological system is fixed, this indicates a necessary
adjustment in the system’s performance by moving across its parameter space. Thus, we find optimized
reaction rate values that result in the desired performance specifications of small steady-state error. Using the
optimized reaction rate values, we can determine corresponding biological parts that provide this particular
implementation. In this paper, we design the sequestration feedback network in Figure 2 to fulfill stability and
performance specifications. In turn, these performance specifications inform the biological implementation of
sequestration feedback networks. Throughout this paper, we use the stability and performance properties of
sequestration feedback networks determined in [Baetica, 2018,Olsman et al., 2018,Briat et al., 2016] to inform
their design.
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2 Results

2.1 Modeling Sequestration Feedback Networks with Controller Species
Degradation
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Figure 2: The sequestration feedback network’s controller and process networks. The goal of
the sequestration controller is for the process output species Xn (orange) to track the reference signal. The
reference acts on the sequestration feedback network through the constitutive production of controller species
Z1 (purple) at rate µ. The controller species Z1 and Z2 (purple) bind together at rate η in a sequestration
reaction to form an inactive complex represented by the empty set. The controller species Z1 acts on the
process input species X1 at rate θ1. The process output species Xn acts on the controller species Z2 at rate θ2.
Process input species X1 creates process species X2 at rate k1 and process species Xn−1 creates process output
species Xn at rate kn−1. Additionally, process species X2 . . . , Xn−1 (green) also interact with each other in
unimolecular or bimolecular reactions. The controller and the process species are subjected to degradation and
dilution, which is indicated by arrows pointing to empty sets. Rates γc and γp each encompass both degradation
and dilution. This diagram extends the setup in [Briat et al., 2016] by the inclusion of the controller species’
degradation and dilution.

In this section, we introduce the sequestration feedback network’s model and chemical reactions and
we clarify our assumptions about its dynamics. Additionally, we outline the properties of sequestration
feedback controllers. In Figure 2, we illustrate a general sequestration feedback network with controller
species degradation and dilution. The controller network consists of two biochemical species Z1 and Z2100

that sequester each other into an inactive complex. This sequestration reaction computes the difference
in concentration between the two controller species. If there are more molecules of Z1 than Z2, then
the sequestration feedback encodes the quantity Z1 − Z2, whereas if there are more molecules of Z2

than Z1, then it encodes the quantity Z2 − Z1. The controller network is connected to the process
network through its interactions with process species X1 and Xn. The goal of the controller network
is to ensure that the output species Xn of the process network tracks a reference signal set by rates µ
and θ2. As we explain in this section, the difference between controller species Z1 and Z2 encodes the
error between process output species Xn and the reference signal.

Here, we assume that the two controller species Z1 and Z2 sequester each other into an inactive
complex at rate η. The reference signal comes in through controller species Z1’s constitutive production
at rate µ. Controller species Z1 acts on the process network input species X1 at rate θ1, while the
process network output species Xn acts on the second controller species Z2 at rate θ2. Indeed, species
Z1 is the actuator and species Z2 is the sensor for the process network. For simplicity, we assume
that the controller species are degraded at the same rate γc and that the process species are degraded
at an equal rate γp. Under these assumptions and notation, the chemical reactions that describe the
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sequestration feedback network are as follows:

∅ µ−→ Z1, Z1
θ1−→ Z1 +X1, Xn

θ2−→ Xn + Z2,

Xi
γp−→ ∅, ∀1 ≤ i ≤ n, Z1

γc−→ ∅, Z2
γc−→ ∅,

Z1 + Z2
η−→ ∅.

For simplicity, we omit the chemical reactions between process species X2, . . . , Xn−1 for the rest
of this section. We let t denote time and x1, . . . , xn denote the concentrations of the process species110

X1, . . . , Xn. We let z1 and z2 denote the concentrations of the controller species Z1 and Z2, respectively.
Thus, the sequestration controller can be modeled as follows:

ż1 = µ− ηz1z2 − γcz1,

ż2 = θ2xn − ηz1z2 − γcz2.
(1)

We subtract the dynamics of the two controller species and obtain the following equation:

d

dt

(
z1(t)− z2(t)

)
= θ2e(t)− γc(z1(t)− z2(t)). (2)

If we define the error signal as e(t) = µ
θ2
−xn(t), then the control action z1(t)− z2(t) integrates the

error signal e(t) as follows:

z1(t)− z2(t) = θ2

∫ t

0

eγc(s−t)e(s)ds. (3)

If the closed loop sequestration feedback network is stable, then equations (1) have a steady-
state and we can evaluate the magnitude of the steady-state error. Moreover, when the controller
species do not degrade (γc = 0), then the sequestration feedback network exhibits the property of
perfect adaptation since µ = θ2xn at steady-state. This implies implies that xn perfectly tracks the
error signal µ

θ2
. Perfect adaptation is a desirable property of biological systems because it guarantees120

zero steady-state error and robustness to disturbances, irrespective of the process network as long as
the closed loop network remains stable. This allows for an imprecise implementation of the process
network, although the zero controller degradation rate requires a very challenging implementation of
the sequestration controller species.

When we assume stability of the closed loop sequestration network and a nonzero degradation rate
of the controller species (γc > 0), equation (3) demonstrates that the sequestration controller is a lag
compensator and that it integrates the error signal [Aström and Murray, 2008,Ren et al., 2017]. When
the controller species degradation and dilution rates are small, the sequestration controller approaches
integral control, whereas when the controller species degradation and dilution rates are large, it ap-
proaches proportional control. A detailed comparison of sequestration feedback networks with and130

without controller species degradation and dilution is available in the supplement (Section S4.1).
In particular, it is not immediately apparent whether the sequestration controller with controller

species degradation and dilution retains the property of zero steady-state error. We know that while
integral control guarantees zero steady-state error under a variety of process network implementations,
the performance of a lag compensator depends on the parameters of the sequestration feedback network.
We analyze the performance of sequestration feedback networks with controller species degradation
and dilution in Section 2.2.2.

We briefly state the stability criteria for the closed loop sequestration feedback networks with zero
and nonzero controller species degradation rates in Section 2.2. An in depth discussion of these stability
criteria is presented in [Baetica, 2018, Olsman et al., 2018]. We also note that the stability criteria140

change between sequestration feedback networks with and without controller species degradation and
dilution.

Since both the process and the controller networks can only be imprecisely built with biological
parts, we consider how this affects the properties of stability and performance of sequestration feedback
networks in Section 2.3. In particular, we replace the stringent performance requirement of zero steady-
state error with a more flexible and practical performance requirement of small steady-state error. In
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Section 2.3, we formulate guidelines for implementing sequestration feedback networks with large
stability margin and small steady-state error.

2.2 Stability Criteria and Performance Goals for Sequestration Feedback
Networks150
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Figure 3: A class of sequestration feedback networks with simplified process networks. This class
of sequestration feedback networks represents a subset of the networks in Figure 2. The process networks
are simplified to only allow bimolecular chemical reactions between species with consecutive numbering; each
process species Xi is created by the previous process species Xi−1 for 2 ≤ i ≤ n. For simplicity, we assume that
the process species degradation rates γp (orange) are equal. Similarly, we assume that the controller species
degradation rates γc (orange) are equal. The sequestration reaction rate η is in purple and the process species
production rates θ1, θ2, k1, . . . kn−1 are in green. An example process network that follows these assumptions
implements the process species as proteins inside a bacterial cell. These simplifying assumptions match the
setup in [Baetica, 2018,Olsman et al., 2018].

Throughout the rest of the paper, we restrict the discussion to the class of sequestration feedback
networks in Figure 3, unless otherwise specified. The process network is simplified from Figure 2 to
only include catalytic reactions between each process species Xi and process species Xi+1 for 1 ≤ n−1
and degradation reactions with equal rates γp. No other interactions are present between process
species X1, . . . , Xn. Accordingly, we can model the sequestration feedback network in Figure 3 using
the following system of equations:

ẋ1 = θ1z1 − γpx1

ẋ2 = k1x1 − γpx2

...
ẋn = kn−1xn−1 − γpxn
ż1 = µ− ηz1z2

ż2 = θ2xn − ηz1z2.

(4)

This particular class of sequestration feedback networks is amenable to the derivation of an analyt-
ical stability criterion for the closed loop sequestration feedback network, as well as to the derivation
of an analytical form of their steady-state error under the assumptions of “strong sequestration feed-
back” [Baetica, 2018,Olsman et al., 2018]. The strong feedback assumptions ensure that we can find160
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the complex roots of the characteristic polynomial associated with the linearized sequestration feed-
back network. Therefore, we can determine if the closed loop sequestration feedback network is stable
based on the real parts of the roots of their characteristic polynomial. We introduce the following
notation to restate the strong feedback assumptions and the stability criteria of the sequestration
feedback networks in Figure 3:

Γ1
p =

θ1

γp
, Γ2

p =
θ2

γp
, Γ3

p =
k1

γp
, . . . Γn+1

p =
kn
γp

=⇒
n+1∏
i=1

Γip =
θ1θ2k1 . . . kn−1

γn+1
p

. (5)

Strong Feedback Assumptions:

n+1∏
i=1

Γip �
√
ηµ

γp
,

n+1∏
i=1

Γip �
ηµ
γ2
p

Stability Conditions:

Case I: γc � γp Case II: γc ≈ γp Case III: γc � γp

n+1∏
i=1

Γip < An
n+1∏
i=1

Γip < Bn
n+1∏
i=1

Γip < Cn
γc
γp

Table 1: Stability Depends on the Controller and the Process Species’ Production and Degra-
dation Rates. Under the strong feedback assumptions, there are analytical criteria for the stability of the
sequestration feedback networks in Figure 3. Deriving the analytical stability criteria for a sequestration net-
work with at least three process species relies on comparing the process and the controller species’ degradation
rates. In Cases I and II, the sequestration feedback network is stable if and only if the product of the ratios of
production and degradation rates is smaller than the constants An and Bn, respectively. These constants do
not depend on the parameters of the sequestration network, only on the number of process species. In Case
III, stability depends on the constant Cn, as well as on the ratio between the controller and the process species
degradation rates. These analytical stability criteria are derived in [Baetica, 2018,Olsman et al., 2018].

The quantities Γip, 1 ≤ n + 1, are all constants since the controller and process network rates
θ1, θ2, k1, . . . , kn, and γp have units of s−1. For n > 2, under the strong feedback assumptions,
the stability conditions for the sequestration feedback network in Figure 3 are restated in Table 1
from [Baetica, 2018,Olsman et al., 2018]. Intuitively, the strong feedback assumptions ensure that the
controller network can react faster than the dynamics of the process network. Deriving the analytical170

stability criteria when n > 2 relies on comparing the process and the controller species’ degradation
rates. In the three cases outlined in Table 1, the sequestration feedback network is stable if and only if

the quantity
n+1∏
i=1

Γip is bounded by a constant that only depends on n, the number of process species.

When the process network has only two species (n = 2), we can derive an analogous analytical
criterion. Under the strong feedback assumptions of θ1θ2k1

γ2
p
� √ηµ and θ1θ2k1

γ2
p
� ηµ

γc
, stability is

achieved if and only if

θ1θ2k1

2
≤ γp(γp + γc)

2. (6)

In Section 2.2.1, we extend these stability results from [Baetica, 2018,Olsman et al., 2018] to include
sequestration feedback networks with process species that are degraded at different rates.

Moreover, we consider the robustness of sequestration feedback networks for n = 2. According
to [Aström and Murray, 2008], a measure of robustness is the infinity norm of the sensitivity function,180

which represents the worst-case disturbance amplification for the system to an oscillatory input. An-
alytically computing the infinity norm of the sensitivity function can be challenging, particularly for
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n > 2. Thus, [Olsman et al., 2018] computes a lower bound F2 to the infinity norm of the sensitivity
function as:

F2 =

(
2γ2
p(γp + γc) + θ1θ2k1

)√
1 +

γ3
c+2γpγ2

c

γ2
pγc+θ1θ2k1

2γp(γp + γc)2 − θ1θ2k1
. (7)

Equality in this bound is achieved when the sequestration feedback network goes from being stable
to unstable. This is equivalent to attaining equality in equation (6). In Section 2.3, we refer to F2

as the “fragility” of a sequestration feedback network and we use its analytical expression to design
robust sequestration control.

2.2.1 The Slowest Process Species Degradation Rate Impacts Stability

Here, we assess the impact of the slowest process species degradation rate on a stable sequestration190

feedback network. For simplicity, we consider a process network with only two species that are de-
graded at different rates, as illustrated in Figure 4A. We assume strong sequestration feedback and we
compare the impact of two large process species degradation rates of 2 h−1 (panel B) to a large and a
small process species degradation rate of only 0.25 h−1 (panel C). Clearly, the slower process species
degradation rate drives the sequestration feedback network to instability.

In the supplement (Section S4.2), we derive an analytic stability criterion for the sequestration
feedback network with two process species with different degradation rates. This stability criterion in
presented in Theorem S1. When the sequestration feedback network in Figure 4A satisfies the strong
feedback assumptions, it is stable in closed loop if and only if

θ1θ2k1 ≤ (γp1 + γp2 + γc)(γp1γc + γp2γc + γp1γp2)− γp1γp2γc. (8)

This result advances our understanding of the stability of sequestration feedback networks. We200

have not yet derived an analytical stability criterion for sequestration feedback networks with n process
species with different degradation rates for n > 2. In the rest of the paper, we describe the performance
properties of sequestration feedback networks and highlight the challenge between achieving both good
stability and performance properties.

2.2.2 Strong Sequestration Feedback Results in Nonzero Steady-State Error

In Section 2.1, we indicated that sequestration feedback networks with nonzero controller species
degradation rates can have a nonzero zero steady-state error. Indeed, depending on the parameters
of the sequestration feedback network, its steady-state error can either monotonically increase with
the controller species degradation rate or it can equal zero for a specific “critical” controller species
degradation rate. In particular, under the strong feedback assumptions, the steady-state error will210

increase monotonically with the controller species degradation rate. Therefore, an implementation
of sequestration feedback with controller species degradation and dilution that satisfies the strong
feedback assumptions will inevitably result in a nonzero steady-state error. Thus, the performance
objective of zero steady-state error is a stringent and potentially impractical requirement. When
we perform the design of sequestration feedback networks in Section 2.3.1, we relax our performance
objective from a zero steady-state error to a small steady-state error. This affords us numerous options
for the practical implementation of sequestration feedback networks.

For the sequestration feedback networks in Figure 2, we give conditions for the existence of a
“critical” controller species degradation rate that ensures zero steady-state error in the supplement
(Section S4.3). For the particular class of sequestration feedback networks in Figure 3, the critical220

controller species degradation rate is given as:

γcritical
c = γp

n+1∏
i=1

Γip −
ηµ

γp
n+1∏
i=1

Γip

. (9)
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Figure 4: The stability of the sequestration feedback network with different process species
degradation rates. A. We illustrate the sequestration feedback network with two different process species
degradation rates, γp1 and γp2 . Then we analyze the stability of sequestration feedback networks by assuming
strong sequestration feedback, indicative of a sigma factor implementation of the controller species. B. We
use large process species degradation rates of 2 h−1. We note stability since the process output species X2

(orange) tracks the reference concentration of 50 nM (dark blue), albeit with a large steady-state error. C. We
use a process species with a small degradation rate (0.25 h−1) and a process species with a larger degradation
rate (2 h−1). This results in instability, as evidenced by the sustained oscillations in the process output species
X2. D. Both process species have small degradation rates of 0.25 h−1 that also result in instability. The
other parameters used in these simulations are: γ

′
c = 1 h−1, η

′
= 50 nM−1, µ

′
= 50 nM h−1, k

′
1 = 10 h−1,

θ
′
1 = θ

′
2 = 1 h−1.
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For this class of sequestration feedback networks, the critical controller species degradation rate
γcritical
c exists if and only if the process species degradation rate satisfies the inequality

n+1∏
i=1

Γip >

√
µη

γp
. (10)

Clearly, this inequality contradicts the first strong feedback assumption in Table 1. According
to [Olsman et al., 2018], when the strong feedback assumptions hold, the steady-state error is simply
a monotonic function of the controller species degradation rate as follows:

en =
µ

θ2

γc

γp
n+1∏
i=1

Γip + γc

. (11)

Thus, under the strong feedback assumptions, the steady-state error is a monotonically increasing
function of the controller species degradation rate γc and a monotonically decreasing function of the
process species degradation rate γp. We further discuss and illustrate the stability margin and the
relative steady-state error as functions of the process and the controller species degradation rates in230

Section 2.3.2.

2.3 Developing Implementation Guidelines for Sequestration Feedback Net-
works

In this section, we connect our mathematical understanding of sequestration feedback networks to their
biological implementation. In Section 2.2, we have discussed how different controller and process species
and the chemical reactions between them affect the stability and the performance of sequestration
feedback networks. In particular, the controller species sequestration rate, as well as the process and
controller species degradation rates are important parameters. We use the analysis in Section 2.2 to
provide guidelines for the biological implementation of robust, well-performing sequestration feedback
networks.240

Depending on the choice of controller species, the sequestration reaction strength and process and
controller species’ degradation rates can vary over several orders of magnitude. Examples of possible
sequestration controller species include transcriptional parts such as an mRNA and antisense RNA
pair, protein parts such a sigma and anti-sigma pair or a toxin and antitoxin pair. First, we note that
the stability of sequestration feedback networks can be improved by increasing either the degradation
rates of the process or of the controller species. Intuitively, this is similar to adding more dissipation to
a physical system [Aström and Murray, 2008]. However, in practice, there are limits to how high the
degradation rates of the process or the controller species can be and we report representative values for
these rates in Figure 5. Second, we highlight how the process and the controller species’ degradation
rates influence the steady-state error of the sequestration feedback network. For a particular class250

of sequestration feedback networks that fulfill the strong feedback assumptions, we use the analytic
expression of the steady-state error in equation (11) to bound it by tuning these degradation rates.

Using our analytical results for stability and steady-state error, we provide general guidelines for the
implementation of sequestration feedback networks. We suggest simple tuning options to improve the
stability, the robustness, and the performance of sequestration networks. When the process network
is already specified by experimental constraints, we explain how to choose a sequestration controller
that guarantees good stability and performance properties (Section 2.3.2).

2.3.1 The Choice of Biological Parts Impacts the Performance of Sequestration Feedback
Networks

Sequestration feedback networks can be built using a variety of biological parts for the two sequestering260

controller species. Several examples of parts for the two controller species are illustrated in Figure 5.
They include transcriptional parts such a mRNA and antisense RNA pair, sigma factors such a sigma
and anti-sigma pair, or protein parts such as a toxin and antitoxin pair. Transcriptional parts can
be obtained from systems such as the hok-sok type I toxin-antitoxin system in E. coli or from parts
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already mined for synthetic biological systems. The hok gene product is a toxin that kills cells without
its antidote, the antisense RNA sok that is complementary to the hok mRNA [Gerdes, 1988]. A
synthetic system of RNA and antisense RNA that originally performed translation initiation control is
adapted to regulate transcriptional elongation in [Liu et al., 2012]. Protein parts can be obtained from
type II toxin-antitoxin bacterial systems such as CcdA-CcdB. The toxin CcdB targets DNA gyrase
and induces the breaking of DNA and subsequently cell death, while its antitoxin CcdA inhibits CcdB270

toxicity by sequestering it into a very stable CcdA-CcdB complex [De Jonge et al., 2009]. Protein parts
can also be sigma and anti-sigma factors such as σ70 binding to Rsd and inhibiting RNA polymerase,
which slows transcription and inhibits E. coli growth [Sharma and Chatterji, 2008].

transcriptional parts
mRNA : antisense RNA

𝞂 𝞂
𝛔# 𝛔#

10-3 – 101 nM-1h-1

101 – 102 nM-1h-1

>106 nM-1h-1

Strong sequestration

1 10310-3

Weak sequestration 

sigma factors
sigma : anti-sigma

protein parts
toxin : antitoxin

Sequestration rate η (nM-1h-1)

106

Degradation rates 𝛾 (h-1)

5 h-1 – 20 h-1

2 h-1 – 120 h-1 (proteases)

0.5 h-1 – 2 h-1

Fast degradation

1 10

Slow degradation 

102

Figure 5: The sequestration and the degradation rates of representative biological parts that
can be used in sequestration feedback networks. The sequestration reaction between the controller
species can be implemented using a variety of biological parts. Example transcriptional parts are mRNA and
antisense RNA. Antisense RNA inhibits the translation of complementary mRNA by base pairing to it and
physically obstructing the translation machinery of the cell. Anti-sigma factors bind sigma factors to inhibit
transcriptional activity. Protein parts include the toxin-antitoxin module CcdA-CcdB in E. coli. When CcdB
outlives CcdA, it kills the cell by poisoning the DNA gyrase. The antitoxin CcdA blocks the activity of the
toxin CcdB by binding together into a complex, thus allowing cells to grow normally. We include representative
ranges of the sequestration reaction rate (η) for transcriptional parts [Walton et al., 2002], sigma factors [Sharma
and Chatterji, 2008], and toxin parts [De Jonge et al., 2009]. For small η values, the sequestration reaction
is considered weak and for large values, it is considered strong. Analogously, we give representative values of
the degradation rates of the process and the controller species implemented using transcriptional parts, sigma
factors, and protein parts. The degradation rate of mRNA is between 2 h−1 and 20 h−1 [Bernstein et al.,
2004,Miller et al., 2011,Bernstein et al., 2002] and the synthesis rate is between 0.1 and 10 h−1 in yeast [Miller
et al., 2011]. Toxin Hok in the type I toxin-antitoxin pair in E. coli is degraded at a rate of 2 h−1 [Steif and
Meyer, 2012]. The degradation rate of the sigma factor RpoS is 1.39 h−1 when the E. coli cells are in stationary
phase at 37◦C or under stress conditions [Zhou and Gottesman, 1998]. In the presence of proteases ClpXP,
this rate increases up to 120 h−1. The antitoxin CcdA is degraded in wild-type cells with a rate of 1.39 h−1

in the absence of toxin CcdB and a rate of 0.69 h−1 when bound in a complex with toxin CcdB [De Jonge
et al., 2009]. Additional information about the representative rate constants is provided in Section S4.4.1. We
also note that protein synthesis rates can be modified by varying promoters and ribosome binding sites. This
figure includes a partial reproduction of a figure in [De Jonge et al., 2009] with permission from the author.

Depending on the choice of parts for the controller species in sequestration feedback networks, the
binding affinity of the sequestration reaction can vary over several orders of magnitude, as illustrated
in Figure 5. Yet, the binding affinity of the sequestration reaction influences the stability of the
sequestration feedback network, as discussed throughout Section 2.2. Accordingly, we need to carefully
consider whether our implementation choice for the controller parts results in stable closed loop control.

Additionally, depending on the choice of implementation of the process and the controller species,
their degradation rates can also vary, as illustrated in Figure 5. Typically, the half-life of proteins280

inside the cell is long since they are slowly degraded at a rate between 1 h−1 and 2 h−1. However, the
half-life of mRNA inside the cell is very brief, so we must include this degradation rate in our model.
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The degradation rate of the controller species influences the stability of the sequestration feedback
network, as discussed in Section 2.2.

Therefore, we refer to Figure 5 for biologically representative values for the controller species’
sequestration rate and for the process and the controller species’ degradation rates throughout Sec-
tion 2.3. In the next section, we use these reaction rate values to choose biological parts for the
implementation of sequestration controllers such that the sequestration feedback network has good
properties of stability, robustness, and performance.

2.3.2 Developing Guidelines for the Design of Sequestration Controllers290

In this section, we evaluate how sensitive the steady-state error, stability margin, and robustness
bound are to the process and controller degradation rates. Then, we provide guidelines for designing
sequestration feedback controllers. Our goal is to design a robust sequestration feedback network with
small steady-state error. As discussed in the previous Sections 2.1 and 2.2.2, the critical controller
species degradation rate and the zero controller species degradation rate ensure zero steady-state error,
but can be impractical to implement. To achieve a realistic and flexible design of sequestration feedback
controllers, we relax the performance objective of zero steady-state error to the requirement of a small
steady-state error. Using this performance objective instead, we demonstrate how to simultaneously
tune the fragility and the relative steady-state error of a sequestration feedback network with two
process species.300

Example 1 (Find the Sequestration Controller for a Two Species Process Network). We consider the
sequestration feedback network in Figure 4A and we design its sequestration controller. For simplicity,
we assume that the process species production rates are equal such that θ1 = θ2 = k1 and that the
process species degradation rates are also equal such that γp1 = γp2 . Our requirements for optimal
design include stability, robustness (a maximum disturbance amplification of at most two-fold), and a
relative steady-state error of less than 30%.

First, we define the normalized process and controller rates as:

Γp =
γp
k1
, Γc =

γc
k1
. (12)

We note that the normalized process and controller rates, Γp and Γc, are unitless quantities, according
to Table S1 and we use these normalized process and controller rates throughout this section. To
assess stability, we define a rescaled empirical stability norm of a sequestration feedback network with310

two process species as:

M2 =
γp(γp + γc)

2

θ1k1θ2
. (13)

Then an empirical stability margin can be expressed asM2 = Γp(Γp + Γc)
2. The stability criterion in

equation (6) states that the sequestration feedback network is stable if and only ifM2 ≥ 0.5.
Additionally, we express the relative steady-state error ε2 from the steady-state error e2 given in

equation (11) in terms of the normalized process and controller species rates as follows:

ε2 =
e2

µ/θ2
=

1

1 + 1
Γ2
pΓc

. (14)

For simplicity, we also assume that we satisfy the first strong feedback assumption in Table 1, so
that there is no critical controller species degradation rate that would result in a zero steady-state error.
This assumption is equivalent to Γ2

p � k1√
µη . Moreover, to ensure that our sequestration controller

design is not only stable, but also robust, we bound the infinity norm of its sensitivity function.
In particular, a lower bound F2 to the infinity norm of the sensitivity function can be analytically320

expressed using equation (7) as follows:

F2 =

(
2Γ2

p(Γp + Γc) + 1
)√

1 +
Γ3
c+2ΓpΓ2

c

Γ2
pΓc+1

2Γp(Γp + Γc)2 − 1
. (15)
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Figure 6: Guidelines for building robust controllers with small relative steady-state error. We
plot both the fragility F2 and the relative steady-state error ε2 as functions of the normalized process species’
degradation rate and the normalized controller species’ degradation rate. A. The red line indicates a value of 2,
corresponding to a fragile system. Additional robustness can be achieved by increasing either the process or the
controller species rates Γp or Γc. We note that all the feedback controllers in this panel are stable sinceM2 >
0.5, but some are fragile. B. The relative steady-state error approaches value zero for a smaller controller species
degradation rate (integral control). As the process and the controller species’ degradation rates increase, the
relative steady-state error approaches 68%. An extended plot of the fragility and relative steady-state error is
available in the supplement (Figure S3). Using this plot, we note that both the fragility and the relative steady-
state error functions are more sensitive to perturbations in the process species’ production and degradation
rates than in the controller species’ production and degradation rates. This highlights the importance of
measuring the process network’s rates for a robust, well-performing implementation of sequestration feedback.
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Now, we can simultaneously tune the lower bound F2 to the infinity norm of the sensitivity function
and the relative steady-state error ε2 using Figure 6. A rule of thumb in engineering systems is that
the magnitude of the infinity norm of the sensitivity function is between values 1.1 and 2 [Levine,
2010,Aström and Murray, 2008]. This implies that the maximum disturbance amplification through
feedback is two-fold. Since we do not have an analytic expression for the sensitivity function itself, we
instead bound F2 to be less than 2 in Figure 6A. This fragility value is indicated by the red dotted line
in Figure 6A. Accordingly, the normalized process species degradation rate ΓP must be at least 0.7
and the normalized controller species degradation rate ΓC must be at least 0.8. We substitute values
ΓP = 0.7 and ΓC = 0.8 in the relative steady-state error expression in equation (14) and compute a330

relative steady-state error of 28%. Thus, we fulfilled all the design specifications with a sequestration
feedback network with values ΓP = 0.7 and ΓC = 0.8. Hence, the process species’ degradation rate
must be 70% of the process species’ production rate and the controller species’ degradation rate must
be 80% of the controller species’ production rate.

To obtain these values, a biological implementation of the process and the controller species can
be mRNA molecules or actively degraded proteins [Lewin, 2004]. The mRNA transcription rate more
closely matches their degradation rate and thus can result in normalized process or controller degra-
dation rates of 70% − 80% (Figure 5). Additionally, the rate of protein synthesis can also match the
degradation rate, provided that the proteins are actively degraded by the proteosome. Sigma factors
are a class of proteins that can also potentially result in normalized process or controller degradation340

rates of 70%− 80% (Figure 5).

Remark 1. In Example 1, we assumed that the process species production rates and degradation
rates were equal (θ1 = θ2 = k1 and γp1 = γp2). These assumptions served to simplify the expressions
in equations (7) and (11). More generally, the sequestration controller design for a network with two
process species is analogous to the design in Example 1, provided that the strong feedback assumptions
hold. The strong feedback assumptions are explicitly given in Theorem S1. For controller design,
equations (8) and (11) can be used to modulate the stability margin and steady-state error of the
sequestration network.

2.3.3 Large Stability Margin and Small Steady-State Error Are Competing Objectives

Achieving a large stability margin and a small steady-state error are competing objectives for sequestra-350

tion feedback networks, as noted in [Baetica, 2018,Olsman et al., 2018] and illustrated in Figure 6. To
achieve a small relative steady-state error, both the normalized process and controller species degrada-
tion rates (Γp and Γc) should be as small as possible. The relative steady-state error is a monotonically
increasing function of both of these rates. This property can be observed both from equation (14) and
from Figure 6B. However, to achieve a large stability margin (or robustness), both the normalized
process and controller species degradation rates (Γp and Γc) should be as large as possible. This
property can be observed both from equations (13) and (15), as well as from Figure 6A. Therefore,
attaining a large stability margin and a small steady-state error are competing design objectives. It is
important to note that these two competing objectives can be particularly challenging to achieve for
process networks with small and large ratios between their degradation and their production rates.360

The motivation for studying cases of extreme competition between these two objectives is that
in practice, process networks are often already specified or challenging to modify. Consequently,
the process species’ production and degradation rates are often fixed. When the process species’
degradation rate is much smaller than the process species’ production rate, then the parameter Γp
can be small. Thus, a large controller species degradation rate is required to ensure that stability is
achieved and an even larger controller species degradation rate is required to guarantee robustness.
For a small value of Γp, it must be that

Γc >
1√
2Γp
− Γp (16)

simply to achieve stability and an even larger controller degradation rate for robustness. For example,
for a process network with value of Γp = 0.1 and a desired a fragility value of F2 = 1.7, the normal-
ized controller species rate Γc must be at least 12.5. In this case, the relative steady-state error is370
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approximately 11%. To achieve a robust controller design for a slow process network, we recommend
implementing the controller species using RNA or actively degraded protein parts.

When the process species degradation rate is much larger than its production rate, we obtain large
values of Γp. This corresponds to actively degraded proteins and sigma factors or to proteins with high
production rates. In this case, the fragility function approaches value one, whereas the steady-state
error needs to be bounded such that

Γc <
1

Γ2
p

(17)

to obtain a 50% relative steady-state error. To further reduce the relative steady-state error, the
controller species degradation rate must be even smaller. Here, it is more advantageous to have a very
small controller species degradation rate. We recommend an implementation that uses slowly degrading
proteins for the sequestration controller so as to reduce the magnitude of the relative steady-state error.380

Finally, we note that the process species’ production and degradation rates have a bigger impact on
the steady-state error and the fragility functions than the controller species’ production and degrada-
tion rates (Figure S3). The impact of the process species’ production and degradation rates highlights
the importance of measuring these rates before building a sequestration controller for the network.
Depending on the process network’ properties, the competition between achieving stability, robust-
ness, and small relative steady-state error can be more or less severe. For particularly severe cases, we
have provided guidelines for the design of the controller species in equations (16) and (17), along with
suggestions for the corresponding biological parts.

3 Discussion
The development of a first generation of biological controllers for bacteria and yeast marks the begin-390

ning of an era when synthetic biological systems can function robustly and perform well. In this work,
we have considered synthetic biological controllers implemented by a class of sequestration feedback
networks. Using control theoretical methods, we have proposed designs that ensure stability, robust-
ness, and good performance for these sequestration feedback network. We have offered tuning options
for the strength of the controller species’ sequestration reaction, as well as for the production and the
degradation rates of both the process and the controller species. When possible, we have suggested
biological parts for the practical implementations of these designs.

The application of control theory to synthetic biological controllers aims to ensure that they func-
tion robustly, in different host organisms, despite perturbations in their environments. Nevertheless,
almost all sequestration feedback controllers in the current synthetic biology literature have been con-400

currently built with the process networks they control [McCardell et al., 2017,Hsiao et al., 2014,Folliard,
2017,Lillacci et al., 2017,Chevalier et al., 2018]. This approach will likely limit the versatility of these
biological controllers as they will be optimal with respect to a single process network, a single host
organism, and its environment. Therefore, we believe that it is important to continue assessing the
realistic constraints imposed by building sequestration feedback controllers for fixed process networks,
as we have done in Section 2.3.3. By incorporating realistic constraints in our design of sequestra-
tion feedback controllers, we guarantee that they function robustly, across a variety of environmental
conditions and biological host organisms.

Moreover, the engineering design tools introduced in this paper are applicable to other mechanisms
for synthetic biological control, in addition to sequestration feedback. Several mechanisms for biolog-410

ical control that are currently being explored include paradoxical extracellular signaling [Hart et al.,
2014] and post-translation mechanisms such as multi-protease regulation. Other biochemical reaction
network designs that implement robust perfect adaptation through integral control have been proposed
in [Xiao and Doyle, 2018]. Using similar control theoretical tools, it is possible to develop models for
these biological controllers and to assess their properties of stability, robustness, and performance. De-
pending on the applications of interest to synthetic biology, we will benefit from multiple mechanisms
for feedback control of synthetic systems and from multiple feedback controller designs.
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S4 Supplemental Information

S4.1 The Properties Of The Sequestration Controller
In this section, we demonstrate that the sequestration controller implements integral feedback (perfect430

adaptation) when the two controller species are not subjected to degradation, provided that the closed
loop sequestration network is stable. The property of perfect adaptation results in a zero steady-state
error for the sequestration feedback network in Figure 2. We also demonstrate that when the controller
species are subjected to degradation and dilution, the sequestration controller is a lag compensator.
Moreover, we analyze the properties of the steady-state error of sequestration feedback with nonzero
controller species degradation in Section S4.3. We give criteria for the stability of sequestration feed-
back networks in [Olsman et al., 2018,Baetica, 2018].

When the controller species are not degraded or diluted, the model of their dynamics is as follows:

ż1 = µ− ηz1z2,

ż2 = θ2x2 − ηz1z2.
(S1)

We can simply subtract the two differential equations in equation (S1) to obtain that440

d

dt
(z1(t)− z2(t)) = θ2(z1(t)− z2(t)). (S2)

Assuming that the reference signal has value µ
θ2
, then we can define the error signal as e(t) =

µ
θ2
−xn(t). Thus, the controller species implement integral control since the control action z1(t)−z2(t)

integrates the error signal e(t) as follows:

z1(t)− z2(t) = θ2

∫ t

0

e(s)ds. (S3)

If the sequestration feedback network is stable, then the model of its dynamics has a steady-state.
At steady-state, the integral controller ensures that the property of perfect adaptation holds since

dz1(t)

dt
=
dz2(t)

dt
= 0 =⇒ xn =

µ

θ2
. (S4)

Perfect adaptation is a desirable property of the sequestration feedback system because it allows
for a variety of process network dynamics. We now investigate whether perfect adaptation is retained
when we include the controller species degradation and dilution in the model. By incorporating the
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degradation of the controller species in the model description in equation (S1), the controller dynamics
each gain an additional term:450

ż1 = µ− ηz1z2 − γcz1,

ż2 = θ2x2 − ηz1z2 − γcz2.
(S5)

As before, we subtract the two equations that describe the controller dynamics in equation (S5).
From this subtraction, we infer that the resulting sequestration controller is a lag compensator. The
compensator integrates the error signal weighed by an exponential of the controller degradation rate
as follows:

z1(t)− z2(t) = θ2

∫ t

0

eγc(s−t)e(s)ds. (S6)

Both the integral controller and the lag compensator act as filters for the past error signal. Intu-
itively, the integral controller integrates the error signal with uniform weight, whereas the lag com-
pensator integrates the error signal with bias towards more recent error measurements. This occurs
because the exponential of the degradation rate biases the error measurement towards recent past over
the distant past since 0 ≤ s ≤ t in equation (S6).

More importantly, the lag compensator has different properties than integral control in terms of460

the magnitude of the steady-state error. Since integral control has the property of perfect adaptation,
provided that the closed loop system in stable, then the closed loop system has zero steady-state error.
The lag compensator can also exhibit zero steady-state error for a specific controller degradation rate,
as demonstrated in Section S4.3, but otherwise results in steady-state error.

S4.2 Alternative Modeling Assumptions
In this section, we consider different modeling assumptions than the setup introduced in Figure 3.
Firstly, we assume that the process species in the sequestration feedback network degrade at different
rates. If the process species are degraded at different rates, the characteristic polynomial in [Olsman
et al., 2018] does not necessarily factor the term (s+ 1)n for n > 2 process species. Therefore, finding
an analytic approximation to the roots of the characteristic polynomial can be challenging and finding470

an analytic criterion for the stability of sequestration feedback networks may not be possible.
However, when there are only two process species as in Figure 4A, we can find an analytical

criterion for stability under strong sequestration feedback assumptions. As indicated by the simulation
in Figure 4C, the smaller of the two process species degradation rates results in instability. Although
the larger process species degradation rate dampens the oscillations (compare panels B and D), it is
not able to fully compensate for the small degradation rate of the other process species. Therefore, the
smallest process species degradation rate must be carefully tuned to ensure stability of the sequestration
feedback network. We model the effect of the two different process species degradation rates γp1 and
γp2 as follows:

ẋ1 = θ1z1 − γp1x1,

ẋ2 = k1x1 − γp2x2,

ż1 = µ− ηz1z2 − γcz1,

ż2 = θ2x2 − ηz1z2 − γcz2.

(S7)

Theorem S1 (Stability Criterion for a Sequestration Feedback Network with Two Process Species).480

We consider the sequestration feedback network in Figure 4A with the dynamics given in equation (S7).
If this sequestration network fulfills the strong feedback assumptions

θ1θ2k1

γp1γp2
� √ηµ,

θ1θ2k1

γp1γp2
� ηµ

γc
,

(S8)
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then the closed loop sequestration feedback network is stable if and only if

θ1θ2k1 ≤ (γp1 + γp2 + γc)(γp1γc + γp2γc + γp1γp2)− γp1γp2γc. (S9)

Proof. When the sequestration feedback network only has two process species, we can derive an ana-
lytical criterion for its stability. In this case, the characteristic polynomial associated to the linearized
sequestration feedback network is:

(γp1 + s)(γp2 + s)(γc + s)(η1 + η2 + γc + s) + η1θ1θ2k1 = 0, (S10)

where η1 = ηµ
γp1γp2
θ1θ2k1

and η2 = θ1θ2k1
γp1γp2

for complex roots s ∈ C. Under the strong sequestration feedback
assumptions, the characteristic polynomial simplifies to:

(γp1 + s)(γp2 + s)(γc + s) + θ1θ2k1 = 0. (S11)

For a purely complex root s = iω, we set the both the real and the imaginary parts of the polynomial
in equation (S11) to zero. Hence, it must be that490

ω2 = γp1γc + γp2γc + γp1γp2 ,

ω2 =
γp1γp2γc + θ1θ2k1

γp1 + γp2 + γc

(S12)

simultaneously. Therefore, according to Descartes’ rule of sign, the sequestration feedback network in
Figure 4A is stable under the strong feedback assumptions if and only if

θ1θ2k1 ≤ (γp1 + γp2 + γc)(γp1γc + γp2γc + γp1γp2)− γp1γp2γc. (S13)

An alternative set of modeling assumptions is to consider the reactions between the process and the
controller networks to be enzymatic instead of catalytic. We note that the catalytic reactions between
the process and the controller networks in Figure 3 can be described as:

Z1
θ1−−→ Z1 + X1,

Xn
θ2−−→ Xn + Z2.

(S14)

Alternatively, we can assume that the transformation of controller species Z1 into the process input
species X1 is catalyzed by the enzyme E1 and that the transformation of the process output species
Xn into the controller species Z2 is catalyzed by the enzyme E2. Then the dynamics of these catalytic
reactions can be modeled using the Michaelis–Menten kinetics as follows:500

E1 + Z1

a1−−⇀↽−−
d1

C1
k1−−→ E1 + X1,

E2 + Xn

a2−−⇀↽−−
d2

C2
k2−−→ E2 + Z2,

(S15)

where the rates satisfy the inequalities k1 � a1, d1 and k2 � a2, d2. We make the simplifying assump-
tions that the concentration of enzymes E1 and E2 are much smaller than the concentrations of species
Z1 and X1 [Mathews et al., 2000,Del Vecchio and Murray, 2015]. We let the Michaelis constants be

K1
m =

d1 + k1

a1
,

K2
m =

d2 + k2

a2
.

(S16)

The Michaelis constants K1
m and K2

m that correspond to biological enzymes range between 10−6

M and 10−2 M [Mathews et al., 2000], which renders them to be much larger than the concentrations
of species Z1 and Xn. Therefore, the propensity functions associated with these kinetics are linear.
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We let θ1 =
k1E

0
1

K1
m

and θ2 =
k2E

0
2

K2
m

, where E0
1 and E0

2 are the initial concentrations of enzymes E1

and E2, respectively. Using this notation, the sequestration feedback model remains unchanged from
Figure 3 due to the linearity of the first-order kinetics. However, if the simplifying assumptions that
the concentration of enzymes E1 and E2 are much smaller than the concentrations of species Z1 and510

X1 do not hold, then the sequestration feedback controller may not behave as a lag compensator, as
suggested in [Xiao and Doyle, 2018].

S4.3 The Critical Controller Species Degradation Rate
In the previous sections, we derived analytic criteria for the stability of the sequestration feedback
networks. Subsequently, we analyze their performance properties and in particular, we focus on the
magnitude of the steady-state error. We have previously stated that the closed loop system can have
zero steady-state error for no controller species degradation, as well as for a value of the controller
degradation rate, which we refer to as “critical” (Figure S1B). Assuming that the sequestration feedback
network is stable, a zero controller species degradation guarantees perfect adaptation of the closed
loop system, but can be challenging to implement. In this section, we analytically derive a value520

of the critical controller species degradation rate such that the steady-state error of a more general
stable sequestration feedback network with n process species equals zero. We also demonstrate that
the degradation rate values of zero and of the critical degradation rate are the only ones for which
the network tracks the reference with zero steady-state error. Depending on the parameters of the
sequestration feedback system, the critical value of the degradation rate may or may not be achievable.

We consider a deterministic sequestration feedback network with n process species as in Figure 2.
However, we restrict the dynamics of the n process species to be linear (the process species can be
degraded or can serve as catalysts for the creation of other process species). We restrict our analysis to
linear process species dynamics because otherwise the analytical derivation of the linearization around
steady-state is challenging. Then the model of the sequestration feedback network is given by the530

following system of equations:

dx1

dt
= θ1z1 + α1,1x1 + · · ·+ α1,nxn,

dx2

dt
= α2,1x1 + · · ·+ α2,nxn,

...
dxn
dt

= αn,1x1 + · · ·+ αn,nxn,

dz1

dt
= µ− ηz1z2 − γcz1,

dz2

dt
= θ2xn − ηz1z2 − γcz2.

(S17)

We define the following notation:

A =

 α2,1 α2,2 . . . α2,n−1

...
...

...
...

αn,1 αn,2 . . . αn,n−1

 ,

α1 = (α1,1, . . . , α1,n−1), αn = (α2,n, . . . , αn,n)T , and Γ = θ−1
1 (α1A

−1αn − α1,n).

Theorem S2 (The Critical Controller Degradation Rate). The critical controller degradation rate of
the sequestration feedback network with n process species modelled in equation (S17) is given by:

γcritical
c =

θ2

Γ
− Γηµ

θ2
. (S18)

The critical controller species degradation rate exists if and only if the closed loop system is stable
and Γ < θ2√

ηµ , where Γ = θ−1
1 (α1A

−1αn − α1,n). Otherwise, the steady-state error is nonzero for all
nonzero controller species degradation rates.
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B

Figure S1: The steady-state error as a function of the controller degradation rate. A.We introduce
a sequestration feedback network with two process species. For the numerical simulations in this section and
in Section S4.4, we consider the sequestration feedback network with only two process species X1 and X2. We
assume that process species X1 and X2 are degraded at the same rate γp and that the controller species Z1

and Z2 are degraded at the same rate γc. We restate the model in equation (S33). B. We plot the steady-
state error (blue line) as a function of the controller degradation rate, while keeping the other parameters of
the sequestration network in panel A fixed. We obtain perfect adaptation for no controller degradation (blue
square) and zero steady-state error at the critical controller degradation rate (red square). The steady-state
error is nonzero at other controller species degradation rates (green square). Zero and the critical controller
species degradation rate are the only two degradation rate values for which the steady-state error equals zero
(orange dashed line). This property holds for a more general class of sequestration feedback networks, as
discussed in Theorem S2. We derive an analytic expression for the steady-state error as a function of the
controller species degradation rate in equation (S23).
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Proof. In a sequestration feedback system with a single process species, the critical degradation rate

γcritical
c =

θ1θ2

γp
− γpηµ

θ1θ2

results in zero steady-state error. This degradation rate value can only be achieved when γp < θ1θ2√
µη .

We now consider a sequestration feedback network with n > 1 process species. Assuming that the540

closed loop system is stable, at equilibrium, equation (S17) reduces to

0 = θ1z1 + α1,1x1 + · · ·+ α1,nxn

0 = α2,1x1 + · · ·+ α2,nxn

...
0 = αn,1x1 + · · ·+ αn,nxn

µ = ηz1z2 + γcz1,

θ2xn = ηz1z2 + γcz2.

(S19)

Using the notation introduced in this section, the system of equations in (S19) is equivalent to

z1 = Γxn,

µ = ηz1z2 + γcz1,

θ2xn = ηz1z2 + γcz2.

(S20)

First, it must be the case that constant Γ > 0 and matrix A is invertible. Otherwise, the system
cannot have a positive steady-state. This is equivalent to α1A

−1αn > α1,n. The input species should
not be depleted to create the output species. The system in equation (S20) simplifies to a single
equation

x2
n(Γηθ2 + Γ2ηγc) + xn(Γγ2

c − Γµη)− γcµ = 0. (S21)

Equation (S21) always has a positive solution

xn =
(Γµη − Γγ2

c ) +
√

(Γγ2
c + Γµη)2 + 4Γγcµηθ2

2(Γηθ2 + Γ2γcη)
. (S22)

Thus, the steady-state error signal is

en =
µ

θ2
− xn =

(Γγ2
c + 2Γ2γc

ηµ
θ2

+ Γµη)−
√

(Γγ2
c + Γµη)2 + 4Γγcµηθ2

2(Γ2γcη + Γηθ2)
. (S23)

If we want the output of the dynamical system to follow the reference signal µ
θ2
, then it must be that

γcritical
c =

θ2

Γ
− Γηµ

θ2
, (S24)

which can only be achieved if and only if Γ < θ2√
ηµ .550

Theorem S3 (The Critical Controller Degradation Rate Exists only under Particular Conditions).
The critical controller degradation rate for a simplified process network (i.e. each process species Xi is
created by the previous process species Xi−1 and creates the next process species Xi+1, 2 ≤ i ≤ n− 1,
as in Figure 3) is:

γcritical
c = γp

n+1∏
i=1

Γip −
ηµ

γp
n+1∏
i=1

Γip

. (S25)
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For this sequestration feedback network, the critical controller species degradation rate exists if and
only if the process species degradation rate satisfies the inequality

γp <
n

√
θ1θ2

∏n−1
i=1 ki√
ηµ

. (S26)

Proof. The dynamics of this sequestration feedback network can be modelled as follows:

ẋ1 = θ1z1 − γpx1

ẋ2 = k1x1 − γpx2

...
ẋn = kn−1xn−1 − γpxn
ż1 = µ− ηz1z2 − γcz1

ż2 = θ2xn − ηz1z2 − γcz2.

(S27)

Therefore, the simplified matrices for the dynamics of the network are:

A =


k1 −γp 0 . . . 0
0 k2 −γp . . . 0
...

...
...

...
...

0 0 0 . . . kn−1

 , A−1 =


1
k1

γp
k1k2

. . .
γn−2
p

k1...kn−1

0 1
k2

. . .
γn−2
p

k2...kn−1

...
...

...
...

0 0 . . . 1
kn−1

 ,

the vectors α1 = (−γp, 0, . . . , 0), αn = (0, . . . , 0,−γp)T , α1,n = 0, and the expression Γ =
γn
p∏n−1

i=1 kiθ1
.560

According to Theorem S2, the critical controller degradation rate is

γcritical
c = γp

n+1∏
i=1

Γip −
ηµ

γp
n+1∏
i=1

Γip

. (S28)

The critical controller degradation rate exists only when

γp <
n

√
θ1θ2

∏n−1
i=1 ki√
ηµ

. (S29)

This condition is equivalent to equation (10) in the main text of the paper. The analytic expression
of the error function for this particular class of sequestration networks is

en =

(
γ2
c + 2γcµη

γp
n+1∏
i=1

Γi
p

+ µη

)
−

√
(γ2
c + µη)2 + 4γpγcµη

n+1∏
i=1

Γip

2ηθ2

(
γc

γp
n+1∏
i=1

Γi
p

+ 1

) . (S30)

Remark S2. We note that the strong feedback assumptions imply that the critical controller degra-
dation rate does not exist. Under the strong feedback assumptions in Table 1, the analytic expression
of the steady-state error simplifies to

en =
µ

θ2

γc

γp
n+1∏
i=1

Γip + γc

. (S31)
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Thus, the steady-state error is a monotonically increasing function of the controller species degradation
rate. We refer to the ratio between the steady-state error and the reference value as the relative error.570

Using this simplified expression, the relative steady-state error function can be bounded. For example,
if we are interested in obtaining a relative steady-state error of less than 10%, then we can design a
controller degradation rate such that

γc <
γp
9

n+1∏
i=1

Γip. (S32)

S4.4 Additional Simulation Details
S4.4.1 Scaling the sequestration feedback network model

To produce the simulations in Figures S1B and in Sections S4.2 and S4.4, we first rescale the model
of the sequestration feedback network. For simplicity, we only describe the rescaling step for a process
network with two species (Figure S1A). However, this rescaling step is applicable for a general linear
process network. The unscaled model of the sequestration feedback network is:

ẋ1 = θ1z1 − γpx1,

ẋ2 = k1x1 − γpx2,

ż1 = µ− ηz1z2 − γcz1,

ż2 = θ2x2 − ηz1z2 − γcz2.

(S33)

unscaled x1, x2, z1, z2 t θ1 θ2 γp µ η γc k1

M s s−1 s−1 s−1 M s−1 M−1 s−1 s−1 s−1

scaled x
′

1, x
′

2, z
′

1, z
′

2 t
′

θ
′

1 θ
′

2 γ
′

p µ
′

η
′

γ
′

c k
′

1

nM h h−1 h−1 h−1 nM h−1 nM−1 h−1 h−1 h−1

Table S1: The units of the biochemical species and rates in the unscaled and scaled sequestration
feedback network. Species X1, X2, Z1, and Z2 have units of molar (M) and time t has units of seconds (s).
Thus, the degradation and the production rates θ1, θ2, γp, γc, and k1 have units of s−1 since they correspond
to first order reactions. Rate µ has units of M s−1 since it corresponds to a zero order reaction. Rate η has
units of M−1 s−1 since it corresponds to a second order reaction. Following rescaling, biochemical species X

′
1,

X
′
2, Z

′
1, and Z

′
2 have units of nanomolar (nM) and time t

′
has units of hours (h). Thus, the degradation and

the production rates θ
′
1, θ

′
2, γ

′
p, γ

′
c, and k

′
1 have units of h−1 since they correspond to first order reactions.

Rate µ
′
has units of nM h−1 since it corresponds to a zero order reaction. Rate η

′
has units of nM−1 h−1 since

it corresponds to a second order reaction.

The units of the unscaled biochemical species and rates are given in Table S1. To rescale, we let580

x1 = x
′

1 · 109, x2 = x
′

2 · 109, z1 = z
′

1 · 109, z2 = z
′

2 · 109, t = t
′

3600 , θ1 = θ
′

1 · 3600, θ2 = θ
′

2 · 3600,
γp = γ

′

p · 3600, γc = γc · 3600, k1 = k
′

1 · 3600, η = η
′ · 10−9 · 3600, and µ = µ

′ · 109 · 3600. Following
rescaling, we obtain new units of the biochemical species and rates (Table S1).

Following rescaling, the model of the sequestration feedback network can be described as:

ẋ
′

1 = θ
′

1z
′

1 − γ
′

px
′

1,

ẋ
′

2 = k
′

1x
′

1 − γ
′

px
′

2,

ż
′

1 = µ
′
− η

′
z
′

1z
′

2 − γ
′

cz
′

1,

ż
′

2 = θ
′

2x
′

2 − η
′
z
′

1z
′

2 − γ
′

cz
′

2.

(S34)
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Figure S2: The sequestration feedback network with the controller species implemented with
transcriptional parts and the process species implemented with protein parts. The sequestration
feedback network simulated using the parameters: γ

′
c = 10 h−1, η

′
= 1 nM−1, γ

′
p = 1 h−1, µ

′
= 50 nM h−1,

k
′
1 = 1 h−1, θ

′
1 = 1 h−1, θ

′
2 = 10 h−1. The values of parameters γp, γc, and η are found in Figure 5 for both

the transcriptional and the protein parts. The sequestration feedback network is stable and has oscillations
that settle within 5 hours. The reference concentration is 5 nM and the steady-state error is 1.1 nM.

Following the rescaling step, we use representative values of the reaction rates in equation (S34) to
perform simulations and gain intuition about the biological implementation of sequestration feedback
networks. We compute representative values of the controller species’ and the process species’ degra-
dation rates in Figure 5 in units of h−1 by taking the inverses of the half-life values and multiplying
them by the constant log(2). The median mRNA half-life is measured as 0.5-6 min in [Bernstein et al.,
2004]. In the type I toxin-antitoxin pair in E. coli, the half-life of toxin Hok is 20 minutes [Steif and590

Meyer, 2012]. The half-life of the sigma factor protein RpoS is 30 min when the E. coli cells are in
stationary phase at 37◦C or under stress conditions. When sigma factor proteins RpoS are actively
degraded by protease ClpXP during the exponential phase, their half-life is only 2 minute [Zhou and
Gottesman, 1998]. The antitoxin CcdA is degraded in wild-type cells with a half-life of 30 min in the
absence of toxin CcdB and a half-life of 60 min when bound in a complex with toxin CcdB [De Jonge
et al., 2009]. Using these half-life measurements, we compute the degradation rate values in Figure 5.

Lastly, we give representative values of the sequestration binding on-rates in Figure 5. The rate η
′
in

the rescaled sequestration feedback model (equation (S34)) represents the on-rate of the sequestration
reaction between the two controller species. The off-rate of the sequestration reaction is much smaller
than the on-rate. To match the units in Table S1, we give the on-rates of the sequestration reactions600

in units of nM−1 h−1. From [Walton et al., 2002], we compute the representative on-rate values of
mRNA binding to antisense RNA to be between 0.005 nM−1 h−1 and 1.62 nM−1 h−1. We compute
representative on-rate values of sigma factors binding anti-sigma factors between 18 nM−1 h−1 and
72 nM−1 h−1, depending on the temperature and the presence of zinc from [Sharma and Chatterji,
2008,Rajasekar et al., 2016]. To the best of our knowledge, the on-rate of the toxin CcdB binding the
antitoxin CcdA has not been accurately determined [Kampranis et al., 1999].

S4.4.2 Details of numerical experiments

For the two-species process network in Figure S1A, both quantities θ1θ2k1γ2
p

and ηµ have units of h−1. For
a transcriptional implementation of the controller species and a protein implementation of the process
species, this network satisfies the assumption of strong sequestration feedback for the parameter values610

in Figure S2.
For the design example in Section 2.3.2, we plot the fragility F2 and relative steady-state error

ε2 as functions of the normalized process and controller species degradation rates (Γp and Γc) for a
more extensive range of parameters than in Figure 6. The more extensive range of parameter values
enables us to observe that the contour plots are asymmetric, demonstrating more sensitivity towards
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Figure S3: Both fragility and relative steady-state error are more sensitive to the parameters
of the process network than to the parameters of the controller network. We plot the fragility F2

and the relative steady-state error ε2 as functions of the normalized process and controller species degradation
rates (Γp and Γc) for a more extensive range of parameters than in Figure 6. As the process and the controller
species degradation rates increase, the fragility index approaches value three and the relative steady-state error
approaches value one. Since the contour functions are asymmetric, we infer that the fragility and relative
steady-state functions are more sensitive to perturbations in the process species’ production and degradation
rates than in the controller species’ production and degradation rates. This highlights the importance of
measuring the process network’s production and degradation rates when designing its sequestration controller.
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the process species rate Γp. Hence, the process network’s parameters have more impact on fragility
and steady-state error than the controller network’s parameters. Thus, it is paramount to obtain
measurements of the process network’s parameters for a successful design of sequestration control.
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