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Summary

 Cell identity is governed by gene expression, regulated by Transcription Factor (TF) binding at cis-

regulatory modules. We developed the NetNC software to decode the relationship between TF 

binding and the regulation of cognate target genes in cell decision-making; demonstrated on nine 

datasets for the Snail and Twist TFs, and also modENCODE ‘HOT’ regions. Results illuminated 

conserved molecular networks controlling development and disease, with implications for precision 

medicine. Predicted ‘neutral’ TF binding accounted for the majority (50% to ≥80%) of candidate 

target genes from statistically significant peaks and HOT regions had high functional coherence. 

Expression of orthologous functional TF targets discriminated breast cancer molecular subtypes and

predicted novel tumour biology. We identified new gene functions and network modules including 

crosstalk with notch signalling and regulation of chromatin organisation, evidencing networks that 

reshape Waddington’s landscape during epithelial remodelling. Predicted invasion roles were 

validated using a tractable cell model, supporting our computational approach.
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INTRODUCTION

Transcriptional regulatory factors (TFs) govern gene expression, which is a crucial determinant of 

phenotype. Mapping transcriptional regulatory networks is an attractive approach to understand the 

molecular mechanisms underpinning both normal biology and disease (Rhee et al., 2014; Shlyueva 

et al., 2014; Stampfel et al., 2015). TF action is controlled in multiple ways; including protein-

protein interactions, DNA sequence affinity, 3D chromatin conformation, post-translational 

modifications and the processes required for TF delivery to the nucleus (Khoueiry et al., 2017; Rhee

et al., 2014; Zabidi and Stark, 2016). A complex interplay of mechanisms influences TF specificity 

across different biological contexts and genome-scale assignment of TFs to individual genes is 

challenging (Khoueiry et al., 2017; Shlyueva et al., 2014; Wilczynski and Furlong, 2010).

TF binding sites may be determined using chromatin immunoprecipitation followed by 

sequencing (ChIP-seq) or microarray (ChIP-chip). These and related methods (e.g. ChIP-exo, 

DamID) have revealed a substantial proportion of statistically significant ‘neutral’ TF binding, that 

has apparently no effect on transcription from assigned target genes (Biggin, 2011; Li et al., 2008; 

Ozdemir et al., 2011; Shlyueva et al., 2014). Genomic regions that bind large numbers of TFs are 

termed Highly Occupied Target (HOT) regions (Roy et al., 2010), are enriched for disease SNPs 

and can function as developmental enhancers (Kvon et al., 2012; Li et al., 2015). However, a 

considerable proportion of individual TF binding events at HOT regions may have little effect on 

gene expression and association with chromatin accessibility suggests non-canonical regulatory 

function such as sequestration of TFs or in 3D genome organisation (Montavon et al., 2011; 

Moorman et al., 2006) as well as possible technical artefacts (Teytelman et al., 2013). Apparent 

neutral binding events may also have subtle functions; for example in combinatorial context-

specific regulation or in buffering noise (Cannavò et al., 2016; Stampfel et al., 2015). Identification 

of bona fide, functional TF target genes remains a major obstacle in understanding the regulatory 
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networks that control cell behaviour (Biggin, 2011; Brown and Celniker, 2015; Keung et al., 2014; 

Khoueiry et al., 2017; Stampfel et al., 2015).

Genes regulated by an individual TF typically have overlapping expression patterns and 

coherent biological function (Igual et al., 1996; Karczewski et al., 2014; MacArthur et al., 2009). 

Indeed, gene regulatory networks are organised in a hierarchical, modular structure and TFs 

frequently act upon multiple nodes of a given module (Hartwell et al., 1999; Hooper et al., 2007). 

Therefore, we hypothesised that functional TF targets have network properties that are different to 

neutrally bound sites. Network analysis can reveal biologically meaningful gene modules, including

cross-talk between canonical pathways (Ideker et al., 2002; Jaeger et al., 2017; Vidal et al., 2011) 

and so may enable elimination of neutrally bound candidate TF targets derived from statistically 

significant ChIP-seq or ChIP-chip peaks. Network approaches afford significant advantages for 

handling biological complexity, enable genome-scale analysis of gene function (Greene et al., 2015;

Hu et al., 2016), and are not restricted to predefined gene groupings used by standard functional 

annotation tools (e.g. GSEA, DAVID) (Huang et al., 2009; Ideker et al., 2002; Subramanian et al., 

2005). Clustering is frequently applied to define biological modules (Enright et al., 2002; Wang et 

al., 2011). However, pre-defined modules may miss condition-specific features; for example, gene 

products may be absent in the biological condition(s) analysed but present in the base network. 

Hence, clusters derived from a whole-genome network may not accurately capture biological 

interactions that occur in a particular context. Context-specific interactions are common, for 

example the varied repertoire of biophysical interactions in different cell types or between cell 

states, such as in the stages of the cell cycle (Pawson and Nash, 2003). We developed a functional 

TF target discovery algorithm (NetNC) with capability for context-specific module discovery. The 

Snail and Twist TFs have important roles in Epithelial to Mesenchymal Transition (EMT), a multi-

staged morphogenetic programme fundamental for normal embryonic development that contributes 

to tumour progression and fibrosis (Giampieri et al., 2009; Lim and Thiery, 2012; Nieto et al., 2016;
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Yu et al., 2013). We analysed Snail and Twist binding datasets, integrating with genetic screens and 

breast cancer transcriptomes to gain insight into epithelial remodelling in development and disease.

RESULTS AND DISCUSSION

A comprehensive D. melanogaster functional gene network (DroFN)

We developed a systems-wide map of D. melanogaster signalling and metabolism (DroFN; 11,432 

nodes, 787,825 edges). DroFN performed well on time-separated blind test data (TEST-NET) 

compared with DroID (Yu et al., 2008) and GeneMania (Warde-Farley et al., 2010) (Table S1, 

Figure S1). The overlap between DroFN and the Drosophila proteome interaction map (DPiM 

(Guruharsha et al., 2011)) was highly significant (Fisher Exact Test p<10-308). DroFN and DPiM had

999 genes in common and 37.8% (2175/5747) of DroFN edges for these genes were also found in 

DPiM. The DroFN False Positive Rate (0.047) was close to the prior for functional interaction 

estimated from KEGG (0.044); thus, some DroFN false positives may represent bona fide 

interactions not annotated in KEGG. Overall, DroFN provides a useful genome-scale map of 

pathway comembership in D. melanogaster.

Prediction of functional transcription factor binding

We developed the NetNC algorithm for genome-scale prediction of functional TF target genes 

(Figure 1). NetNC builds upon observations that TFs coordinately regulate multiple functionally 

related targets (Igual et al., 1996; Karczewski et al., 2014; MacArthur et al., 2009) and was 

calibrated for discovery of biologically coherent genes in noisy data. An edge-centric ‘Functional 

Target Identification’ (FTI) mode seeks to distinguish all biologically coherent gene pairs from 

functionally unrelated targets. The node-centric ‘Functional Binding Target’ (FBT) mode analyses 

degree-normalised Node Functional Coherence Scores (NFCS). Gold-standard data for NetNC 

development and validation took KEGG pathways to represent biologically coherent relationships, 
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Figure 1. Overview of the NetNC algorithm. NetNC input data may be candidate TF target genes and a functional 

gene network (top, left). However, NetNC may be applied to any gene list and reference network. Hypergeometric 

Mutual Clustering (HMC) p-values are calculated for candidate TF target genes (top, middle); the node numbers and 

colours in the HMC graph correspond to those in the contingency table. HMC p-values are then employed in either i) a 

node-centric analysis mode (NetNC-FBT, right top) or ii) an edge-centric mode (NetNC-FTI) using global False 

Discovery Rate (pFDR, middle) followed by iterative minimum cut (bottom). NetNC can estimate local FDR (lcFDR) 

to predict the proportion of neutrally bound candidate target genes (left). NetNC can produce pathway-like clusters and 

also biologically coherent node lists for which edges may be taken using a standard FDR or Family Wise Error Rate 

(FWER) threshold on the HMC p-values (right).
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combined with ‘Synthetic Neutral Target Genes’ (SNTGs). NetNC was robust to variation in input 

dataset size and %SNTGs, outperforming HC-PIN (Wang et al., 2011) and MCL (Enright et al., 

2002) (Figure 2, Table S2). In general, NetNC was more stringent, with lower False Positive Rate 

(FPR) and higher Matthews Correlation Coefficient (MCC) than HC-PIN. At the highest %SNTG, 

MCC values for NetNC-FTI were around 50% to 67% higher than those for HC-PIN and NetNC-

FBT typically had lowest FPR. NetNC’s performance advantages were most prominent on data with

≥50% SNTGs (Figure 2) and all nine TF_ALL datasets were predicted to contain ≥50% neutrally 

bound targets (Figure 3). Given the performance advantage at ≥50% STNGs, NetNC appears the 

method of choice for analysis of genome-scale TF occupancy data. However, NetNC may be 

applied to multiple different tasks, including: identification of differentially expressed pathways and

macromolecular complexes from functional genomics data; illuminating common biology among 

CRISPR screen hits in order to inform prioritisation of candidates for follow-up work (Shalem et 

al., 2014); and discovery of functional coherence in chromosome conformation capture data (4-C, 

5-C), for example in enhancer regulatory relationships (Dostie et al., 2006; Simonis et al., 2006).

NetNC identifies coherent genes according to the functional gene network (FGN) structure. 

Statistical evaluation of network coherence, including FDR estimation, is available within NetNC 

for numerical thresholding. Therefore, NetNC is generally applicable to high-dimensional data 

including analysis of single-subject datasets, which is an important emerging area for precision 

medicine (Vitali et al., 2017). Application of statistical and graph theoretic methods for quantitative 

evaluation of relationships between genes (nodes) in NetNC offers an alternative to the classical 

emphasis on individual genes in studying the relationship between genotype and phenotype. Gold 

standard datasets and DroFN are available from the Biostudies database, NetNC is available from 

https://github.com/IanOverton/NetNC.git.
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Figure 2. Evaluation of NetNC and HC-PIN on blind test data. Performance values reflect discrimination of KEGG 

pathway nodes from Synthetic Neutral Target Genes (STNGs), shown for NetNC-FTI (orange), NetNC-FBT (red) and 

HC-PIN (green). False Positive Rate (FPR, top row) and Matthews Correlation Coefficient (MCC, bottom row) values 

are given. Data shown represents analysis of TEST-CL_ALL, which included subsets of three to eight pathways, shown 

in columns, and sixteen %STNG values were analysed (5% to 80%, x-axis). NetNC performed best on the data 

examined with typically lower FPR and higher MCC values. Error bars reflect 95% confidence intervals calculated 

from quantiles of SNTG resamples. Also see Table S2.

Estimating neutral binding for EMT transcription factors and Highly Occupied Target

(HOT) regions

We predicted functional target genes for the Snail and Twist TFs for developmental stages around 

gastrulation in D. melanogaster; analysing Chromatin ImmunoPrecipitation (ChIP) microarray 

(ChIP-chip) or sequencing (ChIP-seq) data for overlapping time periods in early embryogenesis 

produced by four different laboratories and also modENCODE Highly Occupied Target (HOT) 

regions (MacArthur et al., 2009; Ozdemir et al., 2011; Roy et al., 2010; Sandmann et al., 2007; 

Zeitlinger et al., 2007). Nine datasets were studied (TF_ALL, Table 1; please see Methods for 

details). NetNC-lcFDR predicted neutral binding proportion (PNBP) across TF_ALL ranged from 

50% to ≥80% (Figure 3A, Table 1). Reassuringly, the most stringent peak calling approach (twi_1-
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3h_hiConf (Ozdemir et al., 2011) had the lowest (NetNC-lcFDR) or second lowest (NetNC-FTI) 

PNBP. Despite having lowest overall PNBP, twi_1-3h_hiConf also had the smallest proportion of 

genes passing pFDR<0.05 (Figure 3D). Targets bound during two consecutive developmental time 

periods (twi_2-6h_intersect (Sandmann et al., 2007)) also ranked highly, and so did HOT regions 

despite depletion for known TF motifs (Boyle et al., 2014; Chen et al., 2014; Kvon et al., 2012) 

(Figure 3A, Table 1). Indeed, twi_2-6h_intersect had significantly greater PNBP (binomial 

p<4.0x10-15) than datasets from the same study that represented a single time period ( twi_2-

4h_intersect, twi_4-6h_intersect) (Sandmann et al., 2007) (Figure 3). Therefore, predicted 

functional binding was enriched for regions occupied at >1 time period or by multiple TFs and 

results supported the emerging picture of widespread combinatorial control involving TF-TF 

interactions, cooperativity and TF redundancy (Jolma et al., 2015; Khoueiry et al., 2017; Long et 

al., 2016; Spitz and Furlong, 2012; Stampfel et al., 2015). 

PNBP was similar for sites derived from either the union or intersection of two Twist 

antibodies, although the NetNC-FTI method found a higher number of functional targets for the 

intersection of antibodies (30.5% (116/334) vs 23% (424/1848)). Hits identified by multiple 

antibodies may be technically more robust due to reduced off-target binding (Sandmann et al., 

2007). However, taking the union of candidate binding sites could eliminate false negatives arising 

from epitope steric occlusion due to protein interactions. Similar PNBP for either the intersection or

the union of Twist antibodies suggests that, despite expected higher technical specificity, the 

intersection of candidate targets may not enrich for functional binding sites at the 1% peak-calling 

FDR threshold applied in (MacArthur et al., 2009; Sandmann et al., 2007). Fewer false negatives 

implies recovery of numerically more functional TF targets, likely producing denser clusters in 

DroFN, which could facilitate functional target detection by NetNC. Indeed, datasets representing 

the union of two antibodies ranked highly in terms of both the total number and proportion of genes
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Dataset Predicted functional targets

Name Developmental time period(s) Candidate target genes* NetNC-FTI NetNC-lcFDR

twi_1-3h_hiConf 1-3h 664 202 (30%) 45-50%

twi_2-6h_intersect 2-4h and 4-6h 615 241 (39%) 40-45%

twi_2-4h_intersect 2-4h only (not 4-6h) 801 182 (23%) 25-30%

twi_4-6h_intersect 4-6h only (not 2-4h) 818 126 (15%) 25-30%

HOT 0-12h+ 677 174 (26%) 35-40%

twi_2-3h_union 2-3h 1848 424 (23%) 25-30%

sna_2-3h_union 2-3h 1158 226 (20%) 25%

twi_2-4h_Toll10b 2-4h 1238 279 (23%) 30-35%

sna_2-4h_Toll10b 2-4h 1488 211 (14%) ≤20%

*number of candidate targets that mapped to DroFN nodes.    +multiple time periods and 41 different TFs.

Table 1. Predicted Functional binding for Snail, Twist and HOT candidate target genes. Results for NetNC are 

given based on 'Functional Target Identification' (NetNC-FTI) and mean local FDR (NetNC-lcFDR) calibrated against 

datasets with a known proportion of resampled Synthetic Neutral Target Genes (SNTG) described in Methods section 

4.2.3. The above datasets correspond to the following developmental stages: 2-4h stages 4-9 (except ‘2-4h_intersect 

datasets which were stages 5-7 (Sandmann et al., 2007)); 2-3h stages 4-6; 1-3h stages 2-6; 4-6h stages 8-9 (Sandmann et

al., 2007); 0-12h stages 1-15; gastrulation occurs at stage 6 (Campos-Ortega and Hartenstein, 1997). Also see Figure S2.
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Figure 3. Neutral transcription factor binding and false discovery rate (FDR) profiles.

Panel A: Estimation of total neutral binding. Black circles show NetNC mean lcFDR values for the TEST-CL_8PW 

data, ranging from 5% to 80% SNTGs; error bars represent 95% CI calculated from quantiles of the SNTG resamples. 

Coloured horizontal lines show mean NetNC-lcFDR values for the TF_ALL datasets. Comparison of the known TEST-

CL_8PW %SNTG values with estimated total neutral binding values from mean NetNC-lcFDR showed systematic 

overestimation of neutral binding. Cross-referencing mean NetNC-lcFDR values for TF_ALL with those for TEST-

CL_8PW gave estimates of neutral binding between 50% and ≥80% (see panel key). 

Panels B, C and D. Line type and colour indicates dataset identity (see key). Candidate target gene index values were 

normalised from zero to one in order to enable comparison across the TF_All datasets.
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 recovered at lcFDR<0.05 or pFDR<0.05 (Figure 3). Even datasets with high PNBP had candidate 

target genes that passed stringent NetNC FDR thresholds; for example, sna_2-3h_union, twi_2-

3h_union respectively had the highest and second-highest proportion of candidate targets at 

lcFDR<0.05 (Figure 3B). We found no evidence for benefit in using RNA polymerase binding data 

to guide allocation of peaks to candidate target genes (datasets sna_2-3h_union, twi_2-3h_union). 

The twi_2-4h_Toll10b, sna_2-4h_Toll10b datasets had a relatively low peak threshold (two-fold 

enrichment), which may contribute to the high PNBP for sna_2-4h_Toll10b. We note that PNBP 

values might systematically overestimate neutral binding because some functional targets could be 

missed; for example due to errors in assigning enhancer binding to target genes and in bona fide 

regulation of genes that have few DroFN edges with other candidate targets. Additionally, 

calibration of lcFDR values against KEGG synthetic data might influence neutral binding estimates,

due to potential differences in network properties between TF targets and KEGG pathways. 

Reasurringly, NetNC-lcFDR and NetNC-FTI neutral binding estimates showed good agreement 

(Table 1, Figure S2).

ChIP peak intensity putatively correlates with functional binding, although some weak 

binding sites are functional (Biggin, 2011; Chen et al., 2013). NetNC NFCS values and ChIP peak 

enrichment scores were significantly correlated in 6/8 datasets (q<0.05, HOT regions not analysed). 

Datasets with no significant correlation (twi_1-3h_hiConf, twi_2-6h_intersect) derived from 

protocols that enrich for functional targets and had lowest PNBP values (Figure 3A). Indeed, the 

median peak score for twi_2-6h_intersect was significantly higher than datasets taken from a single 

time period in same study (twi_2-4h_intersect, q<5.0x10-56; twi_4-6h_intersect, q<4.8x10-58). 

Predicted targets were enriched for human orthologues, for example 72% (453/628) of twi_2-

3h_union NetNC-FBT functional targets had human orthology, significantly higher than the full 

twi_2-3h_union dataset (50%, 616/1220; p<3x10-28 binomial test). Enrichment for evolutionary 
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conservation in Snail and Twist functional targets aligns with their regulation of fundamental 

developmental processes.

Genome-scale functional transcription factor target networks

NetNC results offer a global representation of the mechanisms by which Snail and Twist exert 

tissue-specific regulation in early D. melanogaster embryogenesis (Figure 4, Figure S3, 

Supplemental File 1). Networks were annotated using GO and FlyBase (Ashburner et al., 2000; 

Gramates et al., 2017; Huang et al., 2009; Maere et al., 2005), revealing eleven biological groupings

common to ≥4/9 TF_ALL datasets (Table S3). NetNC results were robust to subsampled input and, 

as expected, higher variance was found at lower subsampling rates (Table S4).

NetNC analysis found Snail and Twist regulation of multiple core cell processes that govern 

the global composition of the transcriptome and proteome (Figure 4, Figure S3). These processes 

included transcription, chromatin organisation, RNA splicing, translation and protein turnover. A 

‘Developmental Regulation Cluster’ (DRC) was identified in every TF_ALL dataset and contained 

members of multiple key conserved morphogenetic pathways, including notch, wnt and fibroblast 

growth factor (FGF). Notch signalling modifiers from public data (Guruharsha et al., 2012) 

overlapped significantly with NetNC-FTI results for each TF_ALL dataset (q <0.05), including the 

DRC, chromatin organisation and mediator complex clusters (Figure 4, Figure S3). Notch was an 

important control node across TF_ALL, with highest betweenness centrality in the DRC for three 

datasets and ranked among the top ten DRC genes for 8/9 datasets. Activation of Notch can result in

diverse, context-specific transcriptional outputs and the mechanisms regulating this pleiotropy are 

not well understood (Bray, 2016; Guruharsha et al., 2012; Nowell and Radtke, 2017; Ntziachristos 

et al., 2014). Our results provided functional context for many Notch modifiers and proposed 

signalling crosstalk mechanisms in cell fate decisions driven by Snail and Twist, where regulation 

of modifiers may control the consequences of Notch activation. Crosstalk between Notch and twist
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 Figure 4. NetNC-FTI functional target networks for Snail and Twist. The key (bottom right) indicates annotations 

for human orthology (bold node border) and Notch screen hits (triangular nodes). Orthologues assigned basal-like (BL) 

or normal-like centroids (NL) are shown in red, green respectively; otherwise, node colour indicates differential 

expression NL (blue) vs BL (orange) subtypes (q<0.05) or no annotation (grey). Also see Figure S3, Tables S3 to S6 and

Supplemental File 1. Panel A: twi_2-3h_union. Predicted functional targets cover several areas of fundamental 

biochemistry including splicing, DNA replication, energy metabolism, translation and chromatin organisation. 

Regulation of multiple conserved processes by Twist is consistent with the extensive cell changes required during 

mesoderm development. Clusters annotated predominantly to either NL or BL subtypes include mitochondrial 

translation (BL) and the proteasome (NL). These results predict novel Twist functions, for example in regulation of 

mushroom body neuroblast proliferation factors.
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Panel B: sna_2-4h_Toll10b. Multiple clusters of transcription factors were identified, aligning with Snail’s role as a 

master transcriptional regulator. Orthologues in the clusters ‘RNA degradation, transcriptional regulation’; ‘axis 

specification’ and ‘phosphatases’ were annotated exclusively to the basal-like subtype. Panel C: twi_2-6h_intersect. 

Most predicted functional targets belonged to the ‘developmental regulation’ cluster; dominance of regulatory factors 

might arise from the criterion for continuous binding across two developmental time windows. The developmental 

regulation cluster contained mrr, the orthologue of IRX4, which was upregulated in BL tumours.

or snail was previously shown in multiple systems, for example in adult myogenic progenitors 

(Bernard et al., 2010) and hypoxia-induced EMT (Sahlgren et al., 2008). Consistent with previous 

studies (Guruharsha et al., 2012; Ntziachristos et al., 2014), our results predict targeting of Notch 

transcriptional regulators, trafficking proteins, post-translational modifiers, receptor recycling and 

regulation of pathways that may attenuate or modify Notch signalling. Clusters where multiple 

modifiers were identified may represent cell meso-scale units important for Notch in the context of 

mesoderm development and EMT. For example, the mediator complex and transcription initiation 

subcluster for twi_2-3h_union (Figure 4) had thirteen nodes, of which five were Notch modifiers 

including orthologues of MED7, MED8, MED31. Wingless also frequently had high betweenness, 

ranking within the top ten DRC genes in six TF_ALL datasets and was twice top-ranked. Therefore 

Notch and wingless were key control points regulated by Snail, Twist in the mesoderm specification

network. Thirteen DRC genes were present in ≥7 TF_ALL datasets (DRC-13, Table S5), and had 

established functions in the development of mesodermal derivatives such as muscle, the nervous 

system and heart (Baylies and Bate, 1996; Bernard et al., 2010; Bray, 2016; Chen et al., 1996; Lo et 

al., 2002; Trujillo et al., 2016; Xie et al., 2016). Supporting NetNC-FTI predictions, in situ 

hybridisation for DRC-13 indicated earliest expression in (presumptive) mesoderm at: stages 4-6 

(wg, en, twi, N, htl, how), stages 7-8 (rib, pyd, mbc, abd-A) and stages 9-10 (pnt) (BDGP; 

Hammonds et al., 2013; Hartley et al., 1987; Tomancak et al., 2002). The remaining two DRC-13 

genes had no evidence for mesodermal expression (fkh) or no data available (jar). However, fkh is 
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essential for caudal visceral mesoderm development (Kusch and Reuter, 1999) and jar is expressed 

in midgut mesoderm (Millo and Bownes, 2007).

Chromatin organisation clusters included several polycomb-group (PcG) and trithorax-group

(TrxG) genes. Polycomb Repressive Complex 1 (PRC1) genes ph-d, psc (Shao et al., 1999) and 

su(var)3-9 (Schotta et al., 2002) were identified most frequently in TF_ALL (Table S6). Further 

PcG/TrxG-related functional targets were: ph-p (Shao et al., 1999); corto (Lopez et al., 2001); the 

TrxG-related gene lolal (Mishra et al., 2003); taranis (Schuster and Smith-Bolton, 2015); and TrxG 

genes trithorax, moira (Crosby et al., 1999; Tie et al., 2014). The gene silencing factor su(var)205 

was also found in four TF_ALL datasets (Fanti et al., 1998). Therefore, NetNC predicted Snail and 

Twist regulation of: PRC1 core components and other gene silencing factors; TrxG genes; modifiers

of PcG, TrxG activity. PcG genes are crucial oncofetal regulators and the focus of significant cancer

drug development efforts (Koppens and Lohuizen, 2016; Sparmann and Lohuizen, 2006). Results 

align with previous reports that gene silencing in EMT involves PcG (Herranz et al., 2008; Koppens

and Lohuizen, 2016), Snai1 recruitment of Polycomb Repressive Complex 2 members (Herranz et 

al., 2008), and support a model where EMT TFs control the expression of their own coregulators.

Six TF_ALL datasets had brain development clusters. Snail regulation of neural genes is 

consistent with its repression of ectodermal (neural) genes in the prospective mesoderm (Gilmour et

al., 2017; Leptin, 1991; Wieschaus and Nüsslein-Volhard, 2016). Additionally, Snail is important for

neurogenesis in fly and mammals (Ashraf and Ip, 2001; Zander et al., 2014). Therefore, binding to 

neural functional modules might reflect potentiation for rapid activation in combination with other 

transcription factors within neural developmental trajectories (Nevil et al., 2017; Sandmann et al., 

2007). NetNC results predict novel Twist functions, for example in activation or repression of 

mushroom body neuroblast proliferation factors retinal homeobox, slender lobes, and taranis. The 

mushroom body is a prominent structure in the fly brain, important for olfactory learning and 

memory (Caron et al., 2013). Twist is typically a transcriptional activator (Gilmour et al., 2017) 
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although may contribute to Snail’s repressive activity (Lin et al., 2015). Indeed, Twist-related 

protein 1 repressed Cadherin-1 in breast cancers (Vesuna et al., 2008)

Breast cancer subtype is characterised by differential expression of orthologous 

Snail and Twist functional targets

Integration of NetNC predictions, Notch screens and breast cancer transcriptomes enabled analysis 

of conserved molecular networks that orchestrate epithelial remodelling in development and 

cancers. NetNC-FTI Snail and Twist targets included known cancer genes and also predicted novel 

drivers (Figure 4, Figure S3, Tables S3, S5, S6). The fly genome is relatively tractable for network 

studies, while data availability (e.g. ChIP-chip, ChIP-seq, genetic screens) is enhanced by both 

considerable community resources and the relative ease of experimental manipulation (Mohr et al., 

2014). Breast cancer intrinsic molecular subtypes with distinct clinical trajectories have been 

extensively validated and complement clinico-pathological parameters (Cejalvo et al., 2017; Sørlie 

et al., 2003). These subtypes are known as luminal-A, luminal-B, HER2-overexpressing, normal-

like and basal-like. While more recent studies have classified more subtypes, for example 

identifying ten groups (Curtis et al., 2012), the five subtypes employed in our analysis had been 

widely used, extensively validated, exhibited clear differences in prognosis, overlapped with 

subgroups defined using standard clinical markers (ESR1, HER2), and aligned with distinct 

treatment pathways (Cejalvo et al., 2017; Sørlie et al., 2003). NetNC-FTI networks for all nine 

TF_ALL datasets overlapped with known cancer pathways, including significant enrichment for 

Notch modifiers (q<0.05). Aberrant activation of Notch orthologues in breast cancers had been 

demonstrated, and linked with EMT-like signalling, particularly for basal-like and claudin-low 

subtypes (Barnawi et al., 2016; Ingthorsson et al., 2016; Stylianou et al., 2006). We hypothesised 

that orthologous genes from Snail and Twist functional targets would stratify breast cancers into 

clinically meaningful groups.
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Unsupervised clustering with predicted functional targets recovers breast cancer 

intrinsic subtypes

Fifty-seven human orthologues (ORTHO-57) were NetNC-FTI functional targets in ≥4 TF_ALL 

datasets and represented within integrated gene expression microarray data for 2999 breast tumours 

(BrC_2999) (Moleirinho et al., 2013). Unsupervised clustering using ORTHO-57 stratified 

BrC_2999 by intrinsic molecular subtype (Figure 5). Clustering with NetNC results for individual 

Twist and Snail datasets also recovered the intrinsic breast cancer subtypes (Figure S4). Heatmap 

features were annotated according to the dendrogram structure and gene expression intensity 

(Figure 5). The datasets sna_2-4h_Toll10b, twi_2-4h_Toll10b represent embryos formed entirely from 

mesodermal lineages (Zeitlinger et al., 2007) and, together, had significantly greater proportion of 

basal-like breast cancer genes than the combined sna_2-3h_union, twi_2-3h_union datasets 

(p<8.0x10-4); consistent with EMT characteristics of basal-like breast cancers (Sarrió et al., 2008). 

Basal-like tumours were characterised by EN1 and NOTCH1, aligning with previous findings 

(Barnawi et al., 2016; Beltran et al., 2014; Stylianou et al., 2006). Notch signalling modulation is a 

promising area for cancer therapy (Ntziachristos et al., 2014) and orthologues of Notch modifiers 

identified in our analysis provide a pool of candidates that could potentially inform development of 

companion diagnostics or combination therapies for agents targeting the notch pathway in basal-like

breast cancers. Elevated ETV6 expression was also a feature of basal-like cancers, where copy 

number amplifications and recurrent gene fusions were previously reported (Adélaïde et al., 2007; 

Letessier et al., 2005). The Luminal A subtype (feature_LumA) had similarities with luminal B 

(feature_LumB2 , ERBB3, MYO6) and normal-like (DOCK1, ERBB3, MYO6) tumours. High 

BMPR1B expression was a defining feature of the luminal A subtype, in agreement with oncogenic 

BMP signalling in luminal epithelia (Chapellier et al., 2015). BMP2 may be pleiotropic, promoting 

EMT characteristics in some contexts (Ma et al., 2005; Ren and Dijke, 2017). BMP2 expression 

was typically high in basal-like tumours and low in luminal cancers, aligning with BMP2 
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Figure 5. Predicted functional transcription factor targets capture human breast cancer biology. The heatmap 

shows results of unsupervised clustering with gene expression data for 2999 primary breast tumours and 57 orthologues 

of NetNC-FTI functional targets that were identified in at least four of nine TF_ALL datasets (ORTHO-57). Expression 

values were log2 transformed and mean-centred to give relative values across tumours (red=high, white=mean, 

blue=low). Intrinsic molecular subtype for each tumour is shown by the mosaic above the heatmap and below the 

dendogram, from left to right : luminal A (blue), basal-like (red), HER2-overexpressing (purple), luminal B (light blue) 

and normal-like (green). Source data identifiers are given to the right of the subtype mosaic. Features annotated onto the

heatmap as black dashed lines identified genes upregulated in one or more intrinsic subtype; these features were termed 

‘Bas’ (basal-like), ‘NL’(normal-like), ‘ERneg’ (basal-like and HER2-overexpressing), ‘LumB1’(luminal B), 

‘LumB2’(luminal B), ‘LumA’ (luminal A) and ‘LoExp’ (low expression). The table to the right of the heatmap indicates 

inclusion (grey) or absence (white) of genes in NetNC-FTI results across the TF_ALL datasets. The column ‘#D’ gives 

the number of TF_ALL datasets where the gene was returned by NetNC-FTI and ‘%P’ column details the percentage of 

present calls for gene expression across the 2999 tumours. The LoExp feature corresponded overwhelmingly to genes 

with low %P values and to samples from a single dataset (Popovici et al., 2010). Some genes were annotated to more 
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than one feature and reciprocal patterns of gene expression were found. For example, BMPR1B, ERBB3 and MYO6 

were strongly upregulated in feature LumA but downregulated in basal-like and HER2-overexpressing cancers. 

Unexpectedly, feature NL (normal-like) had high expression of canonical EMT drivers, including SNAI2, TWIST and 

QKI. Some of the EMT genes in feature NL were also highly expressed in many basal-like tumours, while genes in 

feature Bas (NOTCH, SERTAD2) were upregulated in normal-like tumours. Also see Figure S4.

upregulation as a feature of the EMT programme in basal-like cancers. Several genes were highly 

expressed in both feature_LumB1 and ESR1 negative subtypes (feature_ERneg), including ECT2, 

SNRPD1, SRSF2, CBX3; our data suggest that these genes might contribute to the worse survival 

outcomes for luminal B relative to luminal A cancers. (Sørlie et al., 2001, 2003). SNRPD1 and 

SRSF2 function in splicing (Bermingham et al., 1995) which was linked to survival of multiple 

basal-like breast cancer cell lines (Chan et al., 2017). CBX3 and ECT2 were correlated with poor 

prognosis (Liang et al., 2017; Wang et al., 2018). These genes typically had low expression in 

Luminal A and normal-like subtypes. Feature_LoExp represents genes with low detection rates and 

tumours populating feature_LoExp are a mixture of subtypes, largely from a single study (Popovici 

et al., 2010). Key EMT genes (SNAI2, TWIST1, QKI) were assigned to the NL centroid and had 

highest relative expression in normal-like tumours (feature_NL, Figure 5). Feature_NL also 

included homeobox transcription factors (HOXA9, MEIS2) and a secreted cell migration guidance 

gene (SLIT2). Some genes had high expression in both normal-like and basal-like cancers, including

QKI, which regulates circRNA formation in EMT (Conn et al., 2015), and the FZD1 wnt/β-catenin 

receptor. Moreover, genes in feature_Bas and feature_NL clustered together, reflecting expression 

similarities between normal-like and basal-like subtypes. EMT may confer stem-like cell properties 

(DiMeo et al., 2009; Mani et al., 2008; Schmidt et al., 2015) and our results were consistent with 

dedifferentiation or arrested differentiation due to activation of an EMT-like programme in NL 

cancers. Previous work found stem cell markers in normal-like cancers (Sieuwerts et al., 2009; 

Sørlie et al., 2001) and SNAI2 was critical for maintenance of mammary stem cells and linked with 
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a stem-like signature in breast cancers (Guo et al., 2012; Lawson et al., 2015). Cell-compositional 

effects, associated with high stromal content in NL tumours (Prat and Perou, 2011), could also 

explain EMT-like molecular characteristics. We also found many differences between normal-like 

and basal-like cancer subtypes (Figure 4, Figure S3). Our results demonstrated that NetNC 

functional targets from fly mesoderm development capture clinically relevant molecular features of 

breast cancers and proposed novel candidate drivers of tumour progression.

Integrating NetNC functional target networks and breast cancer transcriptome 

profiling

Orthologous basal-like and normal-like genes were annotated onto NetNC-FTI networks, offering a 

new perspective on the molecular circuits controlling these different subtypes (Figure 4, Figure S3).

We focussed on basal-like and normal-like cancers, which accounted for the large majority of 

networks studied and were prominent in centroid and heatmap analysis (Figure 5, Figure S4). 

Furthermore, EMT had been shown to be important for basal-like breast cancer biology (Sarrió et 

al., 2008) and, interestingly, key EMT genes were assigned to the normal-like subtype. Splicing 

factors and components of the ribosome were associated with the normal-like subtype in three 

networks (twi_2-4h_intersect, twi-2-6h_intersect, twi_2-3h_union); additionally, the proteasome 

and proteasome regulatory subunits in the  twi_2-3h_union network had many genes annotated to 

the normal-like subtype.

The sna_2-4h_Toll10b ‘RNA degradation and transcriptional regulation’ cluster was 

exclusively annotated to the basal-like subtype and included HECA, which may function as a 

tumour suppressor (Lin et al., 2013) and an oncogene (Chien et al., 2006). HECA was also 

identified in NetNC-FTI analysis of twi_2-4h_intersect and twi_4-6h_intersect; these datasets had 

Twist binding at different, non-contiguous sites that were both assigned to hdc, the fly HECA 

orthologue. Hdc was a multifunctional Notch signalling modifier, including in cell survival 
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(Resende et al., 2017) and tracheal branching morphogenesis, activated by escargot (Steneberg et 

al., 1998). HECA was upregulated in basal-like relative to normal-like tumours (p<3.3x10-23). Taken

together, these data support participation of HECA in an EMT-like gene expression programme in 

basal-like breast cancers. 

The SLC9A6 Na+/H+ antiporter was found in NetNC-FTI ion transport clusters for sna_2-

4h_Toll10b and twi_2-4h_Toll10b. Alterations in pH by Na+/H+ exchangers, particularly SLC9A1, 

drive basal-like breast cancer progression and chemoresistance (Amith and Fliegel, 2017). SLC9A6 

was 1.6-fold upregulated in basal-like relative to normal-like tumours (p<8.4x10-71) and might drive

pH dysregulation as part of an EMT-like programme in basal-like cancers. Sna_2-4h_Toll10b clusters

were depleted in normal-like annotations, compared with Twist; 4/18 clusters had two or more 

normal-like orthologues, significantly fewer than twi_ 2-4h_Toll10b (8/17, p<0.035) and twi_2-

3h_union (12/27, binomial p<0.01). A further basal-like cluster for twi_2-3h_union was annotated 

to ‘mitochondrial translation’ (MT), an emerging area of interest for cancer therapy (Weinberg and 

Chandel, 2015). Our results highlight MT as a potentially attractive target in basal-like breast 

cancers, aligning with work linking MT upregulation with loss of RB1 and p53 (Jones et al., 2016).

Chromatin organisation clusters frequently associated with basal-like annotations. For 

example, the twi_2-3h_union ‘chromatin organisation and transcriptional regulation’ cluster had six 

basal-like genes, including three Notch modifiers (ash1, tara, Bap111). These were orthologous to 

the ASH1L histone methyltransferase and candidate poor prognosis factor with copy number 

amplifications in basal-like tumours (Liu et al., 2014); the SERTAD2 bromodomain interacting 

oncogene and E2F activator (Cheong et al., 2009); and SMARCE1, a core subunit of the SWI/SNF 

chromatin remodelling complex that regulated ESR1, interacted with HIF1A signalling and 

potentiated breast cancer metastasis (García-Pedrero et al., 2006; Sethuraman et al., 2016; Sokol et 

al., 2017). Notch can promote EMT-like characteristics and mediated hypoxia-induced invasion in 

multiple cell lines (Sahlgren et al., 2008). Consistent with these studies, our work supported 
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conserved function for SMARCE1 in EMT-like signalling, both in mesoderm development and 

basal-like breast cancers, possibly downstream of NOTCH1 and through regulation of SWI/SNF 

targeting. Indeed, SWI/SNF controled chromatin switching in oral cancer EMT (Mohd-Sarip et al., 

2017). Taranis, orthologous to SERTAD2, also functions to stabilise the expression of engrailed in 

regenerating tissue (Schuster and Smith-Bolton, 2015). The engrailed orthologue EN1 was the 

clearest single basal-like biomarker in the data examined (Figure 5) and acts as a survival factor 

(Beltran et al., 2014). SERTAD2 could cooperate with EN1 in basal-like cancers; our results 

evidence coordinated expression of these two genes as part of a gene expression programme 

controlled by EMT TFs. Regulation of EN1, SERTAD2 within an EMT programme could harmonise

previous results demonstrating key roles for both neural-specific and EMT TFs in basal-like breast 

cancers (Beltran et al., 2014; Sarrió et al., 2008).  Therefore, we identify chromatin organisation 

factors downstream of Snail and Twist with orthologues that may control Notch output and breast 

cancer progression through a chromatin remodelling mechanism. Indeed, NetNC results predict 

components of feedback loops where EMT TFs regulate chromatin organisation genes that, in turn, 

may both reinforce and coordinate downstream stages of gene expression programmes for 

mesoderm development and cancer progression. Stages of the EMT programme were described 

elsewhere, reviewed in (Nieto et al., 2016); our results map networks that may control the 

remodelling of Waddington’s landscape - identifying crosstalk between Snail, Twist, epigenetic 

modifiers and regulation of key developmental pathways (Hemberger et al., 2009). Dynamic 

interplay between successive cohorts of TFs and chromatin organisation factors could be an 

attractive mechanism to determine progress through and the ordering of steps in (partial) EMTs, 

consistent with ‘metastable’ intermediate stages (Nieto et al., 2016).
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Novel Twist and Snail functional targets influence invasion in a breast cancer model

of EMT

NetNC results predicted new gene functions in EMT and cell invasion, including SNX29 (also 

known as RUNDC2A), ATG3, IRX4 and UNK. We investigated the functional and instructive role of

these genes in an established invasion model (Dhasarathy et al., 2007). MCF7 cells are weakly 

invasive (Lacroix and Leclercq, 2004), thus the SNAI1-inducible MCF7 cell line was well suited to 

study alteration in expression of the selected genes in terms of their influence on invasion in 

conjunction with SNAI1 induction, knockdown or independently (Figure 6). Potential artefacts 

associated with changes in cell growth or proliferation are controlled within the transwell assays 

used, because values reflect the ratio of signal from cells located at either side of the matrigel 

barrier.

Over-expression of IRX4 significantly increased invasion relative to controls in all 

conditions examined and IRX4 had high relative expression in a subset of basal-like breast cancers 

(Figures 5, 6). IRX4 is a homeobox transcription factor involved in cardiogenesis, marking a 

ventricular-specific progenitor cell (Nelson et al., 2016) and is also associated with prostate cancer 

risk (Xu et al., 2014). SNX29 belongs to the sorting nexin protein family that function in endosomal 

sorting and signalling (Marat and Haucke, 2016). SNX29 is poorly characterised and ectopic 

expression significantly reduced invasion in a SNAI1-dependent manner (Figure 6). Since we 

obtained these results, SNX29 downregulation was associated with metastasis and chemoresistance 

in ovarian carcinoma (Zhu et al., 2015), consistent with SNX29 inhibition of invasion driven by 

Snail. ATG3 is an E2-like enzyme required for autophagy and mitochondrial homeostasis (Doherty 

and Baehrecke, 2018), ATG3 overexpression significantly increased MCF7 invasion. Knockdown of

ATG3 reduced invasion in hepatocellular carcinoma (Li et al., 2013). UNK is a RING finger protein 

homologous to unkempt which binds mRNA, functions in ubiquitination and was upregulated in 

gastrulation (Mohler et al., 1992). Others reported that UNK mRNA binding controls neuronal 
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morphology and can induce spindle-like cell shape in fibroblasts (Murn et al., 2015, 2016). UNK 

significantly increased MCF7 invasion both independently of and additively with Snail; supporting 

a potential role in breast cancer progression. Indeed, UNK was overexpressed in cancers relative to 

controls in ArrayExpress (Parkinson et al., 2009). These in vitro confirmatory results both support 

the novel analysis approach and evidence new function for the genes examined.

Figure 6. Validation of candidate invasion genes in breast cancer cells. Fluorescence from invasive MCF7 cells is 

shown. Induction of every gene examined significantly changed invasion in least one of three conditions: a) ectopic 

expression; b) ectopic expression and SNAI1 induction; c) ectopic expression with shRNA knockdown of SNAI1. 

SNX29 (blue) had reduced invasion compared with the SNAI1 induction control (orange); UNK (purple) and IRX4 (dark 

red) had increased invasion in all three conditions examined; ATG3 had higher invasion at background levels of SNAI1 

(without induction or knockdown). Mean values are shown, n=3 datapoint; statistical significance is shown by * 

q<0.05; *** q<5.0x10-4. Also see Supplemental File 2.
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METHODS

A Comprehensive D. melanogaster functional gene network (DroFN)

A high-confidence, comprehensive Drosophila melanogaster functional network (DroFN) was 

developed using a previously described inference approach (Overton et al., 2011). Functional 

interaction probabilities, corresponding to pathway co-membership, were estimated by logistic 

regression of Bayesian probabilities from STRING v8.0 scores (Jensen et al., 2009) and Gene 

Ontology (GO) coannotations (Ashburner et al., 2000), taking KEGG (Kanehisa et al., 2010) 

pathways as gold standard.

Gene pair co-annotations were derived from the GO database of March 25th 2010. The GO 

Biological Process (BP) and Cellular Component (CC) branches were read as a directed graph and 

genes added as leaf terms. The deepest term in the GO tree was selected for each gene pair, and BP 

was given precedence over CC. Training data were taken from KEGG v47, comprising 110 

pathways (TRAIN-NET). Bayesian probabilities for STRING and GO coannotation frequencies 

were derived from TRAIN-NET (Overton et al., 2011). Selection of negative pairs from TRAIN-

NET using the perl rand() function was used to generate training data with equal numbers of 

positive and negative pairs (TRAIN-BAL), which was input for logistic regression, to derive a 

model of gene pair functional interaction probability:

p(I |GO, STRING)=
1

1+(e−6.75+1.03 pGO+1.12 pSTRING
)

(1)

Where:

pGO is the Bayesian probability derived from Gene Ontology coannotation frequency 

pSTRING is the Bayesian probability derived from the STRING score frequency

The above model was applied to TRAIN-NET and the resulting score distribution thresholded by 

seeking a value that maximised the F-measure (van Rijsbergen, 1979) and True Positive Rate 
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(TPR), while also minimising the False Positive Rate (FPR). The selected threshold value (p 

≥0.779) was applied to functional interaction probabilities for all possible gene pairs to generate the 

high-confidence network, DroFN.

For evaluation of the DroFN network, time separated test data (TEST-TS) were taken from 

KEGG v62 on 13/6/12, consisting of 14 pathways that were not in TRAIN-NET. TEST-TS was 

screened against TRAIN-NET, eliminating 34 positive and 218 negative gene pairs to generate the 

blind test dataset TEST-NET (4599 pairs). GeneMania (version of 10th August 2011) (Warde-Farley 

et al., 2010) and DROID (v2011_08) (Yu et al., 2008) were assessed against TEST-NET (Table S1, 

Figure S1).

Enrichment of DroFN edges in DroPIM was estimated as follows: a total of 999 genes were 

found in both DroFN and the DroPIM network thresholded at FDR 0.05 (DroPIM_FDR). These 999

genes had 5747 edges in DroPIM_FDR and 25797 edges in DroFN, of which 2175 were common to

both networks. A 2x2 contingency table was constructed conditioning on the presence of edges for 

these 999 genes in the DroFN and DroPIM_FDR networks. The contingency table cell 

corresponding to edges not found in DroFN or DroPIM was populated by the number of possible 

edges for the 999 genes ((n2 - n) / 2), subtracting the values from the other cells. Therefore the 

contingency table cell values were: 2175, 3572, 23622, 469132. The enrichment p-value was 

calculated by Fisher’s Exact Test.

Network neighbourhood clustering (NetNC) algorithm

NetNC identifies functionally coherent nodes in a subgraph S of functional gene network G (an 

undirected graph), induced by some set of nodes of interest D; for example, candidate transcription 

factor target genes assigned from analysis of ChIP-seq data. Intuitively, we consider the proportion 

of common neighbours for nodes in S to define coherence; for example, nodes that share neighbours

have greater coherence than nodes that do not share neighbours. The NetNC workflow is 
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summarised in Figure 1 and described in detail below. Two analysis modes are available a) node-

centric (parameter-free) and b) edge-centric, with two parameters. Both modes begin by assigning a 

p-value to each edge (Sij) from Hypergeometric Mutual Clustering (HMC) (Goldberg and Roth, 

2003), described in points one and two, below.

1. A two times two contingency table is derived for each edge Sij by conditioning on the 

Boolean connectivity of nodes in S to Si and Sj. Nodes Si and Sj are not counted in the 

contingency table.

2. Exact hypergeometric p-values (Goldberg and Roth, 2003) for enrichment of the nodes in S 

that have edges to the nodes Si and Sj are calculated using Fisher's Exact Test from the 

contingency table. Therefore, a distribution of p-values (H1) is generated for all edges Sij.

3. The NetNC edge-centric mode employs positive false discovery rate (Storey, 2002) and an 

iterative minimum cut procedure (Ford and Fulkerson, 1956) to derive clusters as follows:

a) Subgraphs with the same number of nodes as S are resampled from G, application of 

steps 1 and 2 to these subgraphs generates an empirical null distribution of 

neighbourhood clustering p-values (H0). This H0 accounts for the effect of the sample 

size and the structure of G on the Sij hypergeometric p-values (pij). Each NetNC run on 

TF_ALL in this study resampled 1000 subgraphs to derive H0.

b) Each edge in S is associated with a positive false discovery rate (q) estimated over pij 

using H1 and H0. The neighbourhood clustering subgraph C is induced by edges where 

the associated q ≤ Q.

c) An iterative minimum cut procedure (Ford and Fulkerson, 1956) is applied to C until all 

components have density greater than or equal to a threshold Z. Edge weights in this 

procedure are taken as the negative log p-values from H1 .

d) As described in section 4.2.3, thresholds Q and Z were chosen to optimise the 

performance of NetNC on the 'Functional Target Identification' task using training data 
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taken from KEGG. Connected components with less than three nodes are discarded, in 

line with common definitions of a 'cluster'. Remaining nodes are classified as 

functionally coherent.

4. The node-centric, parameter-free mode proceeds by calculating degree-normalised node 

functional coherence scores (NFCS) from H1, then identifies modes of the NFCS 

distribution using Gaussian Mixture Modelling (GMM) (Lubbock et al., 2013):

a) The node functional coherence score (NFCS) is calculated by summation of Sij p-values 

in H1 (pij) for fixed Si, normalised by the Si  degree value in S (di):

NFCS i=−
1
d i
∑

j

log(pij) (2)

b) GMM is applied to identify structure in the NFCS distribution. Expectation-

maximization fits a mixture of Gaussians to the distribution using independent mean and

standard deviation parameters for each Gaussian (Dempster et al., 1977; Lubbock et al., 

2013). Models with 1..9 Gaussians are fitted and the final model selected using the 

Bayesian Information Criterion (BIC).

c) Nodes in high-scoring mode(s) are predicted to be ‘Functionally Bound Targets’ (FBTs) 

and retained. Firstly, any mode at NFCS<0.05 is excluded because this typically 

represents nodes with no edges in S (where NFCS=0). A second step eliminates the 

lowest scoring mode if >1 mode remains. Very rarely a unimodal model is returned, 

which may be due to a large non-Gaussian peak at NFCS=0 confounding model fitting; 

if necessary this is addressed by introducing a tiny Gaussian noise component (SD=0.01)

to the NFCS=0 nodes to produce NFCS_GN0. GMM is performed on NFCS_GN0 and 

nodes eliminated according to the above procedure on the resulting model. This 

procedure was developed following manual inspection of results on training data from 
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KEGG pathways with 'synthetic neutral target genes' (STNGs) as nodes resampled from 

G (TRAIN-CL, described in section 2.2.1).

Therefore, NetNC can be applied to predict functional coherence using either edge-centric or node-

centric analysis modes. The edge-centric mode automatically produces a network, whereas the 

node-centric analysis does not output edges; therefore to generate networks from predicted FBT 

nodes an edge pFDR threshold may be applied, pFDR≤0.1 was selected as the default value. The 

statistical approach to estimate pFDR and local FDR are described in the sections below.

Estimating positive false discovery rate for hypergeometric mutual clustering p-

values

The following procedure is employed to estimate positive False Discovery Rate (pFDR) (Storey, 

2002) in the NetNC edge-centric mode. Subgraphs with number of nodes identical to S are 

resampled from G to derive a null distribution of HMC p-values (H0) (section 4.2, above). The 

resampling approach for pFDR calculation in NetNC-FTI controls for the structure of the network 

G, including degree distribution, but does not control for the degree distribution or other network 

properties of the subgraph S induced by the input nodelist (D). In scale free and hierarchical 

networks, degree correlates with clustering coefficient; indeed, this property is typical of biological 

networks (Yamada and Bork, 2009). Part of the rationale for NetNC assumes that differences 

between the properties of G and S (for example; degree, clustering coefficient distributions) may 

enable identification of clusters within S. Therefore, it would be undesirable to control for the 

degree distribution of S during the resampling procedure for pFDR calculation because this would 

also partially control for clustering coefficient. Indeed clustering coefficient is a node-centric 

parameter that has similarity with the edge-centric Hypergeometric Clustering Coefficient (HMC) 

calculation (Goldberg and Roth, 2003) used in the NetNC algorithm to analyse S. Hence, the 
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resampling procedure does not model the degree distribution of S, although the degree distribution 

of G is controlled for. Positive false discovery rate is estimated over the p-values in H1 (pij) 

according to Storey (Storey, 2002):

pFDR=E(
V
R

) , R>0 (3)

Where:

R denotes hypotheses (edges) taken as significant

V are the number of false positive results (type I error)

NetNC steps through threshold values (pα) in pij estimating V using edges in H0 with p≤pα . H0 

represents Y resamples, therefore V is calculated at each step:

V =
H 0

Y
, p≤ pα (4)

The H1 p-value distribution is assumed to include both true positives and false positives (FP); H0 is 

taken to be representative of the FP present in H1. This approach has been successfully applied to 

peptide spectrum matching (Fitzgibbon et al., 2008; Sennels et al., 2009). The value of R is 

estimated by:

R=∑
p∈H1

{1 pij ≤ pα

0 otherwise
(5)

Additionally, there is a requirement for monotonicity: 
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pFDRx+1 ≥ pFDRx , px< px +1 (6)

Equation (6) represents a conservative procedure to prevent inconsistent scaling of pFDR due to 

sampling effects. For example consider the scaling of pFDR for pFDRx+1 at a pij value with 

additional edges from H1 but where no more resampled edges (i.e. from H0) were observed in the 

interval between px and px+1; before application of equation (6), the value of pFDRx+1 would be 

lower than pFDRx. The approach also requires setting a maximum on estimated pFDR, considering 

that there may be values of pα where R is less than V. We set the maximum to 1, which would 

correspond to a prediction that all edges at pij are FPs. The assumption that H1 includes false 

positives is expected to hold in the context of candidate transcription factor target genes and also 

generally across biomedical data due to the stochastic nature of biological systems (Marusyk et al., 

2012; Raj and van Oudenaarden, 2008; Raj et al., 2010). We note that an alternative method to 

calculate R using both H1 and H0 would be less conservative than the approach presented here.

Estimating local false discovery rate from global false discovery rate

We developed an approach to estimate local false discovery rate (lcFDR) (Efron et al., 2001), being 

the probability that an object at a threshold (pα) is a false positive (FP). Our approach takes global 

pFDR values as basis for lcFDR estimation. In the context of NetNC analysis using the DroFN 

network, a FP is defined as a gene (node) without a pathway comembership relationship to any 

other nodes in the nodelist D. The most significant pFDR value (pFDRmin) from NetNC was 

determined for each node Si across the edge set Sij. Therefore, pFDRmin is the pFDR value at which 

node Si would be included in a thresholded network. We formulated lcFDR for the nodes with 

pFDRmin meeting a given pα (k) as follows:

lcFDRk=
((n× pFDRk)– ((n – X )×pFDR l))

X
(7)
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Where l denotes the pFDRmin closest to and smaller than k, and where at least one node has 

pFDRmin≡pFDRl. Therefore, our approach can be conceptualised as operating on ordered pFDRmin 

values. n indicates the nodes in D with pFDRmin values meeting threshold k. X represents the number

of nodes at pα≡k. The number of FPs for nodes with pα≡k (FPk) is estimated by subtracting the FP 

for threshold l from the FP at threshold k. Thus, division of FPk by X gives local false discovery rate

bounded by k and l (Figure S5). If we define the difference between pFDRk  and pFDRl:

pFDRΔ = pFDRk  - pFDRl (8)

Substituting pFDRk for (pFDRl  + pFDRΔ) into equation (7) and then simplifying gives: 

lcFDRk = ((n x pFDRΔ) / X) + pFDRl (9)

Equations (7) and (9) do not apply to the node(s) in D at the smallest possible value of pFDRmin 

because pFDRl would be undefined; instead, the value of lcFDRk is calculated as the (global) 

pFDRmin value. Indeed, global FDR and local FDR are equivalent when H1 consists of objects at a 

single pFDRmin value. Taking the mean lcFDRk across D provided an estimate of neutral binding in 

the studied ChIP-chip, ChIP-seq datasets and was calibrated against mean lcFDR values from 

datasets that had a known proportion of Synthetic Neutral Target Genes (SNTGs). Estimation of the

total proportion of neutral binding in ChIP-chip or ChIP-seq data required lcFDR rather than 

(global) pFDR and, for example, accounts for the shape of the H1 distribution. In the context of 

NetNC analysis of TF_ALL, mean lcFDR may be interpreted as the probability that any candidate 

target gene is neutrally bound in the dataset analysed; therefore providing estimation of the total 

neutral binding proportion. Computer code for calculation of lcFDR is provided within the NetNC 

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/455709doi: bioRxiv preprint 

https://doi.org/10.1101/455709
http://creativecommons.org/licenses/by-nc-nd/4.0/


distribution. Estimates of SNTGs by the NetNC-FBT approach were not taken forward due to large 

95% CI values (Figure S8).

Median difference and correlation between estimates of neutral binding from NetNC 

Functional Target Identification and local False Discovery Rate 

Candidate target genes that did not pass NetNC-FTI thresholds were labelled neutrally bound 

(FTI_NB). The proportion of FTI_NB genes was compared to the proportion of neutral binding 

estimated by lcFDR (lcFDR_NB, Figure 3A). The modulus of the difference between FTI_NB and 

lcFDR_NB for each dataset gave a distribution of differences in neutral binding proportion and the 

median of this distribution was quoted in the text above.

NetNC benchmarking and parameter optimisation

Gold standard data for NetNC benchmarking and parameterisation were taken as pathways from 

KEGG (v62, downloaded 13/6/12) (Kanehisa et al., 2010). Training data were selected as seven 

pathways (TRAIN-CL, 184 genes) and a further eight pathways were selected as a blind test dataset

(TEST-CL, 186 genes) summarised in Table S7. For both TRAIN-CL and TEST-CL, pathways were

selected to be disjoint and to cover a range of different biological functions. However, pathways 

with shared biology were present within each group; for example TRAIN-CL included the pathways

dme04330 'Notch signaling' and dme04914 'Progesterone-mediated oocyte maturation', which are 

related by notch involvement in oogenesis (López-Schier and St Johnston, 2001; Schmitt and 

Nebreda, 2002). TEST-CL also included the related pathways dme04745 'Phototransduction' and 

dme00600 'Sphingolipid metabolism', for example where ceramide kinase regulates photoreceptor 

homeostasis (Acharya et al., 2003; Dasgupta et al., 2009; Yonamine et al., 2011).

Gold standard datasets were also developed in order to investigate the effect of dataset size 

and noise on NetNC performance. The inclusion of noise as resampled network nodes into the gold-
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standard data was taken to model neutral TF binding (Li et al., 2008; Shlyueva et al., 2014) and 

matches expectations on data taken from biological systems in general (Marusyk et al., 2012; Raj 

and van Oudenaarden, 2008). Therefore, gold standard datasets were generated by combining 

TRAIN-CL with nodes resampled from the network (G) and combining these with TRAIN-CL. The

final proportion of resampled nodes (Synthetic Neutral Target Genes, SNTGs) ranged from 5% 

through to 80% in 5% increments. Since we expected variability in the network proximity of 

SNTGs to pathway nodes (S), 100 resampled datasets were generated per %SNTG increment. 

Further gold-standard datasets were generated by taking five subsets of TRAIN-CL, from three 

through seven pathways. Resampling was applied for these datasets as described above to generate 

node lists representing five pathway sets in TRAIN-CL by sixteen %SNTG levels by l00 repeats 

(TRAIN_CL_ALL, 8000 node lists). A similar procedure was applied to TEST-CL, taking from 

three through eight pathways to generate data representing six pathway subsets by sixteen noise 

levels by 100 repeats (TEST-CL_ALL, 9600 node lists). Data based on eight pathways (TEST-

CL_8PW, 1600 node lists) were used for calibration of lcFDR estimates. Preliminary training and 

testing against the MCL algorithm (Enright et al., 2002) utilised a single subsample for 10%, 25%, 

50% and 75% SNTGs (TRAIN-CL-SR, TEST-CL-SR).

NetNC analysed the TRAIN-CL_ALL datasets in edge-centric mode, across a range of FDR 

(Q) and density (Z) threshold values. Performance was benchmarked on the Functional Target 

Identification (FTI) task which assessed the recovery of biological pathways and exclusion of 

SNTGs. Matthews correlation coefficient (MCC) was computed as a function of NetNC parameters 

(Q, Z). MCC is attractive because it is captures predictive power in both the positive and negative 

classes. FTI was a binary classification task for discrimination of pathway nodes from noise, 

therefore all pathway nodes were taken as as positives and SNTGs were negatives for the FTI MCC

calculation. The FTI approach therefore tests discrimination of pathway nodes from SNTGs, which 

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/455709doi: bioRxiv preprint 

https://doi.org/10.1101/455709
http://creativecommons.org/licenses/by-nc-nd/4.0/


is particularly relevant to identification of functionally coherent candidate TF targets from ChIP-

chip or ChIP-seq peaks.

Parameter selection for NetNC on the FTI task analysed MCC values for the 100 SNTG 

resamples across five pathway subsets by sixteen SNTG levels in TRAIN-CL_ALL over the Q, Z 

values examined, respectively ranging from up to 10-7 to 0.8 and from up to 0.05 to 0.9. Data used 

for optimisation of NetNC parameters (Q, Z) are available from the Biomodels database and 

contour plots showing mean MCC across Q, Z values per %SNTG are provided in Figure S7. A 

‘SNTG specified’ parameter set was developed for situations where an estimate of the input data 

noise component is available, for example from the node-centric mode of NetNC. In this 

parameterisation, for each of the sixteen datasets with different proportions of SNTG (5% .. 80%), 

MCC values were normalized across the five pathway subsets of TRAIN-CL (from three through 

seven pathways), by setting the maximum MCC value to 1 and scaling all other MCC values 

accordingly. The normalised MCC values <0.75 were set to zero and then a mean value was 

calculated for each %SNTG value across five pathway subsets by 100 resamples in TRAIN-

CL_ALL (500 datasets per noise proportion). This approach therefore only included parameter 

values corresponding to MCC performance ≥75% of the maximum across the five TRAIN-CL 

pathway subsets. The high performing regions of these ‘summary’ contour plots sometimes had 

narrow projections or small fragments, which could lead to parameter estimates that do not 

generalise well on unseen data. Therefore, parameter values were selected as the point at the centre 

of the largest circle (in (Q, Z) space) completely contained in a region where the normalised MCC 

value was ≥0.95. This procedure yielded a parameter map: (SNTG Estimate) → (Q, Z), given in 

Table S8. NetNC parameters were also determined for analysis without any prior belief about the 

%SNTG in the input data - and therefore generalise across a wide range of %SNTG and dataset 

sizes. For this purpose, a contour plot was produced to represent the proportion of datasets where 

NetNC performed better than 75% of the maximum performance across TRAIN-CL_ALL for the 

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 15, 2019. ; https://doi.org/10.1101/455709doi: bioRxiv preprint 

https://doi.org/10.1101/455709
http://creativecommons.org/licenses/by-nc-nd/4.0/


FTI task in the Q, Z parameter space. The maximum circle approach described above was applied to

the contour plot in order to derive ‘robust’ parameter values (Q, Z), which were respectively 0.120, 

0.306 (NetNC-FTI).

Performance on blind test data

We compared NetNC against leading methods, HC-PIN (Wang et al., 2011) and MCL (Enright et 

al., 2002) on blind test data (Figure 2, Table S2). Previous work that evaluated nine clustering 

algorithms, including MCL, found that HC-PIN had strong performance in functional module 

identification and was robust against false positives (Wang et al., 2011); therefore HC-PIN was 

selected for extensive comparison against NetNC. Input, output and performance summary files for 

HC-PIN on TEST-CL are available from the Biomodels database (per datapoint, n=100 for NetNC, 

n=99 for HC-PIN). HC-PIN was run on the weighted graphs induced in DroFN by TEST-CL with 

default parameters (lambda = 1.0, threshold size = 3). MCL clusters in DroFN significantly 

enriched for query nodes from TEST-CL-SR were identified by resampling to generate a null 

distribution (Overton et al., 2011). Clusters with q<0.05 were taken as significant. MCL 

performance was optimised for the Functional Target Identification (FTI) task over the TRAIN-CL-

SR datasets for MCL inflation values from 2 to 5 incrementing by 0.2. The best-performing MCL 

inflation value overall was 3.6 (Table S9).

Subsampling of transcription factor binding datasets and statistical testing

Robustness of NetNC performance was studied by taking 95%, 80% and 50% resamples from nine 

public transcription factor binding datasets, summarised in section 4.3 and described previously in 

detail (MacArthur et al., 2009; Ozdemir et al., 2011; Roy et al., 2010; Sandmann et al., 2007; 

Zeitlinger et al., 2007). A hundred subsamples of each of these datasets were taken at rates of 95%, 

80% and 50%, thereby producing a total of 2700 datasets (TF_SAMPL). NetNC-FTI results across 
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TF_SAMPL were used as input for calculation of median and 95% confidence intervals for the edge

and gene overlap per subsampling rate for each transcription factor dataset analysed. The NetNC 

resampling parameter (Y) was set at 100, the default value. The edge overlap was calculated as the 

proportion of edges returned by NetNC-FTI for the subsampled dataset that were also present in 

NetNC-FTI results for the full dataset (i.e. at 100%). Therefore, nine values for median overlap and 

95% CI were produced per subsampling rate for both edge and gene overlap, corresponding to the 

nine transcription factor binding datasets (Table S4). The average (median) value of these nine 

median overlap values, and of the 95% CI, was calculated per subsampling rate; these average 

values are quoted in Supplemental Material.

False discovery rate (FDR) correction of p-values was applied where appropriate and is 

indicated in this manuscript by the commonly used notation ‘q’ Benjamini-Hochberg correction was

applied (Benjamini and Hochberg, 1995) unless otherwise specified in the text. Calculation of 

pFDR and local FDR values by NetNC is described in the sections above.

Transcription factor binding and Notch modifier datasets

We analysed public Chromatin Immunoprecipitation (ChIP) data for the transcription factors twist 

and snail in early Drosophila melanogaster embryos. These datasets were derived using ChIP 

followed by microarray (ChIP-chip) (MacArthur et al., 2009; Sandmann et al., 2007; Zeitlinger et 

al., 2007) and ChIP followed by solexa pyrosequencing (ChIP-seq) (Ozdemir et al., 2011). 

Additionally 'highly occupied target' regions, reflecting multiple and complex transcription factor 

occupancy profiles, were obtained from ModEncode (Roy et al., 2010). Nine datasets were analysed

in total (TF_ALL) and are summarised below.

The 'union' datasets (WT embryos 2-3h, mostly late stage four or early stage five) combined 

ChIP-chip peaks significant at 1% FDR for two different antibodies targeted at the same TF and 
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these were assigned to the closest transcribed gene according to RNA Polymerase II binding data 

(MacArthur et al., 2009). Additionally, where the closest transcribed gene was absent from the 

DroFN network then the nearest gene was included if it was contained in DroFN. This approach 

generated the datasets sna_2-3h_union (1158 genes) and twi_2-3h_union (1848 genes). The union 

of peaks derived from two separate antibodies maximised sensitivity and may have reduced 

potential false negatives arising from epitope steric occlusion. For the 'Toll10b' datasets, significant 

peaks with at least two-fold enrichment for Twist or Snail binding were taken from ChIP-chip data 

on Toll10b mutant embryos (2-4h), which had constitutively activated Toll receptor (Stathopoulos et 

al., 2002; Zeitlinger et al., 2007); mapping to DroFN generated the datasets twi_2-4h_Toll10b (1238 

genes), sna_2-4h_Toll10b (1488 genes). Toll10b embryos had high expression of Snail and Twist, 

which drove all cells to mesodermal fate trajectories (Zeitlinger et al., 2007). The two-fold 

enrichment threshold selected for this study reflects ‘weak’ binding, although was expected to 

include functional TF targets (Biggin, 2011). Therefore the candidate target genes for twi_2-

4h_Toll10b and sna_2-4h_Toll10b were expected to contain a significant proportion of false positives. 

The Highly Occupied Target dataset included 38562 regions, of which 1855 had complexity score 

≥8 and had been mapped to 1648 FlyBase genes according to the nearest transcription start site 

(Roy et al., 2010); 677 of these genes were matched to a DroFN node (HOT). The ‘HighConf’ data 

took Twist ChIP-seq binding peaks in WT embryos (1-3h) that had been reported to be ‘high 

confidence’ assignments; high confidence filtering was based on overlap with ChIP-chip regions, 

identification by two peak-calling algorithms and calibration against peak intensities for known 

Twist targets, corresponding to 832 genes (Ozdemir et al., 2011). A total of 664 of these genes were 

found in DroFN (twi_1-3h_hiConf) and represented the most stringent approach to peak calling of 

all the nine TF_ALL datasets. The intersection of ChIP-chip binding for two different Twist 

antibodies in WT embryos spanning two time periods (2-4h and 4-6h) identified a total of 1842 

target genes (Sandmann et al., 2007) of which 1444 mapped to DroFN (Intersect_ALL). Subsets of 
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Intersect_ALL identified regions bound only at 2-4 hours (twi_2-4h_intersect, 801 genes), or only 

at 4-6 hours (twi_4-6h_intersect, 818 genes), or 'continuously bound' regions identified at both 2-4 

and 4-6 hours (twi_2-6h_intersect, 615 genes). Assigned gene targets may belong to more than one 

subset of Intersect_ALL because time-restricted binding was assessed for putative enhancer regions 

prior to gene mapping; overlap of the Intersect_ALL subsets ranged between 30.2% and 55.4%. The

Intersect_ALL datasets therefore enabled assessment of functional enhancer binding according to 

occupancy at differing time intervals and also to examine the effect of intersecting ChIPs for two 

different antibodies upon the proportion of predicted functional targets recovered.

Seven of the nine TF_ALL datasets included developmental time periods encompassing 

stage four (syncytial blastoderm, 80-130 minutes), cellularisation of the blastoderm (stage five, 130-

170 minutes) and initiation of gastrulation (stage 6, 170-180 minutes) (Campos-Ortega and 

Hartenstein, 1997; MacArthur et al., 2009; Ozdemir et al., 2011; Sandmann et al., 2007; Zeitlinger 

et al., 2007). The datasets twi_2-4h_intersect, sna_2-4h_intersect, twi_2-4h_Toll10b and sna_2-

4h_Toll10b additionally included initial germ band elongation (stage seven, 180-190 minutes) 

(Campos-Ortega and Hartenstein, 1997; Sandmann et al., 2007; Zeitlinger et al., 2007); twi_2-

4h_Toll10b and sna_2-4h_Toll10b may have also included stages eight (190-220 minutes) and nine 

(220-260 minutes) (Campos-Ortega and Hartenstein, 1997; Zeitlinger et al., 2007). Twi_2-

4h_intersect and sna_2-4h_intersect were tightly staged between stages 5-7 (Sandmann et al., 

2007). Additional to stages four, five and six, twi_1-3h_hiConf may have included the latter part of 

stage two (preblastoderm, 25-65 minutes) and stage three (pole bud formation, 65-80 minutes) 

(Campos-Ortega and Hartenstein, 1997). The twi_4-6h_intersect dataset was restricted to stages 

eight to nine which included germ band elongation and segmentation of neuroblasts (Campos-

Ortega and Hartenstein, 1997; Sandmann et al., 2007). Therefore, there were differences in the 

biological material used across TF_ALL.
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The Notch signalling modifiers analysed in this study were selected based on identification 

in at least two of the screens reported in (Guruharsha et al., 2012).

Breast cancer transcriptome datasets and molecular subtypes

Primary breast tumour gene expression data were downloaded from NCBI GEO 

(GSE12276, GSE21653, GSE3744, GSE5460, GSE2109, GSE1561, GSE17907, GSE2990, 

GSE7390, GSE11121, GSE16716, GSE2034, GSE1456, GSE6532, GSE3494, GSE68892 (formerly

geral-00143 from caBIG)). All datasets were Affymetrix U133A/plus 2 chips and were summarised 

with Ensembl alternative CDF (Dai et al., 2005). RMA normalisation (Irizarry et al., 2003) and 

ComBat batch correction (Johnson et al., 2007) were applied to remove dataset-specific bias as 

previously described (Moleirinho et al., 2013; Sims et al., 2008). Intrinsic molecular subtypes were 

assigned based upon the highest correlation to Sorlie centroids (Sørlie et al., 2003), applied to each 

dataset separately. Centred average linkage clustering was performed using the Cluster and 

TreeView programs (Eisen et al., 1998). Centroids were calculated for each gene based upon the 

mean expression across each of the Sorlie intrinsic subtypes (Sørlie et al., 2003). These expression 

values were squared to consider up and down regulated genes in a single analysis. Orthology to the 

DroFN network was defined using Inparanoid (Östlund et al., 2009). Differential expression was 

calculated by t-test comparing normalised (unsquared) expression values in normal-like and basal-

like tumours with false discovery rate correction (Benjamini and Hochberg, 1995).

Invasion assays for validation of genes selected from NetNC results

MCF-7 Tet-On cells were purchased from Clontech and maintained as previously described 

(Liu et al., 2013).To analyse the ability of transfected MCF7 breast cancer cells to degrade and 

invade surrounding extracellular matrix, we performed an invasion assay using the CytoSelect™ 

24-Well Cell Adhesion Assay kit. This transwell invasion assay allow the cells to invade through a 
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matrigel barrier utilising basement membrane-coated inserts according to the manufacturer's 

protocol. Briefly, MCF7 cells transfected with the constructs (Doxycycline-inducible SNAI1 cDNA 

or SNAI1 shRNA with or without candidate gene cDNA) were suspended in serum-free medium. 

SNAI1 cDNA or SNAI1 shRNA were cloned in our doxycyline-inducible pGoldiLox plasmid 

(pGoldilox-Tet-ON for cDNA and pGolidlox-tTS for shRNA expression) using validated shRNAs 

against SNAI1 (NM_005985 at  position 150 of the transcript (Liu et al., 2013)). pGoldilox has been

used previously to induce and knock down the expression of Ets genes (Peluso et al., 2017). 

Following overnight incubation, the cells were seeded at 3.0×105 cells/well in the upper chamber 

and incubated with medium containing serum with or without doxycyline in the lower chamber for 

48 hours. Concurrently, 106 cells were treated in the same manner and grown in a six well plate to 

confirm over-expression and knockdown. mRNA was extracted from these cells and quantitative 

real-time PCR (RT-qPCR) was performed as previously described (Essafi et al., 2011); please see 

Supplemental File 2 for gene primers. The transwell invasion assay evaluated the ratio of CyQuant 

dye signal at 480/520 nm in a plate reader of cells from the two wells and therefore controlled for 

potential proliferation effects associated with ectopic expression. We used empty vector (mCherry) 

and scrambled shRNA as controls and to control for the non-specific signal. At least three 

experimental replicates were performed for each reading.
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Figure S1. Related to Methods. Reciever Operator Characteristic (ROC) curves for 

Functional Gene Networks on time separated blind test data (TEST-NET). ROC curves for 

DroFN, DroID and GeneMania networks are shown with respective AUC values of 0.773, 0.598 

and 0.582. DroFN has significantly larger AUC than DroID (p<2.13x10-11) and GeneMania 

(p<3.2x10-22) on TEST-NET.
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Figure S2. Related to Table 1. Agreement between NetNC-lcFDR and NetNC-FTI estimates of 

functional binding. The percentage of predicted functional binding from NetNC-lcFDR and 

NetNC-FTI for each of the nine TF_ALL datasets is shown as crosses (‘X’). Results from the two 

different methods correlated well (r=0.9, p=0.008) and had median difference of only 5.5%. This 

concordance supports the results from both NetNC-FTI and NetNC-lcFDR.
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Figure S3. Networks of functionally coherent candidate target genes identified by NetNC-FTI.

Continued on next page.
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Figure S3. Related to Figure 4 and Supplemental File 1. Networks of functionally coherent 

candidate target genes identified by NetNC-FTI.  The key (bottom right) indicates annotations 

for human orthology (bold node border) and Notch screen hits (triangular nodes). Many orthologues
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were assigned to either basal-like (BL, red) or normal-like centroids (NL, green); otherwise, node 

colour indicates upregulated gene expression in NL (blue) compared to BL (orange) subtypes 

(q<0.05) or no annotation to the BL or NL subtypes (grey). Clusters with at least four members are 

shown, cytoscape sessions with full NetNC-FTI results are given in Additional File 4. Very few 

clusters were composed entirely from genes identified only in a single dataset, examples included: 

snoRNAs/nucleolar proteins (twi_2-3h_union), transferases (HOT), defense response/immune 

response (twi_2-4h_Toll10b) and chitin metabolism (twi_2-4h_intersect).
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Figure S4. Related to Figure 5. Unsupervised clustering of 2999 primary breast cancers with 

NetNC results for individual Snail and Twist datasets.

(A) Data shown represent results clustering of primary breast tumour gene expression data (detailed

in Methods, section 4.4) with orthologous genes from NetNC-FBT analysis of sna_2-3h_union (top,

n=256) and twi_2-3h_union (bottom, n=467). Intrinsic subtypes are shown along the top of each 
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heatmap, colours correspond to: HER2-overexpressing (purple), basal-like (red), normal-like 

(green), luminal A (dark blue) and luminal B (light blue). Clustering based on sna_2-3h_union 

shows better separation of clusters than twi_2-3h_union. 

(B) Significantly higher squared centroid values for multiple breast cancer subtypes (Wilcoxon 

p<0.05) were obtained when compared with resampled orthologues for NetNC-FBT analysis of 

sna_2-3h_union (left, n=256) and twi_2-3h_union (right, n=467); 100 resamples were performed. 

Breast cancer subtypes are indicated on the x-axis of each plot as follows: B (basal-like), E (HER2-

overexpressing), LA (luminal A), LB (luminal B), NL (normal-like). Similar patterns were observed

between these two datasets, with strongest enrichment for basal-like and normal-like centroids; 

sna_2-3h_union also showed relatively stronger enrichment for the luminal A centroid compared 

with results for twi_2-3h_union. Absolute differences in p between sna_2-3h_union and twi_2-

3h_union may reflect the difference in dataset sizes (n=256 vs n=467), indeed stronger p-values are 

typically associated with comparisions across larger datasets.
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Figure S5. Related to Methods. Estimation of local False Discovery Rate (lcFDR) from 

positive False Discovery Rate. To estimate lcFDR the expected number of false positives (FP) is 

first estimated for the edges (X) under b (red bounding line). The pFDR at k (pFDRk) multiplied by 

the number of edges (n) under a (red bounding line) gives the FP above threshold k (FPk); the pFDR

at l (pFDRl) multiplied by (n – X) gives the expected number of false positives for threshold j (FPl). 

Therefore, lcFDR bounded by k and l is estimated as (FPk – FPl) / X. We took values of k and l such 

that the interval (k, l) contained only edges that had p≡k. Values for the twi_2-6h_intersect dataset 

are shown.
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Figure S6. Related to Methods. Proportion of neutral binding predicted by NetNC-FBT and 

NetNC-lcFDR. The proportion of Synthetic Neutral Target Genes (SNTGs) in the TEST-CL_8PW 

datasets analysed is shown on the x-axis. The predicted proportion of SNTGs by NetNC-FBT (red) 

and NetNC-lcFDR (blue-green) is shown on the y-axis. Error bars represent 95% confidence 

intervals calculated over 100 resamples. Systematic overestimation of %SNTG was greatest for the 

NetNC-FBT approach which also had large 95% confidence intervals relative to NetNC-lcFDR.
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Figure S7. Related to Methods. NetNC Functional Target Identification Performance on 

TRAIN-CL_ALL. A range of values for the number of KEGG pathways (columns) and 

%Synthetic Neutral Target Genes (rows) were examined. Each invividual panel shows NetNC-FTI 

performance across values of the Q (FDR) and Z (graph density) parameters. Contours show the 

mean Matthews Correlation Coefficient value for the 100 resamples per individual panel. The 

NetNC-FTI parameters (Q, Z), were optimised on these data as described in the main manuscript 

Methods section 4.2.3.
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Network MCC FPR TPR AUC

DroFN 0.448 0.047 0.475 0.773

DROID 0.383 (max 0.385)  0.0046 0.199 0.598

GeneMania 0.133 (max 0.243) 0.121 0.274 0.582

Table S1. Related to Methods. Evaluation of DroFN on Time Separated Blind Test Data 

(TEST-NET). Column headings: Matthews correlation coefficient (MCC), false positive rate 

(FPR), true positive rate (TPR), area under the Receiver Operator Characteristic curve (AUC). 

DroFN performed best on the data examined and had FPR close to the functional interaction prior 

estimated from the training data (0.044). Values of AUC for DroFN were significantly better than 

DROID (p=2.13x10-11) or GeneMania (p=3.19x10-22).
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Functional Target Identification (FTI)

%SNTG NetNC MCC+ MCL MCC

10 0.407 0.171 (0.258)

25 0.494 0.252 (0.309)

50 0.573 0.251 (0.365)

75 0.532 0.220 (0.220)

+ NetNC-FTI parameters used (Z=0.1, Q=0.1) were preliminary. These parameters were determined 

empirically, with performance assessment on TRAIN-CL-SR.

Table S2. Related to Figure 2. Results from preliminary study of NetNC and MCL 

performance on TEST-CL-SR. MCC, Matthews Correlation Coefficient. MCL performance for 

overall best-performing inflation value (I=3.6) is given at FDR p<0.05. Performance values in 

brackets represent taking inflation values that were optimal at the value of %SNTG on TRAIN-CL-

SR. Results represent performance on TEST-CL-SR, which comprised a single resample at each 

%SNTG value examined. MCC values for NetNC performance were considerably higher than those

obtained using the MCL algorithm.
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Table S3. Related to Figure 4 and Figure S3. Overall summary of clusters identified by 

NetNC-FTI across the nine TF_ALL datasets. Clusters and cluster groupings are listed on the left

of the table, orange table cells indicates that the biological grouping was found in NetNC-FTI 

results for the corresponding dataset, blue table cells indicate that the grouping was not identified.
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Dataset Subsampling Median percentage 

edge overlap (95% CI)

Median percentage 

gene overlap (95% CI)

sna_2-3h_union 95 90.7 (83.3-95.8) 89.0 (83.4-94.2)

sna_2-3h_union 80 83.9 (74.2-92.0) 80.3 (71.2-88.3)

sna_2-3h_union 50 77.5 (37.5-93.9) 73.1 (58.5-88.1)

twi_2-3h_union 95 94.9 (88.5-98.4) 92.4 (87.8- 97.0)

twi_2-3h_union 80 91.3 (81.8-95.3) 85.0 (80.0-90.5)

twi_2-3h_union 50 81.8 (67.1-94.5) 77.4 (69.6-87.6)

sna_2-4h_Toll10b 95 88.7 (54.2-96.7) 90.4 (72.1-97.1)

sna_2-4h_Toll10b 80 79.8 (28.0-92.5) 81.3 (55.9-91.3)

sna_2-4h_Toll10b 50 72.2 (15.4-99.5) 74.5 (46.7-99.5)

twi_2-4h_Toll10b 95 83.6 (42.5-98.5) 85.0 (63.4-96.6)

twi_2-4h_Toll10b 80 82.3 (33.6-95.9) 76.1 (54.6-91.6)

twi_2-4h_Toll10b 50 73.9 (24.5-95.3) 71.7 (49.4-92.2)

HOT 95 83.0 (61.0-97.1) 85.8 (65.4-97.6)

HOT 80 70.3 (41.1-90.4) 76.4 (59.9-91.9)

HOT 50 52.5 (32.1-88.9) 68.0 (52.8-92.3)

twi_4-6h_intersect 95 81.3 (29.4-96.5) 75.9 (47.7-95.9)

twi_4-6h_intersect 80 80.5 (16.1-94.9) 73.9 (38.5-91.6)

twi_4-6h_intersect 50 63.5 (12.3-100.0) 68.3 (36.8-100.0)

twi_2-4h_intersect 95 86.0 (61.2-98.8) 87.4 (72.2-97.3)

twi_2-4h_intersect 80 88.4 (51.0-99.2) 83.1 (66.0-97.2)

twi_2-4h_intersect 50 75.5 (41.9-100.0) 78.9 (57.9-100.0)

twi_2-6h_intersect 95 95.8 (89.7-99.6) 95.6 (91.0-98.9)

twi_2-6h_intersect 80 93.7 (81.1-98.9) 91.3 (85.0-96.8)

twi_2-6h_intersect 50 88.0 (75.2-99.2) 86.5 (77.9-96.6)

twi_1-3h_hiConf 95 96.4 (74.9-99.7) 93.9 (74.1-99.2)

twi_1-3h_hiConf 80 88.4 (67.0-98.8) 88.8 (77.2-95.6)

twi_1-3h_hiConf 50 79.1 (56.0-100.0) 83.0 (67.5-100.0)

Table S4. Related to Figure 4 and Figure S3. Overlap for NetNC-FTI subsamples of the 

TF_ALL datasets. Data represents the proportion of edges and genes returned by NetNC-FTI for 

the subsampled dataset that were also present in NetNC-FTI results for the full dataset (i.e. at 

100%). At subsampling rates 95%, 80%, 50%, the average edge overlap values across TF_ALL 

were respectively 91%, 84% and 77%; derived as the median value (average) of the median overlap

per dataset (respective median 95% CI 83-96%, 74-94%, 37-92%). At subsampling rates 95%, 
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80%, 50%, the average overlap values across TF_ALL were respectively 89%, 81% and 75%; 

derived as the median value (average) of the median overlap per dataset. (respective median 95% CI

72%-97.2%, 66%-92%, 58%-97%). Some subsamples taken as input to NetNC had low overlap 

with the NetNC-FTI reference output (reference_net) for any given complete input dataset. Indeed, 

the reference_net represented between 14% to 39% of the total input gene list across the nine 

TF_ALL datasets. Subsamples that excluded a high proportion of the nodes in reference_net would 

be expected to result in weaker hypergeometric mutual clustering values for the remaining nodes 

found in reference_net because these nodes would be expected to have relatively few common 

neighbours. Therefore, subsampling of the input gene list is expected to produce NetNC results that 

have reduced overlap with reference_net; this effect is also a source of variation in overlap across 

subsamples, reflected in the 95% CI values. Also, the probability of sampling nodes in 

reference_net is lower when a smaller fraction of the complete input TF_ALL gene list is covered 

by reference_net, leading to a greater subsampling-associated loss of nodes and edges. Consistent 

with this interpretation, TF_ALL datasets with the highest NetNC-FTI functional binding 

proportion (twi_1-3h_hiConf, twi_2-6h_intersect, HOT; see Table 1) were less sensitive to 

subsampling than datasets with relatively low predicted functional binding such as sna_2-4h_Toll10b 

and twi_4-6h_intersect.
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Identifier

Name (count

in TF_ALL)

Uniprot Function when available, otherwise the Flybase Summary is 

given (indicated by *)

FBgn0004009

Current ID:

FBgn0284084

Wingless 

(9/9)

Binds as a ligand to a family of frizzled seven-transmembrane 

receptors and acts through a cascade of genes on the nucleus. 

Segment polarity protein. May be a growth factor. Acts on 

neighboring cells to regulate at least one gene, the homeobox 

segmentation gene engrailed. Wg signal represses arm 

phosphorylation. Wg signaling operates by inactivating the sgg 

repression of engrailed autoactivation. Wg and Wnt2 have a role in 

the developing trachea and together are responsible for all dorsal 

trunk formation. Wg also acts in the developing epidermis. Acts as a 

morphogen, and diffuses long distances despite its lipidation. 

Lipophorin is required for diffusion, probably by acting as vehicle 

for its movement, explaining how it can spread over long distances 

despite its lipidation. In non-neuronal cells, wls directs wg secretion 

via clathrin-mediated endocytosis and the retromer complex (a 

conserved protein complex consisting of Vps26 and Vps35) to 

sustain a wls traffic loop encompassing the Golgi, the cell surface, an

endocytic compartment and a retrograde route leading back to the 

Golgi. In neuronal cells (the larval motorneuron NMJ), wg signal 

moves across the synapse through the release of wls-containing 

exosome-like vesicles.

FBgn0004647 Notch (8/9) Signaling protein, which regulates, with both positive and negative 

signals, the differentiation of at least central and peripheral nervous 

system and eye, wing disk, oogenesis, segmental appendages such as

antennae and legs, and muscles, through lateral inhibition or 

induction. Functions as a receptor for membrane-bound ligands 

Delta and Serrate to regulate cell-fate determination. Upon ligand 

activation, and releasing from the cell membrane, the Notch 

intracellular domain (NICD) forms a transcriptional activator 

complex with Su(H) (Suppressor of hairless) and activates genes of 

the E(spl) complex. Essential for proper differentiation of ectoderm. 

Fringe (fng) acts in the Golgi to determine the type of O-linked 

fucose on the EGF modules in N, altering the ability of N to bind 
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with Delta (Dl). O-fut1 also has a role in modulating the interaction. 

Rumi acts in the endoplasmic reticulum to glucosylate the EGF 

modules in N, this is required for correct folding and cleavage of N.

FBgn0000659 fork head 

(8/9)

Fkh promotes terminal as opposed to segmental development. In the 

absence of fkh, this developmental switch does not occur. The 

nuclear localization of the fkh protein suggest that fkh regulates the 

transcription of other, subordinate, genes.

FBgn0010389 heartless 

(7/9)

May be required for patterning of muscle precursor cells. May be 

essential for generation of mesodermal and endodermal layers, 

invaginations of various types of cells and CNS formation.

FBgn0011225 jaguar (7/9) Myosin is a protein that binds to actin and has ATPase activity that is

activated by actin. Together CLIP-190 and jar may coordinate the 

interaction between the actin and microtubule cytoskeleton. May link

endocytic vesicles to microtubules and may be involved in transport 

in the early embryo and in the dynamic process of dorsal closure. It 

is believed that its function changes during the life cycle.

FBgn0000577 engrailed 

(7/9)

This protein specifies the body segmentation pattern. It is required 

for the development of the central nervous system. Transcriptional 

regulator that represses activated promoters. Wg signaling operates 

by inactivating the SGG repression of EN autoactivation.

FBgn0003118 pointed (7/9) Required for glial-neuronal cell interactions at the ventral midline 

which are necessary for the proper elaboration of commissures in the

embryonic CNS.

FBgn0017397

Current ID:

FBgn0264491

held out 

wings (7/9)

Required for integrin-mediated cell-adhesion in wing blade. Vital 

role in steroid regulation of muscle development and to control heart 

rate. Required during embryogenesis, in late stages of somatic 

muscle development, for myotube migration and during 

metamorphosis for muscle reorganization.

FBgn0003254 ribbon (7/9) *Ribbon is a nuclear BTB-domain protein, expressed in most 

embryonic cells. It is required for development of the salivary gland 

and trachea, as well as for dorsal closure. It regulates both growth 

and differentiation of salivary gland cells.

FBgn0000014 abdominal A

(7/9)

Sequence-specific transcription factor which is part of a 

developmental regulatory system that provides cells with specific 
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positional identities on the anterior-posterior axis. Required for 

segmental identity of the second through eighth abdominal segments.

Once a pattern of abd-A expression is turned on in a given 

parasegment, it remains on the more posterior parasegment, so that 

the complex pattern of expression is built up in the successive 

parasegments. Appears to repress expression of Ubx whenever they 

appear in the same cell, but abd-A is repressed by Abd-B only in the 

eight and ninth abdominal segments.

FBgn0003900 twist (7/9) Involved in the establishment and dorsoventral patterning of germ 

layers in the embryo.

FBgn0003177

Current ID:

FBgn0262614

polychaetoid

(7/9)

*Polychaetoid is a broadly acting protein that is associated with 

multiple proteins at the surface and within the cytoskeleton, 

connecting events between the two.

FBgn0015513 myoblast 

city (7/9)

*Myoblast city is an unconventional bipartite GEF that, in 

combination with Ced-12, activates the Rac1 monomeric GTPase. It 

contributes to myoblast fusion, border cell migration and dorsal 

closure.

Table S5. Related to Figure 4 and Figure S3. Frequently identified genes within the 

Developmental Regulation Clusters. The thirteen genes in this table (DRC-13) were found in the 

developmental regulation cluster returned by NetNC-FTI in least seven of the nine TF_ALL 

datasets.
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Gene 
symbol

Identifier Datasets where NetNC-FTI results 
include the given gene

Brief summary of function

ph-d FBgn0004860 sna_2-4h_Toll10b, twi_2-4h_Toll10b, 
twi_2-4h_intersect

Polycomb Repressive Complex
1 (PRC1) [Shao 1999]

psc FBgn0005624 sna_2-4h_Toll10b, twi_2-4h_Toll10b, 
twi_2-4h_intersect

Polycomb Repressive Complex
1 (PRC1) [Shao 1999]

lolal FBgn0022238 sna_2-4h_Toll10b, twi_2-4h_Toll10b TrxG-related gene, regulates 
dorso-ventral patterning and is 
required for silencing at 
polycomb response elements 
[Mishra 2003, Quijano 2016]

ph-p FBgn0004861 sna_2-4h_Toll10b, twi_2-4h_Toll10b Polycomb Repressive Complex
1 (PRC1) [Shao 1999]

corto FBgn0010313 sna_2-4h_Toll10b, twi_2-4h_Toll10b physically interacts with PcG 
and TrxG proteins [Salvaing 
2003, Lopez 2001]

trithorax FBgn0003862 twi_2-3h_union, twi_4-6h_intersect histone methlytransferase 
(TrxG gene) [Tie 2014, Ingham
and Whittle 1980]

su(var)205 FBgn0003607 twi_2-3h_union, twi_4-6h_intersect histone H3K9 binding, gene 
silencing factor [Fanti 1998, 
Fanti 2008]

moira FBgn0002783 twi_2-3h_union, twi_4-6h_intersect TrxG gene involved in 
nucleosome organisation 
[Hong & Choi 2016, Crosby 
1999]

taranis FBgn0040071 twi_2-3h_union, twi_4-6h_intersect genetically interacts with TrxG 
and PcG genes [Schuster 2015,
Calgaro 2002, Fauvarque 
2001].

su(var)3-9 FBgn0263755

(DroFN ID: 
FBgn0003600)

twi_2-4h_intersect, twi_2-
4h_Toll10b, twi_2-3h_union

histone H3 methylase and gene
silencing factor [Czermin 
2001, Schotta 2002]

Table S6. Related to Figure 4 and Figure S3. NetNC functionally coherent TF targets found in 

chromatin organisation clusters across multiple datasets. The genes listed above were identified 

in NetNC-FTI chromatin organisation clusters for two or more of the TF_ALL datasets.
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Dataset KEGG Pathway ID Pathway Name Number of Genes

TRAIN-CL dme03020 RNA polymerase 26

dme03430 Mismatch repair 20

dme04330 Notch signalling 22

dme04914 Progesterone-mediated 

oocyte maturation

45

dme00790 Folate biosynthesis 24

dme00590 Arachidonic acid 

metabolism

15

dme00280 Valine, leucine and 

isoleucine degradation

15

TEST-CL dme00510 N-Glycan biosynthesis 36

dme00760 Nicotinate and 

nicotinamide 

metabolism

11

dme03030 DNA replication 34

dme04140 Regulation of 

autophagy

14

dme04350 TGF-beta signaling 

pathway

29

dme04745 Phototransduction - fly 27

dme04122 Sulfur relay system 9

dme00600 Sphingolipid 

metabolism

9

Table S7. Related to Methods. Summary of pathways selected for gold standard data TRAIN-

CL and TEST-CL. 
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%SNTG Optimised Z Optimised Q
5 0.346 0.025

10 0.346 0.025
15 0.3735 0.0400171
20 0.3655 0.051006
25 0.3735 0.0612547
30 0.3615 0.0702808
35 0.3525 0.0834251
40 0.34 0.0920248
45 0.3325 0.0904339
50 0.3005 0.0681088
55 0.2945 0.0543454
60 0.25 0.0423662
65 0.2005 0.0546396
70 0.1355 0.0652494
75 0.2875 0.0991509
80 0.2535 0.2

Table S8. Related to Methods. NetNC-FTI parameter values optimised for percentage 

Synthetic Neutral Target Genes (%SNTG). This table shows parameter values for NetNC-FTI 

optimised on TRAIN_ALL. These data may be used to specify NetNC-FTI parameters where an 

estimate of %SNTG is available, for example derived from NetNC-lcFDR analysis. In general there

is a trend toward less stringent values of the optimised parameters (higher Q, lower Z) as the 

%SNTG increases.
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Inflation

Value

Matthews Correlation Coefficient

TRAIN-CL10% TRAIN-CL25% TRAIN-CL50% TRAIN-CL75%

2 0.303* 0.318 0.376 0.271

2.2 0.241 0.348 0.269 0.253

2.4 0.217 0.357 0.418* 0.270

2.6 0.186 0.367* 0.402 0.359

2.8 0.174 0.340 0.400 0.365

3 0.161 0.300 0.341 0.343

3.2 0.201 0.323 0.370 0.355

3.4 0.204 0.355 0.384 0.368

3.6 0.196 0.344 0.406 0.393*

3.8 0.196 0.333 0.392 0.390

4 0.193 0.330 0.358 0.339

4.2 0.185 0.319 0.369 0.364

4.4 0.190 0.315 0.330 0.267

4.6 0.185 0.319 0.330 0.305

4.8 0.174 0.304 0.314 0.251

5 0.171 0.290 0.309 0.299
*highest (best-performing) value

Table S9. Related to Methods. Optimisation of MCL Inflation value for the Functional Target 

Identification task. Results shown represent performance on the TRAIN-CL-SR dataset. The 

overall best performing inflation value across all four TRAIN-CL datasets examined was 3.6.
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List of Supplemental Files

Supplemental_File_1.zip. Related to Figure 4 and Figure S3. Cytoscape sessions with NetNC-FTI 

results for TF_ALL.

Supplemental_File_2.zip. Related to Figure 6. Primers for RT-qPCR
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