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Abstract 

The role of lymphoid tissue as a potential source of HIV-1 rebound following interruption of 

antiretroviral therapy is uncertain. To address this issue, we compared the latent viruses obtained 

from CD4+ T cells in peripheral blood and lymph nodes to viruses emerging during treatment 

interruption. Latent viruses were characterized by sequencing near full-length (NFL) proviral DNA, 

and env from viral outgrowth cultures (VOAs). 5 HIV-1 infected individuals on antiretroviral 

therapy (ART) were studied, 4 of whom participated in a clinical trial that included an analytical 

treatment interruption. Intact or replication competent clonal sequences from blood and lymph node 

overlapped. In contrast, there was no overlap between 205 latent reservoir and 125 rebound 

sequences in the 4 individuals who underwent treatment interruption. However, rebound viruses 

could be accounted for by recombination. The data suggests that CD4+ T cells carrying latent 

viruses circulate between blood and lymphoid tissues in individuals on ART and support the idea 

that recombination may play a role in the emergence of rebound viremia. 
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Introduction 

ART is an effective treatment for HIV-1 infection. However, HIV-1 persists as proviral DNA in 

CD4+ T cells and produces a latent reservoir that demonstrates remarkable stability (1–3). Upon 

ART interruption, nearly all individuals experience viral rebound within 1-6 weeks (4–6). However, 

most integrated proviruses are defective (7, 8), and only a small percentage can replicate and 

produce the infectious virions that mediate rebound viremia when ART is interrupted. Latent 

viruses can be recovered from the reservoir by viral outgrowth assays (VOA) and by polymerase 

chain reaction amplification of integrated proviruses (9, 10). Using these methods latent viruses 

have been recovered from lymph nodes, gut-associated lymphoid tissue (GALT), spleen, CNS, 

liver, lungs, kidney, adipose tissue and genital tract(11–17).  

 

In 4 recent studies, comparison of circulating latent viruses and rebound viruses showed a very 

limited number of overlapping sequences (10, 18–20). One potential explanation for this 

observation is that latent viruses found in CD4+ T cells in lymphoid and other tissues differ from 

those in circulation, and that these sequestered cells are responsible for the rebound viremia. To 

examine the relationship between latent viruses in circulation and in lymph node, we studied 5 

individuals who had concurrent blood draws and lymph node biopsies. Rebound plasma was 

available for 4 of these individuals who were enrolled in a clinical trial that included an analytical 

treatment interruption after 24 weeks of therapy with a TLR9 agonist.  

 

Results 

Samples and study participants 

To investigate the intact proviral reservoir, we obtained mononuclear cells from lymph nodes 

(LNMC) and peripheral blood (PBMC) from 4 ART treated HIV-1 infected individuals (extended 
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data table 1a), who had been virally suppressed for a median of 8.3 years (range 1.8–13.4). All 4 

participated in an interventional trial in which a TLR9 agonist was co-administered with ART for 

24 weeks (figure 1a) (21). PBMCs and LNMCs were collected in the last 2 weeks of the 24 week 

period. Subsequently ART was interrupted until viral rebound. Plasma was collected before ART 

re-initiation. Time from ART withdrawal to viral rebound was between 9–15 days (figure 2a) which 

is not significantly different from a non-interventional ATI control cohort of 52 participants (ACTG 

cohort) (22–24) (figure 2b, P = 0.5, Log-rank test). In addition, we obtained PBMCs and LNMC 

from an HIV-1 infected individual (ID LFSO), who had been on ART for 1.3 years without 

additional interventions or treatment interruption (extended data table 1b). To obtain full-length env 

sequences from viruses that were replication competent and/or genetically intact, CD4+ T cells from 

blood and lymph node were assayed by VOA, and near full-length (NFL) PCR (10) (extended data 

table 2). 

 

Intact and defective latent viruses from blood and lymph node CD4+ T cells overlap  

We obtained 205 latent virus sequences: 93 and 79 intact NFL sequences from blood and lymph 

node, respectively, and 33 from VOA from blood (extended data table 2). 44% of all sequences 

belonged to expanded clones, 98% of which overlapped between blood and lymph node (i.e. 

identical sequences). There were no statistical differences between the frequency of clonal 

sequences in blood compared to lymph node (two sided Fisher’s exact test, p-values in extended 

data table 3a). Clones were absent in participants ID 114 and ID 120 where sample availability was 

more limited and latent viruses were diverse.  

 

To determine whether defective viruses were also similar between blood and lymph node, we 

combined intact and defective env sequences from all NFL and VOAs (327 sequences) (extended 
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data figure 1). Overall 43% of all env sequences belonged to expanded clones (143 sequences), and 

89% of the clones overlapped between blood and lymph node (two sided Fisher’s exact test, p-

values in extended data table 3b). We conclude that CD4+ T cells in peripheral blood and lymph 

node contain overlapping sets of proviruses. 

  

The frequency of intact viruses in blood and lymph node 

To further examine the relative proviral nucleic acid content in peripheral blood and lymph node, 

we compared the frequency of: 1) GAG+ cells; 2) full-length genomes; and 3) intact NFL 

proviruses (figure 1c). The frequency of GAG+, full-length genomes and intact NFL per 106 CD4+ 

T cells was not statistically different between peripheral blood and lymph node (figure 1c). Thus, in 

our cohort the frequency of intact and defective HIV-1 proviruses in CD4+ T cells is similar in 

peripheral blood and lymph node.  

  

Relationship between plasma rebound viruses and reservoir viruses 

125 full-length env sequences were obtained by SGA from rebound plasma, none of which 

overlapped with any of the latent reservoir sequences (figure 3). Nevertheless, phylogenetic 

analysis revealed that plasma rebound viruses were related to latent viruses in peripheral blood and 

lymph node from the same individual (figure 4a and 4b). Thus, the latent viruses obtained from 

peripheral blood and lymph node are related to, but do not appear to be the direct origin of rebound 

virus in these individuals. 

 

To determine whether mutations accumulating during rebound can account for the divergence 

between the latent reservoir and rebound viruses we used a stochastic mutation simulation model 

(20, 25, 26) (extended data figure 2). We found no instance in which rebound sequences could be 
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accounted for by mutation. To determine whether recombination between latent blood and lymph 

node viruses could account for the rebound viruses we analyzed intact NFL, and VOA env 

sequences using the 3SEQ recombination algorithm (http://mol.ax/software/3seq/). Rebound viruses 

in all 4 individuals showed evidence of recombination (figure 4a, b, i.e. rejection of the null 

hypothesis of clonal evolution; p-values in extended data table 4 and 5). By including the possibility 

of mutation and recombination, we were able to account for 53% of the rebound sequences.  

 

Discussion 

HIV-1 proviruses are present in lymphoid cells in all tissues analyzed to date (11–17). However, the 

relationship between viruses found in different sites and their contribution to persistence is not well 

defined. Our data suggest that the latent viruses found in circulation overlap with those found in 

lymph nodes and that the most prevalent viruses in these compartments are not typically found 

among rebound viruses during treatment interruption. 

It has been suggested that lymph nodes serve as a sanctuary site for latent HIV-1 (27, 28). However, 

we found the same overall frequency of HIV-1 proviruses in blood and lymph node CD4+ T cells. 

Moreover, the two compartments contained similar numbers of replication competent viruses, and 

shared clones of latent viruses. Thus, expanded CD4+ T cell clones bearing latent viruses circulate 

between these two compartments. Finally, rebound viruses did not overlap with either blood or 

lymph node, but instead appeared to represent recombinants. 

Our findings are consistent with a number of previous observations indicating that there are similar 

amounts of HIV-1 DNA in CD4+ T cells in blood and in tissues (29, 30). However, our work is 

limited by the numbers of individuals and CD4+ T cells analyzed and therefore we cannot rule out 

the possibility that a subset of lymph node cells, such as CD4+ TFH cells, are enriched in or harbor a 

specific group of latent viruses (31). 
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Three other studies have also shown little or no overlap between circulating latent viruses and 

rebound viruses (10, 19, 20). Including the data reported here, there are only 3 overlapping 

sequences among 1816 independently derived latent reservoir viruses and 642 rebound viruses. 

Instead, the latent and rebound compartments appear to be related by recombination. 

There are a number of potential explanations for the lack of concordance between latent and 

rebound viruses. One possibility is that latent reservoir sampling has been inadequate. For example, 

the active reservoir responsible for rebound might be found primarily in a tissue that has not been 

assayed, such as the gut. A second non-exclusive possibility is that the majority of the latent viruses 

in blood and lymph node fail to emerge in vivo because they are in some way unfit to do so. For 

example, the majority of latent viruses assayed could be susceptible to immune pressure resulting in 

selection of a subset of rebound viruses which can escape anti-viral immunity in vivo possibly by 

recombination (32, 33).  

  

In conclusion, the data reported indicated that the majority the latent clonal viruses found in blood 

are also found in the lymph nodes and add to the growing body of literature suggesting that rebound 

viruses are either not present in or are rare components of the latent reservoir found in circulation.   

 

Materials and Methods 

Study Design and participants 

This study was approved by the Danish Research Health Ethics Committee (1-10-72-133-17) and 

the Danish Data Protection Agency, by The Rockefeller University Institutional Review Board 

(protocol TSC-0910) and Research Committee and Research Ethics Committee of the Instituto 

Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas". Samples for this study were 

generated from a clinical trial conducted in 2016–2017 at Aarhus University Hospital, Denmark 
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(21) (clinicalTrials.gov identifier: NCT02443935). The clinical study was approved by the Danish 

Research Health Ethics Committee (case no: 1-10-72-10-15), the Danish Medicines Agency 

(2015014125) and the Danish Data Protection Agency. Participants were recruited from the 

Department of Infectious Diseases Outpatient Clinic at Aarhus University Hospital and signed a 

written informed consent before any study procedures. Inclusion criteria were plasma HIV-1 RNA 

<50 c/mL, CD4+ T cell count >350 cells/µl, age >18 years, on cART for >12 months and ability to 

provide informed consent (a complete list of inclusion and exclusion criteria is accessible at 

clinicaltrials.gov). Inclusion criteria for participation in the ATI were: HIV RNA< 20 c/mL, CD4+ T 

cells > 350 cells/µl and written informed consent to withdrawal of cART. COBAS TaqMan HIV-1 

Test, (version 2.0 by Roche) was used to assess plasma viral load (pVL) x2/week and CD4+ T cell 

count was measured every other week. Participants were called in for re-initiation of ART and 

collection of plasma after 2 measurements of HIV-1 RNA >5000c/mL or CD4+ T cells < 350 

cells/µl. Data on the historical control cohort (ACTG trial: ACTG 371(22), A5024(23), A5068 (24), 

and A5197(22)) were used to compare to viral rebound data from the 4 participants in this study. 

The studies were carried out as an ATI without any further interventions and included 52 

participants. Inclusion criteria for the ACTG cohort were: age 18–65, on cART>12 months, plasma 

HIV-1 RNA<50 c/mL>12 months before ATI initiation, CD4+ T cell count at time of ATI 

initiation>500 cells/µl, nadir CD4+ T cell count>200 cells/µl. Viral load was measured weekly until 

viral rebound occurred. 

 

Viral outgrowth assay (VOA) 

The VOA was performed using PBMCs from peripheral blood (PB) as previously described with 

some modifications (34). Briefly, PBMCs were isolated by density centrifugation on Ficoll 

(Thermo Scientific). CD4+ T cells were isolated from the cryopreserved PBMCs through negative 

selection with magnetic beads (Miltenyi). Purified CD4+ T cells (0.1×106) were cultured together 
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with 0.2×106 irradiated heterologous PBMCs from an HIV-1 negative donor in 200ul media [RPMI 

1640 (Gibco) supplemented with 10% FBS (HyClone; Thermo Scientific)], 1% 

penicillin/streptomycin (Gibco), 1 μg/mL phytohemagglutinin (Life Technologies), and 100 U/mL 

IL-2 (Peprotech)] at 37°C and 5% CO2. At this density less than 30% of cultures became p24-

positive. Cultures rested overnight and after 24 h, 125 µL of medium were discarded and 104 

MOLT4–CCR5 cells were added to each well as target cells. At day 5, 100 µL of medium was 

replaced with fresh media. At day 14, the supernatant of each well was tested for p24 production 

using ELISA as previously described (35). 

 

VOA Sequence Amplification 

Extraction of RNA and generation of cDNA and amplification of full-length env was performed as 

previously described (see extended data table 6 for a list of primers) (34, 36). The 1% 96-well E-

Gels (Invitrogen) were used to visualize amplified env PCR products and select the bands with the 

expected HIV-1 envelope size. Selected PCR products were subjected to library preparation using 

Illumina Nextera DNA Sample Preparation Kit (Illumina) as previously described (34). Briefly, 

DNA was diluted in nuclease-free water to 10–20 ng per well and subjected to tagmentation. The 

Illumina Nextera Index Kit was then used to ligate tagmented DNA to barcoded sequencing 

adapters. Subsequently AmPure Beads XP (Agencourt) were used to purify DNA. Each library 

consisted of 96 different samples, which were subjected to paired-end sequencing using Illumina 

MiSeq Nano 300 (Illumina) cycle kits at a final concentration of 12 pM. 

 

Single-genome Amplification of Plasma Rebound Virus 

Single-genome amplification (SGA) and sequencing of HIV-1 env genes was performed as 

previously described (37–39). 
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Near Full-length Genome Amplification 

CD4+ T cells were isolated from cryopreserved PBMCs and lymph node mononuclear cells 

(LNMC) using magnetic beads (Miltenyi). For genomic DNA extraction, we used Gentra Puregene 

Cell Kit (Qiagen), according to the manufacturer’s instructions. Near full-length sequencing (NFL) 

was done by an initial limiting-dilution semi-nested PCR amplifying the gag gene using the primers 

3GagIN, 5GAGIN, 3GAGININ. If these primers failed, we used the primers GAGB5out, 

GAGB3out, GAGB5in, GAGB3in as previously described (8, 9) (extended data table 6). Gag PCR 

products were visualized using 1% 96-well E-Gels (Invitrogen). Dilutions with < 30% positive of 

the PCR wells were selected for further analysis. According to Poisson statistics, this dilution has 

over 90% probability of containing one HIV-1 DNA molecule in each PCR reaction. The NFL 

HIV-1 genome was amplified as a nested PCR with primers and cycling conditions as previously 

described (8, 9, 36). Briefly, the outer 9,064 bp PCR was performed using the primers BLOuterF 

and BLOuterR (extended data table 6) and High Fidelity Platinum Taq Polymerase (Invitrogen). 

For the nested PCR, 0.75 µl was transferred and the env gene amplified using the primers envB5out 

and envB3out. Wells containing an intact env gene were selected using 1% 96-well E-Gels 

(Invitrogen) and the corresponding outer PCR products were collected for further analyzes. NFL 

outer PCR products were subjected to a nested PCR to generate four segments A, B, C, D 

comprising overlapping parts of the genome. The PCR products were visualized on a 0.8% agarose 

gel to determine amplicon size. PCR products with the accepted size (A: 4,449 bp; B: 5,793 bp; C: 

6,385 bp; D: 4,778 bp) were combined as either A+C, A+D, B+C or B+D and subsequently 

subjected to library preparation and sequencing using Illumina MiSeq Nano 300 (Illumina) cycle 

kits at a final concentration of 12 pM, as described above. Assembly and analysis of HIV-1 genome 

sequencing was performed as previously described (10). 
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Identification of intact proviruses and construction of phylogenetic trees 

To identify intact NFL sequences, we aligned assembled sequences to HXB2. Hereby we could 

identify premature stop codons, out-of-frame insertions or deletions (indel), or packaging signal (Ψ) 

deletions and mutations using custom Python scripts. Intact genomes were identified as sequences 

containing productive genes and the major splice donor (MSD) site. Sequences which had a deleted 

or mutated MSD site were categorized as Ψ-MSD deletion/mutation. Los Alamos HIV Sequence 

Database Hypermut tool was used to determine presence of APOBEC-induced G-A hypermutation 

in the remaining NFL sequences. Sequences which were not categorized as hypermutated, were 

considered defective due to indels/nonsense mutations. Trees combining all sequences for each 

individuals (intact and defectives) are shown in supplementary material (extended data figure 3). 

Maximum likelihood phylogenetic trees were constructed as previously described (10). To assess 

for cross-contamination of samples, we also generated a neighbor-joining (NJ) tree, which included 

all sequences obtained for the entire analyses and hereby confirmed that all sequences clustered 

correctly (extended data figure 4). 

 

Data availability  

Sequence data generated in this study have been deposited in GenBank. Maximum likelihood 

phylogenetic trees showing all sequence names are in the supplementary material (extended data 

figure 5) 

 

Recombination analysis of env sequences 

Multiple alignment of nucleotide sequences and the recombination analysis was performed as 

previously described (10, 20). Briefly, env sequences from NFL, VOA and SGA rebound sequences 
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were analyzed for occurrence of recombination by the 3SEQ recombination algorithm 

(http://mol.ax/software/3seq/). Sequences with statistical evidence of recombination (i.e. rejection 

of the null hypothesis of clonal evolution) are represented in a circos plot (http://circos.ca/). 
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Figure legends 

 

Figure 1. TLR9 agonist study design and clonal distribution of the latent HIV-1 in peripheral 

blood and lymph nodes. a, Study design. Green area represents time on ART before enrollment 

and during the 24 weeks of TLR9 agonist treatment. Blue area represents time off ART. “W” and 

numbers and represents weeks elapsed. Lymph node (LN) and peripheral blood (PB) were collected 

1-2 weeks before initiation of the analytical treatment interruption (ATI). SGA depicts the time 

point where plasma was collected and ART subsequently reinitiated. b, Pie charts showing the 

distribution of intact near full-length (NFL) and VOA-derived env sequences. Numbers in the 

center of the circles represents total number of intact/replication competent sequences obtained. 

White areas in pie charts are sequences obtained once (singles). Colored areas represent sequences 

obtained more than once (clones). Clones, which are found in both PB and LN within an individual, 

share the same color between the two PB/LN pie charts. The size of the slices in the pie charts is 

proportional to the relative size of the clone. For ID 101, 116 and LFSA, there is no significant 

difference between the frequency of clones in PB and LN (two-sided Fisher’s exact test). c, 

Frequency of GAG+ cells per 106 CD4+ T cells in LN and PB. Frequency of full length viruses 

(amplicon size determined using 0.8% agarose gel: i.e. at least one combination of either A+C, 

A+D, B+C or B+D possible (Ho et al., 2013)) per 106 CD4+ T cells in LN and PB. Frequency of 

intact near full-length (NFL) sequences per 106 CD4+ T cells in LN and PB. There was no statistical 

difference between the frequencies of GAG+, (p-value=0.31) full-length viruses (p-value=0.63) and 

intact NFL (p-value=0.81) per 106 CD4+ T cells (Wilcoxon matched-pairs signed-rank test). Each 

participant has a unique color code.  
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Figure 2. Time to viral rebound during ATI. a, Plasma HIV-1 RNA levels (left y-axis) and days 

elapsed (x-axis) for the 4 participants receiving the TLR9 agonist. Black lines on the x-axis connect 

dots that denote HIV-1 RNA levels at the indicated number of days after ATI. Lower limit of HIV-

1 RNA detection was 20 copies/mL. Gray shaded areas depict time on ART. b, Kaplan-Meier plot 

summarizing time to rebound for the 4 TLR9 agonist trial participants (red line) compared to a 

cohort of 52 ACTG trial participants (black line) who underwent ATI without intervention. Log-

rank test P value shows the comparison of time to rebound for the TLR9 agonist treated and the 

ACTG cohort. 

 

Figure 3. Sequence identity between peripheral blood, lymph node and rebound single genome 

assay (SGA) viruses. Venn diagrams depicting env sequences from peripheral blood (PB) near 

full-length (NFL) and PB VOA (blue), lymph node (LN) NFL (gray) and SGA from the time of 

viral rebound (pink). Number of sequences obtained are indicated in the circles. The relative size of 

the overlapping areas is proportional to the number of identical sequences. 

 

Figure 4. Comparison of env from intact sequences obtained from lymph node, peripheral 

blood cells and rebound viruses. a, Maximum likelihood phylogenetic trees of env from near full-

length (NFL) lymph node (LN) and peripheral blood (PB) sequences, viral outgrowth (VOA) PB 

culture sequences and plasma SGA sequences. Symbols are defined in the graph legend. Asterisks 

indicate nodes with significant bootstrap values (bootstrap support ≥ 90%). Green stars are parent 

sequences, which undergo recombination to produce a child sequence (red star). Each 

recombination event has a number (denoted next to the colored star). b, Circos plots showing the 

connection between the two parent sequences and the child/recombinant sequence which are also 

depicted in the trees. The blue blocks represent latent reservoir LN sequences. Green blocks 
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represent latent reservoir PB sequences. Red blocks are plasma virus sequences. Clonal sequences 

are depicted once. The density of the outer black lines surrounding the circles represents number of 

sequences retained within the clone, i.e. thin black lines are singles and thicker lines represents 

sequences obtained several times. Gray lines inside the circos plots shows the recombination event. 

Parent/child relationship is shown in the trees. 
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