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There is increased appreciation that dopamine (DA) neurons in the midbrain respond not only to               
reward ​​1,2 and reward-predicting cues ​​1,3​,​4​, but also to other variables such as distance to reward                
5​, movements ​​6–11 and behavioral choices ​​12–15​. Based on these findings, a major open question is                
how the responses to these diverse variables are organized across the population of DA neurons.               
In other words, do individual DA neurons multiplex multiple variables, or are subsets of neurons               
specialized in encoding specific behavioral variables? The reason that this fundamental question            
has been difficult to resolve is that recordings from large populations of individual DA neurons               
have not been performed in a behavioral task with sufficient complexity to examine these diverse               
variables simultaneously. To address this gap, we used 2-photon calcium imaging through an             
implanted lens to record activity of >300 midbrain DA neurons in the VTA during a complex                
decision-making task. As mice navigated in a virtual reality (VR) environment, DA neurons             
encoded an array of sensory, motor, and cognitive variables. These responses were functionally             
clustered, such that subpopulations of neurons transmitted information about a subset of            
behavioral variables, in addition to encoding reward. These functional clusters were spatially            
organized, such that neighboring neurons were more likely to be part of the same cluster. Taken                
together with the topography between DA neurons and their projections, this specialization and             
anatomical organization may aid downstream circuits in correctly interpreting the wide range of             
signals transmitted by DA neurons. 
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To determine how responses are organized across the population of VTA DA neurons, we sought to                
record at cellular resolution from ensembles of identified DA neurons in a behavioral task with sufficient                
complexity to engage many of the behavioral variables that are now thought to be of relevance to DA                  
neurons. These variables include reward ​1,2​,​16​,​17​, reward-predicting cues ​1,3​, reward history ​13,18​, spatial             
position ​5​, kinematics (velocity, acceleration, view angle) ​6–9​ , and behavioral choices ​12,13,19​. 
 
Towards this end, we trained 20 mice on a decision making task in a VR environment that encompassed                  
this wide range of behavioral variables (“Accumulating Towers” task ​20​; Fig. 1a,b; visual snapshots of the                
maze in Extended Data Fig. 1a). ​As mice navigated the central stem of the virtual T-maze, they observed                  
transient reward-predicting cues on the left and right of the maze stem that signaled which maze arm was                  
most likely to be rewarded (“cue period”; ​Fig. 1b)​. By turning to the side of the maze with more cues, the                     
mice received a water reward, while turning to the other side resulted in a tone and a 3s time out. The 2s                      
period after reward delivery or tone presentation was termed the ​“outcome period” (Fig. 1b). As expected,                
after training, mice tended to turn to the maze arm associated with more cues (Fig. 1c; average percent                  
correct is 77.6​±​0.9%​). 
 
To perform 2-photon activity imaging from ensembles of DA neurons during this task, we implanted a                
gradient index (GRIN) lens above the VTA ​21​,​22​. Selective expression of GCaMP in DA neurons was                
achieved either by injecting a Cre-dependent AAV2/5 virus expressing GCaMP in the VTA of DAT::Cre               
mice, or by crossing a GCaMP reporter line with DAT::Cre mice (Fig. 1d; Supplemental Video 1 for                 
sample imaging video; also see Extended Data Fig. 2 for relationship between spikes and fluorescence in                
DA neurons). In either case, an AAV2/9 mCherry virus was injected into the VTA to facilitate accurate                 
motion correction (Extended Data Fig. 3, see Methods). Using this approach, we recorded activity of               
~10-30 DA neurons simultaneously in each of 20 mice during performance of the VR task (Fig. 1e,f ;                  
n=​303 DA neurons from 20 mice​).  
 
Responses of 286 out of 303 DA neurons were significantly modulated by one or more of the following                  
variables (Fig. 2a): spatial position (n=91, 30%), kinematics (n=137, 45%), reward-predicting cues (n=77,             
25%), choice accuracy (whether or not the trial resulted in reward; n=69, 23%), reward history (whether                
the previous trial was rewarded; n=95, 31%), and reward (n=243, 80%; significance was assessed based               
on nested comparisons of the encoding model described below, see Methods). The first five variables               
were quantified during the cue period, and the final variable (reward) was quantified during the outcome                
period. 
 
During the cue period, individual neurons exhibited diverse responses to most of these variables (Fig 2a).                
For example, neurons that were modulated by spatial position most often exhibited upward ramps,              
although some displayed downward ramps. This extends, to the level of DA cell bodies, ramps previously                
identified with fast-scan cyclic voltammetry in the striatum ​5,23,24 (example single trials in Extended Data               
Fig. 1b). Neurons that were selective to kinematics were tuned to a range of velocities, acceleration or                 
view angles. Neurons that responded to reward-predicting cues often, but not always, displayed stronger              
responses to contralateral versus ipsilateral cues ​25​. Neurons that were modulated by accuracy universally              
displayed higher activity to error (as opposed to correct) trials, while neurons that were modulated by                
previous trial outcome were modulated in either direction.  
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In contrast to the diverse responses to many of the variables during the cue period (e.g. upward versus                  
downward spatial ramps), most neurons responded consistently during the outcome period, with stronger             
responses to reward than lack of reward (Fig 2a). 
 
Thus, for the first time, we have access to many of the behavioral variables that are thought to be relevant                    
to DA neurons within a single behavioral paradigm. This puts us in a position to achieve our goal of                   
understanding how the responses to these variables are organized across the DA population. To do this,                
we need a method to accurately quantify how much of the variance of the neural responses can be                  
attributed to each behavioral variable individually, despite the presence of multiple behavioral variables.             
Towards this end, we predicted the GCaMP signal for each neuron based on all of the behavioral                 
variables (Fig 2b; see Methods). 
 
Briefly, to quantitatively predict GCaMP based on behavioral variables, we employed an encoding model.              
To derive the predictors for the model, each variable was considered either as a discrete “event” variable,                 
a “whole-trial” variable, or a “continuous” variable. In the case of “event” variables (left cues, right cues,                 
reward), the predictors were generated by convolving the event’s time series with a spline basis set, in                 
order to allow flexibility in the temporal influence of cues on GCaMP. In the case of “whole-trial”                 
variables (previous reward, accuracy), the value of the binary predictor throughout the trial indicated              
reward on the previous (or current) trial. In the case of “continuous” variables (position, kinematics               
[velocity / acceleration / view angle]), predictors included the variables raised to the first, second and                
third power, in order to enable flexibility in the relationship between the variable and GCaMP. This                
model was chosen to include behavioral variables that significantly improved predictions of neural             
activity, after comparing several models (see model comparisons in Extended Data Fig. 5). 
 
Using this encoding model, we quantified the relative contribution of each behavioral variable to the               
response of each neuron by determining how much the explained variance declined when that variable               
was removed from the model (see Methods; relative contributions for example neurons in Extended Data               
Fig. 6). Averaged across the population, the highest relative contribution during the cue period was               
attributed to kinematics (32.4​±​1.9% of the total variance explained during the cue period), followed in               
descending order by spatial position (22​±​1.7%), previous reward (17.7​±​1.5%), cues (14.6​±​1.4%), and            
accuracy (13.5​±​1.5%, Fig. 2c,d). During the outcome period, reward contributed strongly to the response              
(75​±​2%), consistent with the large number of neurons that responded to reward (Fig 2a).  
 
How is the relative contribution of these behavioral variables to neural responses distributed across the               
population? During the cue period, most behavioral variables had a small contribution to the response of                
each neuron, while a small subset had a large contribution. In contrast, during the outcome period, reward                 
contributed to a large fraction of the response of most neurons (Fig. 2d). This raises the possibility that                  
during the cue period, subsets of DA neurons are specialized to encode specific behavioral variables,               
while during the outcome period, most DA neurons encode reward.  
 
To more systematically examine this idea, we performed clustering of the neurons based on the relative                
contributions of each behavioral variable to each neuron, using a Gaussian Mixture Model (GMM; Fig.               
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3a; see Methods). We found that 5 clusters of neurons gave the best (lowest) Bayesian Information                
Criterion (BIC) score for this data (Fig. 3a; see Methods for details on BIC score calculation). To                 
determine if these 5 clusters in fact explained the data better than expected by chance, we compared the                  
likelihood of the data given the clustering model to that of shuffled data, and found that the likelihood of                   
the real data was indeed significantly higher (p<0.0001, both for null distributions generated by shuffling               
across behavioral variables, as well as by shuffling across neurons; Fig. 3b). Thus, we can conclude that                 
VTA DA neurons display a statistically significant degree of functional clustering.  
 
Each cluster was composed of DA neurons that responded most strongly to a specific behavioral variable                
during the cue period. Note that this specialization does not mean that DA neurons only encoded a single                  
variable during the cue period; in fact, many neurons also significantly encoded a 2​nd variable, but not as                  
strongly (Extended Data Fig. 7). In contrast to the specialization during the cue period, all clusters were                 
composed of neurons that had substantial reward responses (Fig. 3c). Thus, this clustering analysis              
provided further evidence that VTA DA neurons are specialized during the cue period, while they share a                 
response to reward during the outcome period. Supporting the robustness of these clusters, similar clusters               
were obtained when the procedure was implemented independently on random halves of the trials of each                
neuron, and most importantly, neurons tended to be assigned to the same cluster based on each half of the                   
trials (Extended Data Fig. 8). 
 
We next sought to determine if the functional clusters of DA neurons were anatomically organized within                
the VTA. The location of each neuron was estimated based on combining histological reconstruction of               
the lens tract with the position of the neuron within the imaging field ​26 (Extended Fig. 9). We observed                   
significant dependence of cluster identity on A/P location for 4 out of the 5 clusters, and on M/L location                   
for 4 out of the 5 clusters (Fig. 3d-e; p<0.01, comparing STD of the relative concentration of neurons                  
within a cluster to a shuffled distribution obtained by randomly permuting the A/P or M/L location of all                  
neurons relative to cluster identity, Holm-Bonferroni correction; see Methods). Specifically, neurons           
belonging to the cluster associated with kinematics were located more laterally and posteriorly (cluster 1),               
those associated with accuracy responses were located more medially and anteriorly (cluster 5), and              
neurons associated with previous reward were located more laterally (cluster 3). Thus, we find evidence               
for a rough anatomical map in the clusters of VTA DA neurons.  
 
Directly correlating the A/P and M/L location of the neurons with the relative contributions of each                
behavioral variable led to similar findings (Extended Data Fig. 10). To ascertain that this anatomical               
organization cannot be explained by differences between individual mice rather than by a true dependence               
on location, we considered a multinomial mixed effect regression using the cluster identity of the neurons                
as the dependent variable, the A/P and M/L locations as fixed effects, and mouse identity as a random                  
effect. This confirmed that anatomical location significantly predicted cluster identity (p < 0.0005, Wald              
test on the set of null hypotheses that all A/P coefficients in the model are equal to each other and all M/L                      
coefficients are equal to each other).  

 
Thus far, we have described spatial organization in the DA system based on the relative contribution of                 
behavioral variables in explaining neural activity. A complementary approach is to examine the spatial              
organization of pairwise correlation between neurons. This allows us to separately consider the spatial              
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organization of the “signal” correlation (i.e. correlations that can be explained by responses to behavioral               
variables; conceptually related to functional clustering in Fig. 3), and also of the “noise” correlation (i.e.                
neural correlations that cannot be explained by the behavioral variables). DA neurons are thought to have                
high noise correlations ​27–29​, but the spatial organization of these correlations has not been described. 
 
To first confirm that DA neurons in our experiment indeed have high noise correlations, we added an                 
additional predictor to the encoding model from Fig. 2b: a “network” predictor that reflects the activity of                 
other simultaneously imaged neurons (for each neuron, the new predictor was the 1​st PCA of the ΔF/F                 
from all other simultaneously recorded neurons; Fig. 4a). Consistent with DA neurons having high noise               
correlations, the performance of this new model explained a substantially higher variance of neural              
activity than the original model (​R ​2 ​from behavioral + “network” model: 50.8​±​1%; behavior-only model:              
25.7​±​0.9%; Fig 4b).  
 
We examined the spatial structure of the signal and noise correlations by considering all simultaneously               
recorded pairs of neurons (​n ​=1492; Fig. 4c). Signal correlation was defined as the pairwise correlation               
between the prediction of the behavior-only encoding model for each neuron; noise correlation was              
defined as the pairwise correlation between the residuals of the same model. The signal correlation               
decreased with distance between neurons during the cue period (​r ​=-0.12, ​p​<7x10​-6​), but not the outcome               
period (​r ​=-0.03, ​p​<0.16). This is consistent with the results from the previous analyses, which had               
suggested specialized and spatially organized responses during the cue period (Fig. 3e) in contrast to               
widespread reward responses during the outcome period (Fig. 2a,c). On the other hand, the noise               
correlations decreased similarly with distance during both the cue period (​r ​=-0.2, ​p​<1x10​-14​) and the              
outcome period (​r ​=-0.16, ​p​<2x10​-9​), consistent with the idea that noise correlations arise from electrical              
synapses or shared inputs between neighboring neurons. These findings were confirmed using an             
alternative method for calculating noise correlations ​30​,​31​ (Extended Data Fig. 11). 
 
Are the widespread reward responses in VTA DA neurons during the outcome period consistent with               
reward prediction error (RPE)? We first confirmed that we can replicate classic RPE during pavlovian               
conditioning with 2-photon imaging (Fig. 5a-c). We then sought to determine to what extent reward               
expectation modulates reward responses in our decision making task. In this regard, a strength of our task                 
is that it engages two separable dimensions of reward expectation: previous trial outcome, and trial               
difficulty (Fig. 5d). If DA neurons reflect RPE, we would expect reward responses to be higher whenever                 
reward expectation is low, for both dimensions of reward expectation. Indeed, across the population,              
reward responses were modulated by expectation in a manner that was consistent with RPE (Fig. 5e,f;                
median d’ = 0.1 comparing reward responses across both previous trial outcomes, p< 4x10​-11 ; median d’=                 
0.095 comparing reward responses based on median splitting trial difficulty, p<3x10​-5​). Interestingly,            
across neurons, the extent of modulation by each dimension of reward expectation was (weakly)              
correlated, suggesting that neurons are modulated similarly by each type of RPE, rather than being               
specialized for one type (Fig. 5g; 𝜌 = .18, p < 0.005, pearson correlation between the RPE d’ values for                    
previous trial outcome and trial difficulty for all reward responsive neurons, ​n​=243). In addition, reward               
responses in all but one functionally defined clusters are significantly modulated by RPE (Fig. 5h,i). 
 

5 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2018. ; https://doi.org/10.1101/456194doi: bioRxiv preprint 

https://paperpile.com/c/EMAgOi/aYwR+WGBr+mYtm
https://paperpile.com/c/EMAgOi/sP8S
https://paperpile.com/c/EMAgOi/Ef3R
https://doi.org/10.1101/456194


 

In summary, we have described organizational principles of the DA system: neurons display specialized              
and anatomically organized responses to non-reward variables, while the same neurons convey a less              
specialized reward response. These conclusions depended on combining, for the first time, a             
high-dimensional behavioral task (6 quantified behavioral variables) with high-dimensional neural          
recordings (>300 identified VTA DA neurons).  
 
Considering the functional and anatomical organization reported here, alongside the established           
topography between DA neurons and their downstream targets ​25,32–34​, we can predict that specific              
downstream targets are likely to receive information from DA neurons about reward and only a subset of                 
non-reward variables. Thus, this organizational structure ​may greatly simplify the question of how             
downstream circuits correctly interpret the wide range of non-reward signals encoded by midbrain DA              
neurons. A major open question is how downstream targets utilize these specialized non-reward signals.              
One possibility is that these signals ​reinforce downstream activity patterns related to the encoded variable,               
altering the probability that the behavior is repeated (in analogy to the established reinforcement function               
of reward responses ​35​,​17,36,37​). Alternatively, or in addition, they may serve to enhance ongoing activity               
patterns ​38​, influencing the vigor of the ongoing behavior ​39,40​, but not necessarily the probability of it                 
being repeated in the future. New experiments will likely be designed to address these important               
hypotheses. 
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Figure 1 ​​. ​2-photon imaging of VTA DA neuron during navigation and decision making in virtual reality​​.  
a, ​​Schematic of the behavioral and imaging setup. DLP: Digital Light Processing. pmt: photomultiplier tube. dm:                
dichroic mirror. tl: tube lens. ​b, Schematic of an example trial in the virtual T-maze. In the central stem of the maze,                      
the mouse is presented with transient, Poisson-distributed visual cues to the left and right (“cue period”). At the end                   
of the central stem, turning to the arm side with more cues results in reward delivery, while turning to the other arm                      
results in a tone and a 3s timeout. ​c, Psychometric curves of all behavioral sessions that correspond to data in this                     
paper. Gray lines are individual sessions. Circles and bars are mean±s.e.m. Black line is a logistic fit to the mean                    
across sessions. ​d, Schematic of the surgical strategy. ​e, Fields of view through the GRIN lens for 4 example mice.                    
The horizontal white bars are 20 um scale bars. ​f, Left: Simultaneously recorded fields of view through the green                   
and red channels. Right: traces from 4 example neurons during 6 consecutive trials. The bars below the traces                  
indicates the timing of each epoch within each trial: cue period (grey), delay period (blue), outcome period (pink).                  
Water drop indicates reward delivery. 
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Figure 2 ​​. ​Quantifying VTA DA neuron responses to specific behavioral variables in the task. ​a, ​​Neural activity                 
in relation to the following behavioral variables: position along the central stem of the maze, kinematics (speed,                 
acceleration, view angle), cues (contralateral or ipsilateral relative to the recording side), accuracy (whether or not                
the mouse made the correct choice at the end of the maze), previous trial reward (whether or not the previous trial                     
was rewarded), and reward (versus no reward). The first 5 variables are quantified during the cue period while the                   
final variable (reward) is quantified during the outcome period. For each variable, the upper panel is the average                  
ΔF/F of an example neuron while the lower panel contains all significant neurons, with each row representing the                  
average response of each neuron each (neuron is normalized by peak activity; grey arrow indicates the example                 
neuron in heatmap). Statistical significance is assessed by comparing the F-statistic obtained from a nested model                
comparison with or without each behavioral variable to a distribution of the same F-statistic obtained from shuffled                 
data (see Methods). In the case of position, accuracy and previous reward, the averaging is over trials. In the case of                     
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kinematics, the averaging is over timepoints. In the case of cues and reward, the averaging was across event                  
occurrences. For the event variables (cues and reward), the average baseline activity was subtracted (in the second                 
preceding the event). For the example neurons, false colors are s.e.m. ​b, Schematic of the encoding model used to                   
quantify the relationship between all behavioral variables and the activity of each neuron (see Methods). Inset:                
predicted and actual ΔF/F across 5 trials for one neuron; more examples in Extended Data Fig. 4. ​c, Relative                   
contribution of each behavioral variable to explained variance of the neural activity, averaged across neurons (error                
bars are s.e.m.).  ​d, ​​ Same as ​c ​​, but the full distribution (rather than average).  
 

 
 
Figure 3 ​​. ​Functional and spatial organization      
of VTA DA neurons. ​a, The clustering       
procedure. Left: Relative contribution of each      
behavioral variable to explained variance of      
neural activity for each neuron before clustering       
(all neurons and variables are shown). Right:       
Same data grouped based on GMM clustering       
(ordered within each cluster by each neuron’s       
probability to belong to the cluster). The colored        
bars to the right of the panel denote the cluster          
identity. Neurons with <75% probability to      
belong to any cluster not assigned to a cluster         
(<18% of neurons unassigned). Bottom middle:      
BIC scores used to select the optimal number of         
clusters. ​b, Distributions of negative     
log-likelihood of cluster model for shuffled data       
(gray) and real data (red) indicates a significant fit         
of the clustering model. Top: Shuffling of relative        
contributions is across variables. Bottom:     
Shuffling is across neurons. ​c, Left: Average       
relative contributions of cue period behavioral      
variables to neural activity for each cluster. Right:        
average relative contribution of reward for each       
cluster. ​d, Recovered locations within the VTA of        
each neuron along the A/P and M/L axes. Cluster         
identity denoted by color. ​e, Relative      
concentration ​of neurons belonging to each      

cluster across the A/P (left) and M/L (right) axes. Dashed lines indicate the 95% confidence interval (see Methods).                  
Relative concentration derived by normalizing the concentration of neurons belonging to each cluster by the               
concentration of all imaged DA neurons (see Methods). Significant spatial structure for each cluster along each axis                 
was assessed by comparing the standard deviation of the relative concentrations of the data with that obtained from                  
shuffled distributions (shuffling based on randomizing locations of neurons relative to cluster identity, see Methods               
for details; p-values are Holm-Bonferroni corrected for the 10 conditions).  
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Figure 4 ​​. ​Spatial organization of     
signal and noise correlations in     
VTA DA neuron pairs​​. ​a,     
Schematic of the expanded    
encoding model (behavioral +    
network model) which includes one     
additional predictor compared to the     
model in ​2b​​: the 1​st principal      
component of the activity of all      
simultaneously recorded neurons   
other than the neuron being     
modeled. ​b, Comparison of the     
performance of the behavioral-only    
and the behavioral + network     
encoding models indicates high    
noise correlations. ​c, Signal and     
noise correlations for all    
simultaneously recorded pairs   
during the cue period (left) and the       
outcome period (right) as a function      
of the distance between the neurons      
(​n​=1492). Signal correlations   
decline with distance during the cue      
period, but not the outcome period,      
whereas noise correlations decline    
during both epochs. 
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Figure 5 ​​. ​Two 
separable dimensions 
of reward expectation 
modulate reward 
responses in DA 
neurons during 
decision making​​.​ ​​a, A 
Pavlovian conditioning 
paradigm was employed 
to confirm that 2-photon 
imaging can replicate 
classic RPE responses.  
A 2s tone preceded 
reward delivery during 
training. During the test 
session, in a subset 
trials, the tone was 
omitted (“unexpected 
reward”) or the reward 
was omitted 
(“unexpected 
omission”).  ​b, ​​In 
example cells, reward 
responses are modulated 
by expectation, 
consistent with RPE. d’ 
quantifies the RPE 
modulation of reward 
responses, and were 
calculated based on the 
average activity in the 
2s following reward 

delivery.  ​c, ​​. Similar RPE modulation is evident in the population average (top), and in a histogram of d’ 
comparisons of unexpected and expected reward responses (bottom). n=8 mice and n=65neurons. ​d, ​​. In our decision 
making task in VR, there are two separable dimensions of reward expectation that could theoretically modulate 
reward responses: trial difficulty, and previous trial outcome. ​e, ​​ Individual DA neurons can be modulated by one, 
neither, or both RPE dimensions. ​f, ​​  Across the population, reward responses are modulated by reward expectation 
in a manner that is consistent with RPE, for both dimensions of reward expectation. ​g, ​​  Across the population, there 
is a significant (but noisy) correlation between the 2 dimensions of RPE. ​g, ​​  Reward responses in most functionally 
defined clusters are significantly modulated by RPE across at least 1 dimension. 
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Extended Data Figure 1.    
Features of the VR task. a,      
Example screenshots of the    
virtual world presented to the     
mouse in different positions    
along the maze. ​b, Activity     
trace during 6 consecutive    
trials of an example neuron     
that was significantly   
modulated by position in the     
central stem. The colored    
strip below the trace    
describes the trial epochs:    

cue period (gray), delay period (blue), outcome period (pink). Reward delivery is denoted by a water droplet. 
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Extended Data  
Figure 2.  
Simultaneous 
calcium imaging  
and cell-attached  
recording in DA   
neurons in the   
VTA of  
Ai148xDat::Cre 
mice. a, Relative   
change in  
fluorescence (top)  
and cell-attached  
current (bottom)  
recorded 
simultaneously. ​b,  
Average 
spike-triggered 
fluorescence 
(average over n=126   
spikes). ​c, Zoomed   
in spike waveform   
for the same cell as     
in (a). ​d, Examples    
of bursts from 3    
different DA cells,   
showing 
cell-attached current  
(top) and change in    
fluorescence 
(bottom). The spike   
times are shown   
with black bars   

under the fluorescence trace. The red horizontal bars under the current traces show the timing of NMDA puffs (see                   
Methods). ​e, Example fluorescence trace (green) and reconstructed fluorescence (light blue). Fluorescence was             
reconstructed by convolving the spikes times (black bars, bottom) with an approximate gcamp kernel from (ref) (see                 
Methods). Thus, this simple analysis shows that GCaMP signals in dopamine neurons can faithfully follow the                
spikes of DA  neurons. 
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Extended Data Figure 3 ​​. ​Motion correction procedure. ​​We developed a custom motion correction procedure to               
compensate for both non-rigid slow drift of the field of view (timescale: 10s of min) as well as non-rigid fast motion                     
(timescale: 10s of ms). Importantly, the procedure avoids any use of interpolation, which can produce motion                
artifacts. The procedure consists of the following main steps: ​1 (blue box) the entire movie is divided in                  
non-overlapping 50 s chunks; in each chunk we perform rigid motion correction using standard cross-correlation               
methods (on the red channel). The template for each chunk is calculated by dividing the chunk into non-overlapping                  
sections of 100 frames, calculating the mean image of each section, and obtaining the median of the mean images. ​2                    
(red box) we use a non-rigid algorithm for image registration to align all the templates. The algorithm outputs shift                   
parameters for every pixel and template. Separately, we manually draw patches that include neurons of interest in                 
the first template. For each template, we use the shift parameters of all the pixels in each patch to estimate the                     
average motion of the patch. We use that information to crop the patch from each 50 s chunk of the movie. ​3 (orange                       
box) we perform rigid motion correction (as above) on the concatenated patch movies, down-sample by a factor of 2                   
(to increase the signal strength) and then perform rigid motion correction again. ​4 (green box) we extract the patch                   
templates by using the mean projection, and hand draw ROIs of the objects of interest. See Methods for a detailed                    
explanation of motion correction algorithm, and see Supplemental Video 1 for an example video before and after                 
correction. 
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Extended Data Figure 4.    
GCaMP fluorescence and   
corresponding predictions  
from example DA neurons​​.    
∆F/F traces for 10 example     
neurons during 6 consecutive    
trials (green). Overlaid are the     
predictions of the behavioral    
model for these trials (blue). The      
colored strip below each trace     
denotes the trial epochs: cue     
period (gray), delay period    
(blue), outcome period (pink).    
Reward delivery is denoted by a      
water droplet. 
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Extended Data  
Figure 5. ​Selection   
of the encoding   
model. a ​​, ​Mean   
(across neurons) of   
percent variance  
explained (tested  
with crossvalidation)  
by the final model    
(red) and other   
models where a   
variables was either   
removed (blue) or   
added (green). See   
Methods for  
descriptions of all   
variables that were   
tested. All models   
for which a variable    
was removed from   
the final model   
performed 
significantly worse,  
based on comparing   
R​2 for all neurons    
(p<2x10​-6 ​, paired  
t-test, 
Holm-Bonferroni 
correction for all   
model comparisons).  
For models where   
variables were added   
to those in the final     
model, the  
performance either  
did not exhibit a    

significant difference, or was degraded. See Methods for complete description of all models. ​b​​, ​Comparison of                
performance for all neurons of the final model (x-axis) and all the other models. Each panel shows the comparison                   
with one model; significance of the paired t-test (After Holm-Bonferroni correction) is shown in each panel. 
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Extended Data Figure 6. ​Average activity and relative contributions of different behavioral variables for              
several example cells. ​​The panels show activity averages time-locked to different behavioral variables for 6               
example cells. The percentage of relative contribution of the corresponding behavioral variable to the activity of                
each cell is displayed in each panel. 
 
 
 
 
 
 

17 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2018. ; https://doi.org/10.1101/456194doi: bioRxiv preprint 

https://doi.org/10.1101/456194


 

Extended Data Figure 7. ​Number of behavioral variables        
significantly encoded per neuron across the DA population. The         
histogram of the number of behavioral variables during the cue period           
for which neurons had a significant response to is shown for all            
neurons (grey) and for the subset of neurons that had a significant            
reward response (pink). Statistical significance is assessed by        
comparing the F-statistic obtained from a nested model comparison         
with or without each behavioral variable to a distribution of the same            
F-statistic obtained from shuffled data (see Methods).  
 
 

 
 
Extended Data Figure 8.    
Robustness of clustering results,    
assessed based on comparing    
clustering results for each neuron     
between each half of trials ​​. ​a,      
Average relative contributions of    
clusters obtained by separately    
analyzing two random halves of the      
trials for each neuron. Correlations     
between the average relative    
contributions in each cluster across the      
two sets are as follows: Position: 𝜌 =        
.99, p < 8x10​-5 ​. Cues: 𝜌 = .99, p <          
4x10​-4 ​, Kinematics: 𝜌 = .99, p <       
2x10​-4 ​. Accuracy: 𝜌 = .99, p < 3x10​-4 ​.        
Previous Reward: 𝜌 = .99, p < 0.001.        
Reward Response: 𝜌 = .48, p < 0.42.        
b, Normalized confusion matrix for     
the cluster identities of each neuron,      
obtained by clustering the two random      
halves of the data. The main diagonal       
represents neurons for which the     
cluster identities matched (79.1%).    
Note that chance level of matching is       
20%. The matrix was calculated for      
neurons for which a cluster was      
assigned in the procedures for both      
halves of the data (>75% probability      
to belong to a cluster, n=91). 
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Extended Data ​​Figure 9. ​Summary of GRIN lens        
locations ​​. ​a, Example of lens location recovery.       
Coronal histological slices stained for Tyrosine      
hydroxylase (green) were aligned to atlas image       
sections. The center of the lens was marked and its          
position in common coordinates was recovered by       
using the atlas measurements. ​b, Recovered centers of        
GRIN lenses from all mice (blue ellipses) are shown         
on top of the atlas images. 
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Extended Data Figure 10.    
Relative contributions of   
each behavioral variable as    
a function of neuron location     
along the A/P and M/L axes,      
and mixed effect model to     
account for individual   
differences. ​​In each row, the     
relative contribution of a    
behavioral variable is   
correlated with the A/P (left)     
or M/L (right) locations. The     
correlation value and   
significance (after  
Holm-Bonferroni correction  
for all tests) is shown in the       
panel. The linear fits of the      
entire population is shown by     
a black line, and linear fits of       
neurons belonging to   
individual mice (which had    
more than 5 neurons) are     
shown by gray lines. To test      
statistically for a dependence    
on position while accounting    
for individual differences, we    
additionally considered a   
mixed effect model, in which     

the relative contribution was the dependent variable, the A/P, M/L locations and their interaction were independent                
fixed effects, and the mouse identity was a random effect. We obtained the following p-values (F-test for the fixed                   
effects): Kinematics: p<0.0007, Position: p<0.12, Previous Reward: p<0.007, Cues: p<0.36, Accuracy: p<0.002.            
This indicates that the relative contributions are dependent on spatial location in the case of kinematics, previous                 
reward and accuracy, even when accounting for the “average offset” from individual mice. In the case of Previous                  
Reward, but not the other variables, the mixed effect model gave better fits when including the interaction between                  
M/L and A/P. The improved fit with the interaction explains the lower p-values for the full mixed effect model for                    
Previous Reward compared to the direct correlation between the relative contribution of Previous Reward with A/P                
or M/L alone, as shown in this figure.  
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Extended Data Figure 11. ​Noise correlations estimated by an alternative method ​​. Here, noise correlations were               
estimated by calculating the increase in variance explained by the behavioral-only encoding model when the second                
neuron activity was added to it as a predictor ​30,31​. The noise correlation estimate is shown for all neuronal pairs                    
(n=1492) during the cue period (left) and outcome period (right). 
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Extended Data Figure 12. ​Validation of the encoding model​​. ​a, Average absolute value of the correlations for all                  
pairs of predictors across all behavioral variables during the cue period (average across all predictor pairs and mice).                  
b, Average relative contributions assessed separately using two random halves of the data. For each neuron we                 
randomly divided all the trials where the neuron was recorded into 2 separate subsets while matching the number of                   
rewarded and previously rewarded trials between the subsets. Each subset of trials was then used to calculate the                  
relative contributions of the behavioral variables. (𝜌 = .99, p < 3x10​-4 for all behavioral variables, 𝜌 = .8, p < 0.11                      
when omitting the reward response contributions). ​c, Average relative contributions assessed separately using 3              
different approaches: 1- No refitting (NR; used in the paper). 2- No refitting + LASSO regularization (NR+L). 3-                  
Refitting (R). Correlations between the results of the different approaches are as follows: 𝜌(NR,NR+L) = 1, p <                  
7x10​-9 ​. 𝜌(NR,R) = .99, p < 1x10​-4 ​. 𝜌(NR+L,R) = .99, p < 8x10​-5 ​. When omitting the reward response contributions:                   
𝜌(NR,NR+L) = 1, p < 2x10​-5 ​. 𝜌(NR,R) = .91, p < 0.04. 𝜌(NR+L,R) = .92, p < 0.03. Lasso regularization was applied                      
using the ‘lasso’ function in Matlab; the mean square error (MSE) of the model was estimated using 5-fold                  
crossvalidation, and we chose the lambda value that minimized the MSE. The results with lasso regularization were                 
almost identical to the result without regularization, suggesting that there was not significant overfitting in our                
model. ​d, Results of the clustering analysis performed on the contributions calculated using the refitting approach.                
Left: The average relative contributions of cue period behavioral variables to neural activity for each cluster. Right:                 
average relative contribution of the reward response for each cluster. ​e, Normalized confusion matrix for the cluster                 
identities of each neuron, obtained by comparing the clustering of the relative contributions based on either the                 
No-refitting or the Refitting approach (see Methods for description of 2 approaches). The main diagonal represents                
neurons for which the cluster identities matched (97.8%). 
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Maze # 1 2 3 4 5 6 7 8 9 

Start region length (cm)  5 30 30 30 30 30 30 30 30 

Cue region length (cm)  45 100 200 220 220 220 220 220 220 

Delay region length (cm)  10 20 20 50 80 80 80 80 80 

Permanent cues (y/n)  y y y y y n n n n 

High-cue-probability side 
poisson mean  

0.45 4 10 11 8.8 8.8 7.1 6.8 6.4 

Low-cue-probability side 
poisson mean  

none none none none none none 0.6 0.9 1.3 

 
 
Extended Data Table 1. ​Details of the shaping procedure. ​​The tables lists the parameters of the mazes                 
progressively used during the shaping of the behavior. The “permanent cues” field indicates if the cues were                 
presented at the beginning of the trial; otherwise, each cue was presented when the mouse was 10 cm away from its                     
location. High- and Low-cue-probability side poisson means indicate the means of the poisson distribution from               
which the number of cues presented on each side were drawn (at least 1 cue was always drawn); “none” indicates                    
that no cues were presented for the low-probability side on any trial in that maze. 
 
 
Supplementary Video 1. ​​Raw (left) and motion-corrected (right) video of DA neurons imaged through a GRIN lens                 
during behavior. For visualization, the movie was sped up by a factor of 5 by taking a rolling average of 5 frames                      
and downsampling by a factor of 5. 
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Methods 
 
Animals and surgery 
 
All experimental procedures were conducted in accordance with the National Institutes of Health             
guidelines and were reviewed by the Princeton University Institutional Animal Care and Use Committee              
(IACUC). A total of 28 mice were used in this study. For the virtual reality experiments, we used either                   
male DAT::IRES-Cre mice (n=14, The Jackson Laboratory strain 006660) or male mice resulting from              
the cross of DAT​IRES​cre ​mice and the GCaMP6f reporter line Ai148 mice​41 (n=6, Ai148xDAT::cre, The               
Jackson Laboratory strain 030328). For the pavlovian conditioning experiments, we used male and female              
Ai148xDAT::cre mice (n=8). Mice were maintained on a 12-hour light on – 12-hour light off schedule.                
All procedures were conducted during their light off period. Mice were 2-6 months old. 
 
Mice between 8-12 weeks underwent sterile stereotaxic surgery under isoflurane anesthesia (3-4% for             
induction, .75-1.5% for maintenance). The skull was exposed and the periosteum removed using a              
delicate bone scraper (Fine Science Tools). The edges of the skin were affixed to the skull using a small                   
amount of Vetbond (3M). We injected 800nl of a viral combination of            
AAV5-CAG-FLEX-GCaMP6m-WPRE-SV40 (n=12) or AAV5-CAG-FLEX-GCaMP6f-WPRE-SV40    
(n=2; U Penn Vector Core) with 1.6x10​12​/mLtiter and AAV9-CB7-CI-mCherry-WPRE-rBG (U Penn           
Vector Core) with 2.3x10​12​/mL titer. Two such injections were made at stereotactic coordinates: 0.5 mm               
lateral, 2.6 or 3.8 mm posterior, 4.7 mm in depth. After the injections, we implanted a 0.6 mm diameter                   
GRIN lens (GLP-0673, Inscopix or NEM-060-25-10-920-S-1.5p, GrinTech) in the VTA (coordinates           
shown in Extended Data Fig. 9) using a 3D printed custom lens holder. After implantation, a small                 
amount of diluted metabond cement (Parkell) was applied to affix the lens to the skull using a 1ml syringe                   
and 18 gauge needle. After 20 minutes, the lens holder grip on the lens was loosened while the lens was                    
observed through the microscope used for surgery to ascertain there was no movement of the lens. Then, a                  
previously described titanium headplate was positioned over the skull using a custom tool and aligned               
parallel to the stereotax using an angle meter ​42 . The headplate was then affixed to the skull using                   
metabond. A titanium ring was then glued to the headplate using dental cement blackened with carbon. 
 
Virtual reality behavioral system 
 
In order to enable a navigation-based decision making task under head-fixed conditions, we used a virtual                
reality (VR) system similar to that described previously ​43,44 (​​Fig. 1a). Mice were held head-fixed under a                 
two-photon microscope using two custom headplate holders and ran on an air-supported, Styrofoam             
spherical treadmill that was 8-inch in diameter. We found that the precise alignment of the mouse on top                  
of the sphere was important for maintaining good behavioral performance; therefore, we used a custom               
alignment tool for this purpose. The sphere’s movement were measured using an optical flow sensor               
(ADNS3080) located underneath the sphere and controlled by an Arduino Due; this information was sent               
to the VR computer, running the ViRMEn software engine ​45          
(https://pni.princeton.edu/pni-software-tools/virmen) under Matlab, which displayed and controlled the        
VR environment. The measured sphere displacements (​dX and ​dY​, where Y is parallel to the long stem of                  
the T-maze) resulted in translational displacements in the virtual environment of equal length in the               
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corresponding axis. The speed of the mouse was given by , where was the time elapsed           √ dt
dX 2 + dt

dY 2   td      
from the previous sampling of the sensor. The mouse acceleration was the moment-by-moment change in               
speed. The mouse view angle in the virtual world was calculated as follows: first, we calculated the                 
current displacement angle as: . Then, the rate of change of the view    tan2(− X ign(dY ), dY |)ω = a d · s |           
angle ( ) was given by:θ  

ign(ω) in  dt
dθ = s · m e ,( 1.4|ω|( 1.2 ) − 1 2

π) − θ  

This exponential function was tuned to stabilize trajectories during the long stem of the maze, while                
allowing sharp turns into the maze arms (see ​20​ for more details). 
 
The display was projected using a DLP projector (Mitsubishi HD4000) running at 85 Hz onto a custom                 
toroidal screen with a 270˚ horizontal field of view. Reward delivery was accomplished by sending by a                 
TTL pulse from the VR computer to a solenoid valve (NResearch) which released a drop of a water to a                    
lick tube located slightly in front and below the mice’s mouth. The tone signifying trial failure was played                  
through conventional computer speakers (Logitech). The setup was enclosed in a custom-designed cabinet             
built from optical rails (Thorlabs) and lined with sound-absorbing foam sheeting (McMaster-Carr). 
 
Optical imaging and data acquisition 
 
Imaging was performed using a custom-built, VR-compatible two-photon microscope ​44​. The microscope            
was equipped with a pulsed Ti:sapphire laser (Chameleon Vision, Coherent) tuned to 920nm. The              
scanning unit used a 5mm Galvanometer and an 8 kHz resonant scanning mirror (Cambridge              
Technologies). The collected photons were split into two channels by a dichroic mirror (FF562-Di03,              
Semrock). The light for the green and red channels respectively were filtered using bandpass filters               
(FF01-520/60 and FF01-607/70, Semrock), and then detected using GaAsP photomultiplier tubes (pmts,            
1077PA–40, Hamamatsu). The signal from the pmts was amplified using a high speed current amplifier               
(59-179, Edmund). Black rubber tubing was attached to the objective (Zeiss 20×, 0.5 NA) as a light shield                  
covering the space from the objective to the titanium ring surrounding the GRIN lens. Double distilled                
water was used as the immersion medium. The microscope could be rotated along the medial-lateral axis                
of the mice which allowed alignment of that optical axes of the microscope objective and GRIN lens as                  
described previously for microprism imaging ​44​. Control of the microscope and image acquisition were              
performed using the ScanImage software (Vidrio Technologies; ​46​) that was run on a separate (scanning)               
computer. Images were acquired at 30 Hz at a resolution of 512 x 512 pixels. Average beam power                  
measured at the front of the objective was 40-60 mW. Synchronization between the behavioral logs and                
acquired images was achieved by sending behavioral information each time the VR environment was              
refreshed from the VR computer to the scanning computer via an I2C serial bus; behavioral information                
was then stored in the header of the image files. 
 
Behavioral training 
 
Seven days after the surgery, mice were started on a water restriction protocol, with a daily allotment of                  
water of 1 – 1.5 ml. Mice were monitored for signs of dehydration or drops in body mass below 80% of                     
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the initial value. If any of these conditions occurred, mice were given ​ad libitum access to water until                  
recovering. The animals were handled daily from the start of water restriction. 5 days after starting water                 
restriction and handling, mice began training in the behavioral setup. Training consisted of a shaping               
procedure with 9 levels of T-mazes with progressively longer stem length and cognitive difficulty              
(Extended Data Table 1). After shaping concluded, in each session the first few trials (5-30) were                
warm-up trials drawn from mazes 5-8, and then trials from the final maze (#9) were used for the                  
remainder of the session; only the portion of the session with maze #9 trials was used for all analyses in                    
the paper. The mice typically received their daily allotment of water during task performance; if not, the                 
remainder was provided to them at the end of the day. 
 
Details of the behavioral task 
 
At the beginning of each trial, mice were presented with the start of a virtual T-maze. After 30 cm (Start                    
region) the cue region began, in which cues randomly appeared on either side of the corridor. The number                  
of cues presented were sampled from a Poisson distribution, with means of 6.4 to one of the sides, and 1.3                    
to the other. In order to obtain better estimation of the psychometric curves, we additionally oversampled                
easy trials by having 5% of trials with a difference in # cues between the sides of 12 or more (using the                      
same probability distributions). The identity of the high-cue-probability and low-cue-probability sides           
(left or right) were recalculated each trial to randomize the task and avoid side bias ​20​. The locations of the                    
cues were randomly assigned along the cue region, such that there was a minimum of 14 cm between                  
cues. Each cue was presented when the mouse arrived 10 cm from its location, and disappeared once it                  
was 4 cm behind the mouse. The portion of the maze where cues were presented (cue region) was 220 cm                    
long, and after it the stem of the T-maze continued for another 80 cm where no cues were presented                   
(delay region). At the end of the T-maze the mouse had to enter one of the arms, and full entry constituted                     
a choice. Turning into the correct (more cues) side would elicit a water reward (6.4 uL), while an                  
incorrect choice elicited a tone (pulsing 6 to 12 KHz tone for 1 s). At the time of reward or tone delivery,                      
the visual environment froze for 1 s, and then disappeared for 2 s (after a successful trial) or 5 s (after a                      
failed trial) before another trial was started.  
 
Pavlovian conditioning 
 
After water restriction and handling, mice were habituated to head fixation for 2-3 sessions. Training               
consisted of 5 sessions (1 session/day); each session consisted of 50 reward deliveries (8 ul of                
water/reward). During training, each reward was preceded by a 2s tone that ended at the time of reward                  
delivery. The time between a reward and the next tone delivery was sampled from an exponential                
distribution with a mean of 40s. The tone consisted of a sum of multiple sine waves with frequencies of 2,                    
4, 6, 8 and 16 Khz, and an amplitude of 70dB. All of the mice exhibited anticipatory licking by the end of                      
the 5 days (increase in lick rate after tone presentation but before reward delivery). Some of the mice were                   
previously trained for several days in a similar protocol where the tone amplitude was 60dB and the time                  
between reward and subsequent tone was sampled from a uniform distribution between 5 and 15s; these                
mice did not exhibit anticipatory licking until trained in the final protocol. After training, RPE was                
assessed in a single test session that consisted of 64 trials; 50 of those trials were identical to the training                    
trials (tone followed by reward), 7 trials were unexpected reward trials (reward delivery with no               
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preceding tone) and 7 trials were unexpected omissions (tone not followed by reward). In all cases the                 
intertrial interval was sampled from an exponential distribution with a mean of 40 s. Trial identity was                 
sampled randomly with the following exceptions: 1- the first 5 trials were standard trials (tone+reward).               
2- the first 2 non-standard trials were unexpected reward trials. 
 
Session and trial selection 
 
We selected sessions and trials such that each recorded neuron would only appear in one session, and                 
during which mice were engaged in the task. Our dataset contained one main imaging field/mouse, with                
the exception of three mice, in which we obtained two separate imaging fields at different depths. Thus,                 
we analyzed 23 sessions from 20 mice (one session per imaging field). Sessions had at least 100 trials and                   
mice performed at least 65% correct. Mice were between 3-6 months old during imaging and were trained                 
for an average of 30 sessions before data collection (a range of 18-51 training sessions). 
 
We removed a small fraction of trials in which mice were not engaged in the task, based on the following                    
criteria: i) We calculated a smoothed performance measure by processing the binary trials success vector               
through a zero-phase filter composed of a 21 point centered Gaussian with std. dev.=3. Trials where this                 
measure was less than 0.5 were removed. ii) A sequence of 5 or more trials with the same choice and                    
success rate equal or less than 20% was removed. iii) A sequence of 10 or more trials with the same                    
choice was removed. The removed trials comprised 15% of trials per session on average. Most of these                 
trials occurred close to the end of the session when the animals tended to exhibit decreased performance. 
 
Motion correction procedure 
 
Deep brain imaging can be associated with spatially nonuniform fast motion (frame to frame), as well as                 
spatially nonuniform slow drift of the field of view (over several minutes). To perform accurate motion                
correction despite the spatial non-uniformity, we divided the video into small regions (‘patches’) that had               
relatively uniform motion, and separately corrected the motion within each patch, as described below              
(schematic of procedure in Extended Data Fig. 3; example video before and after motion correction in                
Supplemental Video 1). Motion correction was performed on the red channel of the recording when               
available, otherwise it was performed on the green channel (n=6). 
 
Before dividing the video into patches, we first performed rigid motion correction using a standard               
normalized cross-correlation method, to eliminate any spatially uniform motion (‘matchTemplate’          
function in the openCV package in Python). This correction was performed on non-overlapping 50s video               
clips to eliminate concerns that slow drift over the course of minutes would degrade performance. The                
template for the cross-correlation was calculated by dividing each clip into non-overlapping sections of              
100 frames, calculating the mean image of each section, and obtaining the median of the mean images.                 
Before these motion correction steps, the video was pre-processed as follows: i- thresholded by              
subtracting a constant number and setting negative values to 0, such that the lower ~50% of pixels were 0,                   
ii- used the openCV function ‘erode’ (with a scalar ‘1’ kernel), iii- convolved with a Gaussian (std. dev. =                   
2 pixels). Motion correction and template calculation were performed iteratively 10 times or until all               
absolute shifts were less than 1 pixel in both axes. Finally, the 50s clips had to be aligned to each other.                     
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This required generating a ‘master template’ for the entire video, and then using the same normalized                
cross-correlation procedure as before (‘matchTemplate’ function). The master template was calculated by            
taking the median of the templates of all clips.  
 
The next step of motion correction involved compensating for spatially nonuniform, slow drift by              
estimating the drift in local patches. Patches were defined manually around neurons of interest to contain                
objects that drifted coherently (patch width ~80-160 pixels). In order to estimate the drift of each patch                 
over time, we used a non-rigid image registration algorithm (demons algorithm, ‘imregdemons’ function             
in matlab). This algorithm outputs a pixel by pixel correction. However, directly applying this correction               
risks distorting the shape of the neurons or the amplitude of signals. Therefore, we applied a uniform                 
correction for each patch, based on the average shift of all pixels in the patch (based on the demons                   
output). We implemented the demons algorithm on the templates from the 50s clips described in the                
previous paragraph, again using the median of these templates as the ‘master template’. The registration               
and master template was computed iteratively 20 times, or until the increase in the average correlation                
between each corrected template and the overall template was less than the s.e.m. of these correlations.                
We found that the performance of the non-rigid registration improved if the templates were first processed                
through a local normalization procedure​ ​47​.  
 
Finally, we performed standard rigid motion correction using the normalized cross-correlation method on             
each patch and each clip. We then repeated the rigid motion correction after taking a rolling mean of                  
every two frames and downsampling the video by a factor of two. This increased signal strength; we used                  
this downsampled video for subsequent analysis. After correcting for motion within clips, we had to               
correct across clips. To this end, we performed rigid motion correction on the clip templates. The motion                 
correction code will be released on github upon acceptance of the manuscript. 
 
Calculation of ∆F/F from the motion-corrected images 
 
The first step in calculating ∆F/F for each neuron was to define the neuron’s ROI, as well as the annulus                    
around that ROI that would be used for neuropil correction ​48,49​. Each neuron’s ROI was defined manually                 
using the mean and std projections of the movie as well as inspecting a movie that was downsampled by a                    
factor of 5. An initial automatic annulus was generated by enlarging the borders of the ROI twice (by 5                   
um and 10 um); the annulus was the shape contained between the two enlarged borders, where we expect                  
that observed activity would be due to neuropil but not the cell itself. Next, we manually reshaped the                  
annulus region to avoid any visible dendrites, processes or cell bodies, while approximately maintaining              
its original area. 
 
In order to correct for neuropil contamination, we subtracted a scaled version of the annulus fluorescence                
from the raw trace ( ​F​corr​(t)= F ​raw​(t) ​- ϒ·F​annulus ​(t) ​), where ​F​raw​(t) is the mean fluorescence in the neuron’s                   
ROI at time ​t​, ​F​annulus ​(t) is the mean fluorescence in the corresponding annulus ROI at time ​t​, and ϒ is the                     
correction factor ​26,48​). A correction factor is needed since the neuropil activity is estimated in the imaged                 
plane, while the actual contamination on the ROI is from out-of-plane fluorescence. The correction factor               
used was 0.58, which is in line with previously reported correction factors in GRIN lens imaging ​26​,​50 and                  
resulted in positive corrected traces. After neuropil subtraction, smoothing was performed by processing             
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the corrected trace through a zero-phase filter using a 25 point centered Gaussian with 1.5 samples points                 
std.  
 
∆F/F at time ​t was defined as (F(​t ​)-F ​0​(​t​))/F ​0​(​t​), where F ​0​(​t​) is the 8th percentile of the smoothed and                  
neuropil corrected trace based on the preceding 60 seconds of recording.  
 
Selection of neurons in the dataset 
 
Neurons were selected for analysis based on visual inspection of recording stability, using both the               
images as well as ∆F/F traces. Only neurons that were stable for at least 50 trials were included in the                    
dataset. The full dataset comprised of n=303 neurons from n=20 mice. Of these, n=233 were considered                
to have a good fit by the encoding model described in the next section (>5% variance explained by the                   
model during the cue period; reduced dataset). The full dataset was used in Fig. 2a, Fig. 4b, Extended                  
Data Fig. 5, and Extended Data Fig. 7. For analyses where the specific output values of the encoding                  
model were important, we used the reduced dataset composed of neurons for which the encoding model                
had a good fit (Fig 2c,d, Fig. 3, Fig. 4c, Extended Data Fig. 8, and Extended Data Fig. 10, Extended Data                     
Fig. 11, and Extended Data Fig. 12). 
 
Encoding model 
 
In order to quantify the contribution of behavioral variables to neural activity, we employed an encoding                
model, which was a multiple linear regression with the ∆F/F trace of each neuron as the dependent                 
variable, and predictors derived from the behavioral variables as the independent variables (Fig. 2b). To               
derive the predictors, we divided the behavioral variables into 3 classes: “event” variables, “whole trial”               
variables, and “continuous” variables. “Event” variables (left and right cues, reward) were variables that              
occurred in discrete points in time. To derive the predictors for these variables, each event was convolved                 
with a 7 degrees-of-freedom regression spline basis set with a 2 s duration, generated using the ‘bs’                 
package in R. “Whole-trial” variables (accuracy, previous reward) were variables whose value remained             
constant for an entire trial. These were coded as binary predictors, with a value of ‘1’ in all time points of                     
trials where the animals received a reward (accuracy) or trials after receiving a reward (previous reward)                
and ‘0’ elsewhere. “Continuous” variables (position and kinematic variables) could change their value at              
every time point. In the case of kinematics, we included 3 “sub-variables” that were closely related to                 
each other: velocity, acceleration, and view angle. Up to 3 predictors were generated per continuous               
variable (or sub-variable), by raising each variable to the 1​st​, 2​nd and 3​rd powers. The optimal number of                  
predictors to use per continuous variable (for each neuron) was assessed by 5-fold cross-validation. (The               
reason that we used position along the maze as a continuous variable, rather than time in trial, was a                   
previous study ​5 which found that on a T-maze in which rats occasionally paused, DA activity seemed to                  
be more closely related to position than time.) 
 
The encoding model thus was: 
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the numbers of Event, Whole-trial, and Continuous variables correspondingly. is the number of          N  

sp      
degrees of freedom for the spline (7 in all cases), is the maximal polynomial degree used for each           d k          
continuous variable predictors, the values are the regression coefficients for the different predictors,    β           
and is a Gaussian noise term. The values were calculated using the least squares criterion after ε        β           
z-scoring the predictors (‘glmfit’ matlab function). ​This code will be released on github upon acceptance               
of the manuscript. Example single-trial fits for several cells are shown in Extended Data Fig. 4. 
 
Model comparison 
 
We tested several behavioral variables on order to optimize the encoding model. The behavioral variables               
used in the final model (position, cues, kinematics, accuracy, previous reward) were those whose removal               
resulted in a significant degradation of the fit of the model prediction to the data across the population                  
(Extended Data Fig. 5). Improved fits were assessed by comparing the R​2 for each model (obtained with                 
5-fold crossvalidation) with a paired t-test across the population of neurons.. We also considered other               
behavioral variables that did not improve the fit and therefore were not included in the final model (see                  
Extended Data Fig. 5). The other variables that we considered are: ​early and late cues ​: a separate set of                   
predictors was calculated for cues appearing in the 1​st half of the cue region and cues appearing in the 2​nd                    
half. ​#L - #R​: a predictor that at each timepoint takes the value of the current difference between left-and                   
right-side cues that had appeared in the trial. | ​#L - #R| ​: a predictor that at each timepoint takes the absolute                    
value of the current difference between left- and right-side cues that had appeared in the trial. ​#L, #R​: two                   
predictors that at each timepoint take the value of the current number of either left- or right-side cues that                   
had appeared in the trial. ​P(Reward on right) (nominal) ​: a predictor that takes the current probability of                 
the right side being rewarded based on the number of left- and right-side cues that had appeared in the                   
trial and the sampling statistics of the cues. Given the Poisson distributions from which the cues were                 
sampled (and ignoring the constraint of minimum distance between cues) this probability is given by the                
following logistic function: , where ​#L​, ​#R are the current counts of left- and right-sided cues  1

1+(4.92)#L−#R              

respectively. The value of 4.92 is the ratio of Poisson means for high- and low-cue probability sides.                 
P(Reward on right) (empirical) ​: a predictor that takes the current probability of the right side being                
rewarded based on the number of left- and right-side cues that had appeared in the trial, but instead of                   
using the actual statistics of the cues, this probability was calculated using the psychometric curve of each                 
mouse as the function that related the cue appearances to the probability of each side to be rewarded.                  
Thus, this probability is given by : where the parameter ​a is estimated by fitting a logistic function      1

1+a#L−#R             
to the psychometric curve of each mouse. ​Difficulty of previous trial ​: a predictor that is the final value of                   
| ​#L - #R| ​from the previous trial. ​Confirmatory/disconfirmatory cues ​: Instead of dividing cues in left- and                
right-sided, cues are divided depending on whether they are confirming or disconfirming the current best               
estimate of the rewarded side. e.g. if the current count is 3 left-side cues and 1 right-side cue, if the next                     
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cue is a left-side cue it is confirmatory, and if it is a right-side cue it is disconfirmatory (in case of an even                       
count the next cue is considered confirmatory).  
 
 
Calculation of the relative contributions of behavioral variables to neural activity 
 
We quantified the relative contribution of each behavioral variable to neural activity (Fig. 2c,d) by               
determining how the performance of the encoding model declined when each variable was excluded from               
the model. We predicted neural activity with all variables (“full model”) or by excluding one of the                 
variables (“partial model”), in either case with 5-fold cross-validation. The relative contribution of each              
behavioral variable was calculated by comparing the variance explained of the partial model to the               
variance explained of the full model. In the case of the cue period, in which five behavioral variables,                  

relative contribution of each variable was defined as where ​R​2​p, i ​is the         1( −
R f

2
R 2p, i ) /  ∑

5

j=1
1( −

R f
2

R 2p, j )       

variance explained of the partial model that excludes the ​i​th variable and ​R​2​f ​is that of the full model. In the                     
case of the outcome period, two event variables were considered: time of reward and time of outcome                 
(reward or tone delivery). The relative contribution of reward was calculated by comparing the variance               
explained of a partial model with only the time of outcome, compared to a full model that had both time                    
of reward and time of outcome as event predictors, . This allowed us to identified variance in the        1 − R f

2
R 2p          

neural activity that could be attributed to reward rather than simply reaching the end of the maze. When                  
fitting the model for the calculation of the relative contribution for reward, we matched the overall effects                 
of correct and incorrect trials by overweighting incorrect trials for each crossvalidation fold. Negative              
relative contributions were clamped at 0 (this occurs when the ​R​2 of the full model is lower than that of                    
the partial model, due to introduction of noise by the excluded variable). 
 
We used two approaches to exclude variables from the full model and calculate variance explained by the                 
partial model. In the first approach, the partial model was equivalent to the full model, except that the                  β
values of the predictors of the excluded variable were set to zero (“no refitting”). In the second approach,                  
we calculated new values by re-running the regression without the predictors of the excluded variable   β             
(“refitting”). Both approaches to exclude variables produced comparable results; the “no refitting”            
approach was used to generate the main figures, while comparison with the “refitting” approach is shown                
in Extended Data Fig. 12. 
 
To determine if the contribution of a behavioral variable was statistically significant for each neuron (Fig.                
2a; Extended Data Fig. 7), we first calculated the F-statistic of the nested model comparison test where                 
the reduced model was the model without that behavioral variable included. We then proceeded to               
calculate the same statistic on 1000 instances of shuffled data, where shuffling was performed on               
non-overlapping 3s bins (to maintain the autocorrelation of the signal). The p-value used for significance               
was obtained by comparing the value of the original F-statistic to the shuffle distribution, using the                
Holm-Bonferroni correction to account for the number of behavioral variables tested for each neuron; the               
threshold for significance was a p-value of 0.01 after correction.  
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Clustering analysis 
 
To identify functional clusters of neurons (Fig. 3a), we used a clustering procedure based on a Gaussian                 
mixture model (GMM) that was applied on the matrix of contributions of behavioral variables to the                
neural activity. To do that, we used the ‘fitgmdist’ function in Matlab (Mathworks, Inc) with 1000                
maximum iterations, 0.35 regularization value, 100 replicates, and the covariance matrix constrained to             
diagonal. This produces a Gaussian mixture model where the major axes of the Gaussians are parallel to                 
the axes of the feature space, which enables flexibility beyond that of the k-means algorithm while still                 
maintaining a relatively small number of parameters to be fitted. 
 
To test the fit of the clustering model (Fig. 3b), we shuffled 10,000 times the relative contribution values                  
both across behavioral variables (Fig. 3b, top) and across neurons (Fig. 3b, bottom; the contributions for                
the cue period variables were re-normalized per neuron after shuffling). After each shuffling iteration, we               
repeated the clustering and recalculated the log-likelihood of the clustering model. The distribution of log-               
likelihood values for shuffled data was then compared to the log-likelihood of the clustering model on the                 
real data.  
 
The BIC score was used to select the number of clusters. It is a penalized likelihood term defined as                   
2(NlogL) + Mlog(n) ​, where ​NlogL ​is the negative log-likelihood of the data, ​M ​is the number of                 
parameters of the GMM, and n is the number of observations. The first term rewards model with good fit,                   
while the second term penalizes more complex models. The BIC score was calculated by the ‘fitgmdist’                
function. 
 
Quantification of reward prediction error signals with d’ 
 
In figure 5, the strength of modulation of reward responses by reward expectation was calculated using                
the d’ measure as follows: 1- We divided rewarded trials into trials with either high reward expectation                 
(HRE) or low reward expectation (LRE). For the pavlovian conditioning experiments, HRE trials were              
those where reward delivery was preceded by a tone, and LRE trials were those where reward delivery                 
was not preceded by a tone. For the virtual reality experiments, trials were divided in two different ways:                  
for the trial difficulty criterion, we ranked trials according to the strength of the evidence (absolute value                 
of the difference between the total number of right- and left-sided cues). The top half of those trials                  
(strong evidence) were considered HRE trials and the bottom half (weak evidence) were considered LRE               
trials. For the previous outcome criterion, previously rewarded trials were HRE trials and previously              
unrewarded trials were LRE trials. 2- We calculated the average reward response in each trial by                
averaging activity in the first 2 s following reward delivery and subtracting from that the average activity                 
in the 1 s preceding reward delivery. 3- The d’ for the reward responses for HRE and LRE trials was                    
calculated as follows:  

 d′ =    
μ −μLRE HRE

√0.5 σ +σ( 2
LRE

2
HRE)  
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where and are the mean and variance of the distribution of reward responses for the denoted trial μ   σ2                
group. Thus, positive d’ values indicate activity consistent with a reward prediction error signal (stronger               
reward response for low reward expectation trials).  
 
Histology 
 
After completion of behavioral experiments, mice were perfused with 4% PFA in PBS, and then brains                
were removed and postfixed in 4% PFA for 24 additional hours before transferring to 30% sucrose in                 
PBS. After post-fixing, 40 micron sections were made with either a microtome (American Optical 860) or                
cryostat (Leica CM3050 S). Brain sections were washed with PBST (​Phosphate buffered salin​e with              
0.4% Triton x-100) for 30 min, and then placed in blocking buffer (10 ml PBST + 0.2 ml normal donkey                    
serum + 0.1 g bovine serum albumin (sigma A7906-100G) for 1 hour. Sections were incubated overnight                
at 4° C in primary antibodies for TH (TH Ab; Aves labs, E.C. 1.14.16.2, chicken polyclonal anti-peptide                 
antibody mixture, 1:1000 dilution) and GFP (Molecular probes G10362, rabbit monoclonal, 1:1000            
dilution). Sections were then washed with PBST for 30 min, then incubated for 1 hour at room                 
temperature in Alexa fluor 647 (Jackson ImmunoResearch Donkey-anti-chicken, 1:1000 dilution) and           
Donkey anti-rabbit Alexa fluor 488 (Jackson ImmunoResearch, 711-545-152, 1:1000 dilution). Following           
PBST washes, sections were mounted in 1:2500 DAPI in Fluoromount-G. Whole sections were imaged              
with a Nikon Ti2000E microscope. 
 
Estimation of the neurons’ location 
 
In order to investigate the relationship between the activity of the neurons and their location in the VTA                  
(Fig. 3d), we estimated each neuron’s location by combining information about the position of the GRIN                
lens from histology with the location of the imaged neurons within the field of view. Histological slices                 
stained for Tyrosine hydroxylase (TH) featuring the tract left by the GRIN lens (Extended Data Fig. 9)                 
were manually scaled and rotated to fit images taken from a mouse atlas ​51 using the VTA, SNc and                   
cerebral peduncle as primary markers. The center of the bottom of the lesion was used as a proxy for the                    
center of the lens, and its location was measured using the atlas coordinates. We estimate the error of our                   
determination of the location of the lens as follows: for the M/L axis, for several mice, we independently                  
repeated the procedure using different slices. The difference in the obtained estimate was +/-50 um. Thus,                
we consider that to be our error. For the A/P axis, the resolution depended on comparing coronal slices to                   
the atlas images, which are provided with a sampling of 115 um on average. Thus, we estimate our error                   
to be within two such images, or +/-115 um.  
 
To calibrate the diameter of each field of view, we first estimated the average size of DA neurons in the                    
VTA. To do that, an Ai148xDAT::cre mouse was sacrificed. The brain was extracted and then immersed                
in ice-cold NMDG ACSF for 2 min. Afterward, coronal slices (300 um) were sectioned using a vibratome                 
(VT1200S, Leica) and then incubated in NMDG ACSF at 34⁰ for 15 min. Then the slices were incubated                  
in PFA for 5 min, transferred to a slide, and immediately imaged under the 2-photon microscope. We                 
manually traced the ROIs of the imaged neurons, and then fit an ellipse to each ROI using the direct                   
method ​52​. The average values for the minor and major axes of the ellipse was 9 and 15 um respectively.                    
For each field of view imaged during the experiment, we repeated this procedure and calculated the                
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average minor and major axes of the neurons’ ROIs. The size of each field of view was calibrated such                   
that we minimized the mean square difference between the measured ellipse values and the average ones                
previously derived. The center of mass of each ROI was used as the marker for the neuron location within                   
the field of view. The absolute location of the neuron was the vector sum of its distance from the lens                    
center in the field of view to the measured location of the lens center in atlas coordinates. These estimates                   
were used in Figs. 1, 3 & 4 and Extended Data Figs. 10 & 11. 
 
The relative concentration across the A/P or M/L axis of neurons belonging to a given cluster (Fig. 3e)                  
was calculated as follows. First, the concentration of neurons belonging to a cluster was estimated using                
Gaussian kernel smoothing via the ‘ksdensity’ function in Matlab with a bandwidth of 50 um applied only                 
on these neurons. Second, the relative concentration for each cluster was calculated as the concentration               
per cluster divided by the sum of concentrations calculated for all clusters. To calculate the 95%                
confidence intervals of the relative concentrations (Fig. 3e, dashed lines), we ran 10000 iterations where               
in each we randomized the cluster identities of the neurons and then proceeded to calculate the relative                 
concentrations of each cluster as above. For each point in the A/P or M/L axis, the edges of confidence                   
interval were the 2.5 and 97.5 percentiles of the distribution of concentrations calculated from the shuffled                
data.  
 
Signal and noise correlations 
 
To investigate how the correlations between pairs of neurons were spatially organized in the VTA, we                
calculated signal and noise correlations for all pairs of neurons that were simultaneously recorded (Fig.               
4c). The signal correlation between a pair of neurons was calculated by correlating the predictions of the                 
encoding model for both neurons in the cue period or outcome period. The noise correlation was the                 
correlation between the residuals for each neuron pair. We also used an alternative method for estimating                
the noise correlations ​30​,​31 (Extended Data Fig. 11). The alternative noise correlation estimate between a               
pair of neurons (​i ​,​j​) was calculated as follows: we first fit an augmented encoding model for neuron ​i                  
which had as an additional predictor the activity of neuron ​j​; we then calculated the normalized                
improvement in the fit using , where are the variances explained by the     V (i|j)Δ n = V (i|j)

V (i|j)−V (i)   (i|j), V (i)V         
augmented and original (behavioral-only) encoding models respectively for neuron ​i​. We repeated this             
procedure for neuron ​j and obtained . The noise correlation estimate was the mean of the two      V (j|i)Δ n            

 values.VΔ n  
 
Ex vivo ​​ recordings to compare GCaMP6f fluorescence with activity in DA neurons 
 
In order to compare GCaMP6f fluorescence with spike times in DA neurons (Extended Data Fig 2), we                 
performed ​ex vivo slice imaging and electrophysiolgical recordings in Ai148xDAT::Cre mice. Mice were             
anesthetized with an i.p. injection of Euthasol (0.06ml/30g) and decapitated. After extraction, the brain              
was immersed in ice-cold carbogenated NMDG ACSF (92 mM NMDG, 2.5 mM KCl, 1.25 mM               
NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na-ascorbate, 3                 
mM Na-pyruvate, 0.5 mM CaCl2·4H2O, 10 mM MgSO4·7H2O, and 12 mM N-Acetyl-L-cysteine) for 2              
minutes. The pH was adjusted to 7.3-7.4. Afterwards coronal slices (300um) were sectioned using a               

34 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 29, 2018. ; https://doi.org/10.1101/456194doi: bioRxiv preprint 

https://paperpile.com/c/EMAgOi/sP8S
https://paperpile.com/c/EMAgOi/Ef3R
https://doi.org/10.1101/456194


 

vibratome (VT1200s, Leica) and then incubated in NMDG ACSF at 34°C for 15 minutes. Slices were                
then transferred into a holding solution of HEPES ACSF (92 mM NaCl, 2.5 mM KCl, 1.25 mM                 
NaH2PO4, 30 mM NaHCO3, 20 mM HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na-ascorbate, 3                 
mM Na-pyruvate, 2 mM CaCl2·4H2O, 2 mM MgSO4·7H2O and 12 mM N-Acetyl-l-cysteine, bubbled at              
room temperature with 95% 02/ 5% CO2) for at least 45 mins until recordings were performed. 

 
During cell-attached recordings, slices were perfused with a recording ACSF solution (120 mM NaCl, 3.5               
mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 1.3 mM MgCl2, 2 mM CaCl2 and 11 mM                 
D-(+)-glucose, continuously bubbled with 95% O2/5% CO2). Cell-attached recordings were performed           
using a Multiclamp 700B (Molecular Devices, Sunnyvale, CA) using pipettes with a resistance of 4-6               
MOhm filled with an internal solution identical to the recording ACSF. Infrared differential interference              
contrast–enhanced visual guidance was used to select neurons that were 3–4 cell layers below the surface                
of the slices, which were held at room temperature while the recording solution was delivered to slices via                  
superfusion driven by peristaltic pump. Cell-attached recordings were collected once a seal (200 MOhm              
to >5 GOhm) between the recording pipette and the cell membrane was obtained. To generate bursts in                 
cells that did not exhibit spontaneous bursting activity, a second glass pipette filled with recording ACSF                
containing 20 µM NMDA was placed above the recorded cell. Slight positive pressure (~12 psi) was                
briefly applied (100-250 ms) to generate bursting activity in the recorded cell. During bursts, spikes               
typically exhibited a gradual reduction in amplitude as observed previously ​53​. Action potential currents              
were recorded in voltage-clamp mode with voltage clamped at 0 mV, which maintained an average               
holding current of 0 pA. Cell-attached currents were low-pass filtered at 1 kHz and digitized and stored at                  
10 kHz (Clampex 9; MDS Analytical Technologies). All experiments were completed within 4 hours after               
slicing the brain. Fluorescence was imaged using a CMOS camera (ORCA-Flash 2.8, Hamamatsu) at              
30Hz using a GFP filter cube set (exciter ET470/40x, dichroic T495LP, emitter ET525/50m).  
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