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ABSTRACT

Deep learning techniques on MRI scans have demonstrated great potential to improve the diagnosis of

neurological diseases. Here, we investigate the application of 3D deep convolutional neural networks

(CNNs) for classifying Alzheimer’s disease (AD) based on structural MRI data. In particular, we take

on two challenges that are under-explored in the literature on deep learning for neuroimaging. First

deep neural networks typically require large-scale data that is not always available in medical studies.

Therefore, we explore the use of including longitudinal scans in classification studies, greatly increasing

the amount of data for training and improving the generalization performance of our classifiers. Moreover,

previous studies applying deep learning to classifying Alzheimer’s disease from neuroimaging have

typically addressed classification based on whole brain volumes but stopped short of performing in-

depth regional analyses to localize the most predictive areas. Additionally, we show a deep net trained

to distinguish between AD and cognitively normal subjects can be applied to classify mild cognitive

impairment patients, with classification scores aligning empirically with the likelihood of progression

to AD. Our initial results demonstrate both that we can classify AD with an area under the receiver

operator characteristic curve (AUROC) of .990 and that we can predict conversion to AD among patients

in the MCI subgroup with an AURUC of 0.787. We then localize the predictive regions, by performing

both saliency-based interpretation and rigorous slice and lobar level ablation studies. Interestingly,

our regional analyses identified the hippocampal formation, including the entorhinal cortex, to be the

most predictive region for our models. This finding adds evidence that the hippocampal formation is an

anatomical seat of AD and a prominent feature in its diagnosis. Together, the results of this study further

demonstrate the potential of deep learning to impact AD classification and to identify AD’s structural

neuroimaging signatures. The proposed classification and regional analyses methods constitute a

general framework that can easily be applied to other disorders and imaging modalities.
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Acronyms:
MRI: magnetic resonance imaging
AD: Alzheimer’s disease
CN: cognitively normal
MCI: mild cognitive impairment
MCIs: mild cognitive impairment stable
MCIp: mild cognitive impairment progression
HP: hippocampal formation
ADNI: Alzheimer’s Disease Neuroimaging Initiative
HCP: Human Connectome Project
CNNs: convolutional neural networks
CAM: class activation mapping
ReLU: rectified linear unit
BN: batch normalization
AUC: area under the curve
ROC: receiver operating characteristic
AUROC: area under the receiver operating characteristic curve
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Introduction

Alzheimer’s disease is a progressive neurodegenerative disease responsible for the majority of cases

of dementia [Alzheimer’s Association, 2018]. Because of the degenerative nature of the illness and

the current lack of a cure, much research focuses on developing techniques for early diagnosis and

intervention [Nestor et al., 2004, Barnett et al., 2014]. Given an accurate early detection system, future

treatments would likely have the greatest impact if administered earlier in the disease progression. Our

work applies deep learning to the task of detecting clinical diagnosis of Alzheimer’s disease from magnetic

resonance imaging (MRI), building upon recent studies that have demonstrated the usefulness of MRI in

diagnosing AD, in recognizing mild cognitive impairment (MCI) (the corresponding prodromal stage),

and in categorizing biomarkers associated with neurodegeneration in AD [Jack et al., 2016].

Among different brain MRI modalities, T1w structural MRI is the most widely available and enjoys the

additional benefit of being relatively standardized across scanners and protocols. Consequently, diagnosis

algorithms based on T1w structural MRIs are appealing as a potential tool to assist in disease screening

given the wide availability of research scans for training models, and the ubiquity of MRI scanners in the

world potentially enabling the rapid deployment of learned models via software.

Following breakthroughs in computer vision, deep learning techniques have emerged as popular

tools for analyzing medical images. On standard CV tasks such as classification [Krizhevsky et al.,

2012], object detection [Girshick, 2015] and semantic segmentation [Long et al., 2015], deep learning

algorithms based on convolutional neural networks (CNNs) [LeCun et al., 1990] have achieved undisputed

dominance. For specific tasks with abundant training data—and when the training data and test data are

sampled from the same distribution, these models often achieve human-level performance or better [He

et al., 2015]. Moreover, due to the generality of the methods, the availability of open source code, and

the wide availability of specialized computer hardware for accelerating these algorithms, they are now

easily adopted by practitioners. Over the last few years, these techniques have been widely-applied in

image-aided medical diagnosis. Successful applications of deep learning in medical imaging include

segmenting images produced from electron microscopy [Ronneberger et al., 2015], detecting diabetic

retinopathy from 2D retinal fundus photographs [Gulshan et al., 2016], and recognizing skin cancer from
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photographs [Esteva et al., 2017].

Learning from 3D scans, such as MRI, presents a number of additional challenges. While the number

of voxels corresponding to the 3D volume representing a single patient can be large, we still have just

one label per scan, raising technical questions about how to prevent overfitting. However since many

brain disorders correspond to both focal and diffuse involvement, machine learning models capable of

acting upon the whole volume are appealing. To that end, we explore the use of 3D convolutional neural

networks for diagnosing Alzheimer’s disease, considering a variety of techniques and including some

unconventional data sources in order to learn good representations without overfitting. Although 3D CNNs

have been explored in the literature addressing settings as diverse as video (where time comprises the 3rd

dimension) [Ji et al., 2013, Tran et al., 2015] and medical imaging [Milletari et al., 2016, Çiçek et al.,

2016, Dou et al., 2016], they are relatively underutilized compared to 2D CNNs and thus best practices for

deploying these models are less firmly established.

We build upon several earlier works applying 3D CNNs to AD diagnosis, which we summarize below.

Note that various papers address different datasets, and different cohorts even within the same corpus,

making direct comparisons of performance across papers difficult. The earliest paper in this literature to

our knowledge is due to Payan and Montana [2015], who address MRI-based AD diagnosis using 2265

scans selected from the ADNI dataset. The authors report both 2-way classification accuracy for each

combination of AD, CN, and MCI, and achieving 95.39% accuracy on AD versus CN and 89.47% 3-way

accuracy. In this paper, they learn the weights of the convolution filters by training an auto-encoder—auto-

encoding consists of learning both an encoder e(·) and decoder d(·), with the goal of producing a (typically

compressed) latent representation z = e(x) for each input x such that the input can be reconstructed

accurately (most often measured by mean squared error), i.e., the parameters of d and e are learned to

minimize the expected reconstruction error ||x−d(e(x))||22. While their study provides promising support

of the efficacy of 3D CNNs for diagnosing AD from brain MRI, it leaves open many modeling questions.

For instance, they consider only shallow networks consisting of a single convolutional layer, followed by

a pooling operation and one fully-connected layer. Moreover, they leave the autoencoder-derived filters

fixed, optimizing only the weights of the fully-connected layer on the AD classification task. Following

similar ideas, Hosseini-Asl et al. [2018] presented a model using unsupervised auto-encoding followed
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by (supervised) fine-tuning on a comparatively small dataset consisting of just 210 subjects (70 each for

AD, MCI, CN) and showed impressive predictive performance with an area under the receiver operator

characteristic (AUROC) of 0.993 and 99.3% accuracy in AD versus CN classification. Korolev et al.

[2017] apply a 3D network architecture, achieving AUROC of .88 with an accuracy of 79% in 50 AD and

61 CN subjects. They also attempt to interpret the network, introducing a heuristic technique for feature

attribution. The method consists of generating predictions while obstructing various regions in the image

to determine which regions impact the model’s predictions. A recent large-scale study [Wegmayr et al.,

2018] proposed using 3D CNNs directly, training weights from scratch (no unsupervised pre-training)

and achieved 86% accuracy in AD/CN classification in a merged ADNI+AIBL dataset consisting of 6618

scans from CN subjects and 4476 scans from AD subjects. These studies demonstrate the promise of

modern CNN architectures for extracting patterns from brain MRI.

Despite generating accurate predictions, deep learning has long been described as a black-box. In

attempts to interpret or explain the classifications produced by various deep learning techniques, a

wave of papers have proposed diverse heuristics for explaining predictions, including generating textual

explanations [Hendricks et al., 2018], and providing feature-wise attributions [Ribeiro et al., 2016, Zhou

et al., 2016], sometimes in the form of visualizations [Simonyan et al., 2014, Sundararajan et al., 2017].

The topic is intensely debated and researched in connection with critical settings like medical diagnosis,

predictive policing, and other impactful automated decision-making scenarios where accountability is a

concern [Caruana et al., 2015]. A recent study [Yang et al., 2018] utilized multiple methods to generate

visual explanations for AD classification despite relatively low classification performance (0.863 AUROC,

0.766 accuracy) ona small dataset consisting of 47 AD and 56 CN subjects. However, despite intense

interest in the broader topics of interpretability/explainability, Lipton [2018] showed that the very definition

of these concepts remains elusive. For many interpretability techniques, the papers fail to clarify precisely

what task they are addressing, let alone whether they are successful. Ablation tests constitute one classic

method for probing a predictive problem to assess the usefulness of various features. These tests consist of

assessing predictive performance when individual features or sets of related features are dropped from

consideration. Our study complements the more speculative modern interpretability analyses with rigorous

ablation tests to assess the predictiveness of each region of AD.
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In this study, we build upon previous work applying 3D deep convolutional neural networks to AD

diagnosis, using a large-scale structural MRI dataset. In particular, we focus on two specific aspects:

(i) incorporating longitudinal scans as a unconventional data source, and (ii) an investigation aimed

at localizing the most predictive regions. Generally, data augmentation helps to prevent models from

overfitting by enriching an original source of data through the addition of variations of these examples

perturbed through transformations with respect to which we would like the model to be invariant. In

typical photographic images, such transformations might include random crops, translations, rotations, and

small changes to the color palette [Krizhevsky et al., 2012]. Here, instead, we enrich the data by including

images captured from the same patient across multiple visits. Inclusion of multiple scans from the same

subject raises two important issues: the data leakage problem and the disease progression problem. Data

leakage occurs when the training and test sets contain the different scans from the same subject, the model

might make the prediction by memorizing and retrieving the label from the same person and is likely to

result in over-optimistic performance. This issue is dealt with easily by ensuring that the partition into

train/validation/test splits takes place at the level of the individual patients instead of at the level of the

scan. The disease progression problem relates to the fact that the disease status of subjects might change

during follow-ups, and the cross-sectional diagnosis labels for a certain scan might be different from the

baseline label, this is especially important in prodromal disease status, e.g. MCI in AD pathology. We

then might reasonably ask how many of these patients have truly undergone a change in status (versus

being initially mislabeled). Note that while including subsequent scans raises this question, it does not

cause the problem of mislabeled baseline scans.

Most previous studies on AD classification with CNNs [Hosseini-Asl et al., 2018, Korolev et al., 2017]

exploit the (single) baseline scan for each subject and train their models to predict the cross-sectional

diagnosis labels (assessed at scan time). Payan and Montana [2015] utilizes multiple scans but did

not explicitly address potential data leakage and disease progression problems. Wegmayr et al. [2018]

explicitly addresses the data leakage problem (they refer to it as subject duplication), ensuring non-

overlapping subjects in training and test sets, however, the disease progression is not explicitly discussed

while stating several scans of an individual subject typically have the same disease label, which could be

potentially problematic especially since they performed a three-way classification including MCI. Another
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difference from this previous study is that we opted to only include multiple scans from different sessions

rather than within-session duplicate scans to leverage the data richness versus data redundancy.

Our model achieves high classification performance in AD classification in a large dataset consisting

of 2817 scans/sessions from CN subjects and 1874 scans/sessions from AD subjects. Moreover, we find

that by applying model trained on AD versus CN classification to baseline scans of MCI subjects, we can

accurately predict progression from MCI to AD. Furthermore, we study the neuroanatomical underpinning

in AD classification with a series of novel regional analyses following the regional vulnerability idea

[Small, 2014]. We pinpoint hippocampal formation as a most predictive driver for our deep-learning-based

AD diagnosis model, which further affirms the prominence of hippocampal formation in AD classification.

We explore regional significance in a number of ways. In one approach, we generate a 3D activation

map post hoc without any changes to the model or input data, presenting the whole brain volume to the

classifier and inferring those regions that contribute most to the classification using a 3D class activation

mapping (CAM) technique [Zhou et al., 2016]. CAM utilizes fully convolutional neural networks whose

output is produced by a global pooling operation followed by the softmax operator to generate the predicted

probabilities. By weighting the pre-pooled activation maps with the corresponding input to the softmax

operator, CAM can assess per-region importance to the classification, generating a visual map indicating

which voxels are suggestive of the target label. Gradient-weighted CAM (grad-CAM) [Selvaraju et al.,

2017] generalize the CAM to broader CNN families by flowing the gradients of the target label into the

last convolutional layer. In our case, we utilize grad-CAM to determine which specific 3D regions most

indicate a prediction of AD.

We also explore two “ablation”-based methods that explicitly focus on specific brain regions. The first

method consists of training models to predict AD using 2D MRI slices (in each of the three coordinate

planes), and evaluate the pattern of the capabilities of slices differentiating AD. The second method,

more informed of neuroanatomy, consists of masking specific regions using masks generated from a

sub-population with segmentation, as described in detail in Data and experimental setup, training on the

masked regions, and comparing the classification accuracy.

The CAM method reveals a preponderance of activation overlap containing the left anterior hippocam-

pal formation (HF). Evaluation on 2D MRI slices demonstrates the importance of slices covering the
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HF in the classification of AD using deep 2D CNN model. And evaluation on isolated brain lobes also

demonstrates the importance of temporal lobe, which contains the HF. These findings have implications

for both the interpretability of CNNs used in image-based disease diagnosis and also the prospective MRI

acquisition protocols targeting AD diagnosis. Even for highly complex and nonlinear models, regionality

and the underlying pathology revealed still manifests importance.

Importantly, we note that our proposed 3D CNN model and regional analyses constitute a highly

general framework that can potentially be applied to other brain disorders and imaging modalities.
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Methods

Data and experimental setup

The dataset used in this study is from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 1. The

details about the MRI data acquisition can be found in ADNI website 2. The T1-weighted structural

MRI scans were pre-processed with the standard Mayo Clinic pipeline 3. The AD diagnosis was based

on clinical evaluations. The MRI and diagnosis data were queried and accessed at August 2017. The

diagnosis includes AD, MCI, and cognitively normal (CN). The dataset used to generate the regional masks

includes 382 scans from unique elderly subjects in ADNI-2 and 1113 scans from unique young subjects in

Human Connectome Project (HCP) 4 [Van Essen et al., 2013]. The subjects cover age 25-90, and clinical

diagnosis of young normal control (N = 1113), elderly normal control (N = 120), MCI (N = 138) and

AD (N = 124).

For the experiment of AD versus CN classification, we sought to include as many MRI sessions as

possible that correspond to an AD or CN diagnosis at scan time. Specifically, we included the baseline

and follow-up scans of patients diagnosed as AD at baseline, the baseline and follow-up scans of subjects

diagnosed as cognitively normal at baseline before the conversion to AD or MCI if ever happened, and

the after-conversion follow-up scans of subjects who were CN or MCI at baseline but later progressed

to AD. In total, we include 4691 scans (2817 CN, 1874 AD) from 1189 subjects under these criteria.

This experiment setup basically sets an upper limit to the amount of data for cross-sectional AD versus

CN classification in ADNI cohort. The inclusion of scans after conversion also helps enrich the samples

around the “classification boundary” as will be more thoroughly discussed in the “Inclusion of longitudinal

scans” section.

We used 8/10 of the subjects as training set consisted of 3709 scans (2240 CN, 1469 AD) from 952

subjects, 1/10 as validation set consisted of 456 scans (279 CN, 177 AD) from 119 subjects, and 1/10 as

test set consisted of 526 scans (298 CN, 228 AD) from 118 subjects. As discussed in the Introduction

section, the training, validation and test sets split was partitioned at subject level through stratified random

1http://adni.loni.usc.edu/
2http://adni.loni.usc.edu/methods/documents/mri-protocols/
3http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/
4https://humanconnectome.org/
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sampling on baseline diagnosis labels so that the groups have non-overlapping subjects and approximately

even distribution of baseline diagnosis labels. The final model is selected as the one that has the highest

validation accuracy (i.e. classification accuracy in validation set).

For the experiment of MCI progression prediction on baseline scans, we trained another model only

using subjects whose baseline diagnosis are cognitively normal or AD to prevent data leakage. We

included scans from 796 subjects under this criterion. Similarly, 2918 scans (1943 CN, 975 AD) from 626

subjects were used as training set, 382 scans (251 CN, 131 AD) from 80 subjects were used as validation

set, 325 scans 229 CN, 96 AD) from 80 subjects were used as test set. We used the same neural network

training setup.

We included 318 MCI stable subjects and 311 MCI progression subjects for MCI progression prediction.

The MCI stable subject are those who remained MCI during a follow-up period of at least 3 years from

the initial visit. The MCI progression subjects progressed to AD at follow-up visits, among which 256

subjects progressed to AD within 3 years.

We used the area under the curve receiver operating characteristic (AUROC) and accuracy to evaluate

the classification performance.

Image preprocessing

Basic pre-processing steps include nonparametric nonuniform intensity normalization (N3) based bias

field correction [Sled et al., 1998], brain extraction using FreeSurfer [Ségonne et al., 2004], and 12

degree of freedom affine registration (using FSL FLIRT [Jenkinson et al., 2002] with normalized mutual

information cost function) to the 1mm3 isotropic MNI152 brain template. The dimension of the 3D volume

is 182×218×182 (LR×AP×SI).

Bias field correction is generally robust, fast, and based on physics models which act as a strong

prior [Sled et al., 1998]. There are brain extraction methods using deep learning techniques, but there is

not one that is well-validated and widely-available. Skull-stripping using FreeSurfer in general provides

consistently high quality brain extraction.

The registration is to ensure same orientation and roughly same spatial correspondence of different

images. Although there are techniques such as spatial transformer network [Jaderberg et al., 2015] to learn
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transformation within the network, it would involve more parameters to learn and add burden to the data.

All the brain extracted, affine-transformed images were checked by a well-trained reviewer with visual

inspection. Scans having severe MRI artifacts, brain extraction failure or poor registration were excluded.

Inclusion of longitudinal scans

Commonly, computer vision practitioners synthetically augment their datasets, applying random trans-

formations to the existing training images, including translation, rotation, scaling, etc. However, unlike

natural images or those collected from some other medical imaging modalities, where objects of interest

might vary in location and rotational orientation, MRI images of brains are approximately at the same po-

sition through registration, with the brain regions roughly aligned. Thus in this setting, learning rotational

and translational invariances is not well motivated.

There is another form of data augmentation or more precisely “data source” specific to medical imaging

applications. For longitudinal studies, test-retest studies and just ordinary studies, there might be multiple

scans per subject. By including time as a factor in subject identification, we can increase the amount of

data. In a sense, by including these data sources, we are seeking natural forms of data augmentation. The

corresponding “transformations” in data augmentation would be normal aging or disease progression or

both (longitudinal scans with a significant interval between scans), subject re-positioning (scans acquired

at different sessions and within a short period of time) and subject motion (scans acquired at the same

session). The variability present in the scans or the data coverage in the whole data space decreases in this

order. The illustration of the general idea is shown in Figure 1. As discussed in Introduction section about

disease progression, special attention is required for the first kind, where the different time points of the

same individual might be at different health or disease stages. Moreover, those scans, lying on the verge of

different diagnosis, constitute informative cases for the classification.

In this study, we opt for using scans from different sessions, which already provides a significant

increase in the amount of data: from 796 baseline scans to 4691 scans. And scans from the same scanning

session present very low variability.
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Figure 1. Illustration of data augmentation or inclusion of longitudinal scans in MRI studies. The whole
plane is a simplified representation of the data space. Each large circle indicates one individual subject,
each small circle indicates one MRI session. Each coronal slice of MRI scan represents one scan. The
objective of the deep learning algorithm is to find the “boundary” (dashed line) that best differentiates
cognitively normal subjects and AD patients. Enriching our data by using longitudinal scans from subjects
helps to increase the data coverage from the small circle to the large circle.
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Convolutional neural networks

We use a general CNN architecture similar to the VGG classification architecture [Simonyan and Zisserman,

2015] with multiple interleaved convolutional blocks and max pooling layers and increasing number of

features along the depth. The main differences include having just one fully-connected layer to significantly

reduce the number of parameters and replacing 2D operations with 3D operations. For convolutional

layers, we use a convolutional kernel size of 3×3×3, a batch size of 5, rectified linear unit (ReLU) as the

activation functions. We flatten the output from the last convolutional layer and feed into a fully-connected

(FC) layer with sigmoid as the activation. We use batch normalization (BN) before the activation function.

The algorithm was optimized using Adam method with cross-entropy loss function. The initial learning

rate was tuned in the range from 1e−4 to 1e−6 including [1e-4, 5e-5, 2e-5, 1e-5, 5e-6, 2e-6, 1e-6] and

was set at 2e-5. We implemented the algorithm using Keras and TensorFlow. As early stopping criteria,

we set the patience parameter on validation accuracy to 10 epochs. We include weight l2 regularization

(also known as weight decay) to prevent overfitting with a factor of 1.0. An illustration of the framework

is shown in Figure 2. In this study we use five (N in Figure 2) stages. The feature dimension of the first

layer is 16 and increases by a factor of 2 in each subsequent stage.

Application to MCI progression prediction

The classification was trained on AD versus CN, which presents the largest neuroanatomical contrast

in the AD spectrum. Whether the model learned using the two ends of the spectrum could inform the

differentiation of patients in the middle of the spectrum is critical. We directly applied the model to the

baseline scans of patients diagnosed with MCI since MCI patients are not part of the training dataset of

the model. We use AUROC to evaluate the prediction performance.

Class activation map

Class activation map (CAM) original proposed by Zhou et al. [2016], extended and generalized in Gradient-

weighted CAM (grad-CAM) Selvaraju et al. [2017], has been used in medical image analysis field to

inform the “attention” of the 2D classification [Feng et al., 2017]. In this study, we generated 3D class

activation maps to visualize the predictive contribution of brain regions to the AD classification task.

Specifically, we used grad-CAM with ReLU gradient modifier and rescaled generated CAM with min-max
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Figure 2. The convolution neural network architecture. The inputs are 3D brain volumes. Each cubic
represents one 3D feature map, the size reflects the spatial dimension of the feature map, the number
reflects the number of feature maps (channel dimension). The blue arrows are 3D convolutional
operations, the green arrow represents batch normalization (BN) followed by rectified linear unit (ReLU),
the yellow arrow denotes the max pooling operation. The basic unit enclosed in the bracket is repeated
N = 5 times with increasing number of features and decreasing spatial dimension. The final convolutional
output is flattened and fed into one fully-connected (FC) layer with sigmoid activation function (red
arrow), generating the final AD score.
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normalization. Importantly, since the map can be generated individually, it has the potential to be used

as an individual neuroanatomical validity report without sacrificing the prediction power of whole brain

based prediction model. We generated the average class activation map for all AD patients to demonstrate

the average “attention” of the algorithm.

MRI 2D slice based classification

Besides the post hoc saliency map based class activation map method, we also propose ablation analyses

methods focusing on part of the input data, We tested the classification using 2D CNN with the input

being three consecutive slices as three channels. This design takes the inter-subject alignment precision

into consideration (i.e. not extracting just one slice) and also ensuring relative similarity among different

channels (i.e. not extracting five slices). The network architecture is the same as the 3D CNN architecture

described above except that the 3D operations are all replaced with the corresponding 2D operations. We

report the classification performance on the different groups of 2D slices as the indication of predictive

importance.

Brain lobe based classification

Slice-based regional analysis method provides a way to investigate the predictive regions of the clas-

sification from imaging perspective, as the coordinate planes are imaging planes. But each slice still

represents a mixture of multiple regions located at a certain spatial level. It is more appealing to generate

neuroanatomically meaningful regions and perform classification focusing on these regions separately. A

probabilistic spatial distribution of different regions was derived from the affinely co-registered FreeSurfer

segmentations [Fischl et al., 2002, 2004] from 1,495 scans as detailed in the Data and experimental setup.

An occurrence probability of 0.5% was used as the threshold for the lobe mask generation. The definition

of lobes in FreeSurfer segmentation nomenclature is referenced in FreeSurfer website 5. We focused

on the lobe-level ablation study firstly because the brain lobes are functionally and structurally distinct

units, and also because finer region parcellation results in poor overlap across subjects and inevitable

involvement of neighboring regions.

5https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation/

16/36

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/456277doi: bioRxiv preprint 

 https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation/
https://doi.org/10.1101/456277
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results

AD classification

In Figure 3, we show the classification performance in AD versus CN task. We evaluate our model both

on unique MRI sessions and the baseline scans of unique subjects (see Methods section for more details).

Our model achieves 0.980 AUROC and 93.3% accuracy when evaluated on unique MRI sessions, and

0.990 AUROC and 96.6% accuracy when evaluated on the baseline scans of unique subjects. The high

overall classification accuracy of our model lays a solid foundation for our subsequent results investigating

regional attribution. The model training process with only baseline scans under identical training settings

stuck at uniform predicted label.

Figure 3. ROC curve for AD classification on the test set of a) all unique MRI sessions, b) baseline MRI
scans of unique subjects. The AUROCs are annotated in the figures.

Application to MCI progression prediction

Remarkably, we find that the classifier trained exclusively on AD and CN patients can also be used post

hoc to differentiate among those MCI patients who will and will not progress in the near term to AD.

The ADNI dataset contains MCI patients whose subsequent progression or not to AD has been noted

longitudinally.Ideally, we might train a model exclusively on MCI patients whose subsequent progression
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status has been observed, directly learning to distinguish AD’s prodromal stage from other causes of MCI.

However, the ADNI dataset does not contain sufficient MCI patients (around 600) to train such a classifier.

Although the subset of MCI patients is too small for direct training, it is sufficiently large to serve as an

evaluation set.

Figure 4. ROC curve for MCI progression prediction. The AUROC is annotated in the figure.

To determine the usefulness of our AD vs. CN classifier for recognizing those MCI cases that will

progress to AD, we fed MCI patients through an AD vs. CN binary classifier, interpreting a higher

probability of AD as more likely to progress to AD and a higher probability of CN as less likely to

progress. For this experiment, we trained the AD vs. CN model using only baseline scans from subjects

diagnosed as either AD or CN at baseline (as detailed in Data and experimental setup section) achieving

an AUROC of 0.973 on i.i.d. holdout data. Then we fed our evaluation set of MCI patients through the

classifier, achieving an AUROC of 0.787 (0.808 when including only MCI patients who progressed or

stayed stable within 3 years), matching state-of-the-art performance while using structural MRI data only

[Korolev et al., 2016]. In Figure 4, we plot the performance of our classifier as applied post hoc to the task

of predicting MCI progression. Note that this evaluation procedure applies the CNN out-of-sample to a

subset of patients that are not represented in the training set. In general, machine learning are liable to

break under distribution shift and thus our performance, despite matching the previous state-of-the-art,

might be far from the ceiling of what we might achieve given adequate data. Likely, in the future, given a
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large dataset of MCI patients, sufficient for training a progression prediction model directly, we might

achieve significantly higher predictive accuracy. This could potentially imply that the neuroanatomical

pattern of MCI partially lies on the normal-to-AD continuum.

AD/Class activation map

We illustrate the average class activation map for all AD patients overlaid on the MNI152 template in

Figure 5. A 3D rendering of the class activation map iso-surface overlaid on the brain region segmentation

provided by the FreeSurfer CVS_avg35 in MNI space is shown in Figure S1 in the supplementary material.

We can see from Figure 5 and Figure S1 that the average AD/class activation map shows large “activation”

in hippocampal formation, suggesting the importance of hippocampal formation in differentiating AD in

our 3D deep CNN model.

Figure 5. Average class activation map of AD classification overlaid on the MNI152 MRI template. The
hotspot is on the hippocampal formation. The class activation map is thresholded at 0.8.

MRI 2D slice-based classification

We also explored a slice-based classification scheme to determine which slices are most predictive of

AD (Figure 6), running the analyses three times, using 2D slices along the sagittal, coronal, and axial

dimensions. Along each dimension, those slices achieving highest classification performance include

voxels belonging to hippocampal formation.

Brain lobe based classification

In addition to the evidence for the importance of hippocampal formation provided by our 2D slice-based

analysis, we also explored a more anatomically-informed method. Here, we explicitly train the model on
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Figure 6. MRI 2D slice based classification. (Top row) the classification AUROC on the test set using
2D slices at different locations, the red lines indicate the location with highest AUROC. (Bottom row) the
illustration of slices at the red line in the top row from the MNI152 template and the corresponding
segmentation (the colors follow the FreeSurfer color lookup table: yellow-hippocampus, red-entorhinal
cortex).
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different lobes and cerebellum, masking the others with the masks derived from a population probabilistic

map. We illustrate these different masks in Figure S2 in the supplementary material. As shown in Figure

7, the model trained on the temporal lobe, which includes hippocampal formation, achieves the highest

AUROC of 0.944 and accuracy of 88%, compared to 93% accuracy using the whole brain. The next most

predictive lobe was the frontal lobe (0.899 AUROC and 83% accuracy).

Figure 7. AD classification AUROC and accuracy achieved from individual lobes and cerebellum using
masks from Figure S2
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Discussion

AD staging and dysfunction spread

In Braak staging of AD [Braak and Braak, 1991], the dysfunction represented by neurofibrillary tangle

starts from transentorhinal cortex (TEC) (stage I, II) to limbic regions (stages III and IV) and spreads

to neocortical at stage V and VI. Additionally, a previous fMRI study has suggested cortical spread of

dysfunction originating from lateral entorhinal cortex (LEC) [Khan et al., 2014]. While our findings cannot

by themselves establish pathophysiological primacy, they provide evidence of structural prominence for

the hippocampal formation. These results support the theory that the area circumscribing the anterior

hippocampal formation is one most affected structural region in AD [Killiany et al., 2002].

Localization

Our regional analyses show that multiple approaches of localization, including class activation maps, slice

and brain lobe level ablation experiments, all suggest that the hippocampal formation is the region most

predictive of AD. While the interpretation of traditional mass-univariate methods [Friston et al., 1994], via

voxel-level maps may be more familiar in the medical imaging community, CNNs are often considered

harder to interpret, owing to complex nonlinear patterns and interactions among voxels that these models

capture. As a result, they are often considered to be black boxes, useful for pattern recognition and

classification but less amenable to interpretation. The trade-offs between separability and interpretability

have already been discussed in multivariate based analysis, and is becoming more obvious with the more

complex architecture of deep neural networks.

However, this work highlights that through a combination of evidence produced by both heuristic

saliency-based interpretations and rigorous region and lobar level ablation studies (our 2D slice-based

models and lobe-masking experiments), CNNs can be used not only for predictions but also to provide

insights with likely neurobiological consequence. This work presents an important case study bridging the

separability and interpretability.

While the hippocampal region does appear especially predictive of AD, we emphasize that all regions

offer some predictive value. Thus, in practice, for building tools to aid in the diagnosis of AD, and for

predicting progression to AD among the MCI population, we recommend training models that act upon
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whole brain volumes. Indeed, our models acting upon whole brain volumes achieved the best AUC as

compared to those acting upon any single slice or lobe.

This work relates to the multiple pathologies observations in AD [Power et al., 2018], and argues

the focal neuroanatomical atrophy in hippocampal formation potentially unifies Alzheimer’s disease in

the presence of multiple pathologies. Since we do not have a quantitative and meaningful local measure

of structural information from structural MRI to do simple voxel-based analysis or linear multivariate

analysis, we deem our current approach best suited for validating this argument.

Prodromal disease classification using progressed cases

This study suggests the value of training a model on anchored disease or non-disease states with the utility

of applying that model on classifying prodromal disease states; in this case MCI subjects who progress to

AD. Many neurological and psychiatric diseases have known prodromal states, reflecting either mitigated

or absent symptoms, or biomarkers that do not meet criteria for disease. These individuals are considered

in a “high-risk” category, whereby only future classification (or failure to convert within a time frame)

determines whether an individual had prodromal disease or another distinct illness. Neuroimaging may be

sparse for these groups (due to difficulty in recruiting, for example, especially for rarer diseases) and such

neuroimaging findings may be too subtle for traditional volumetric or segmentation based single subject

analysis. By using a deep learning network enriched with data from confirmed disease states and controls,

such a network may have value in screening for disease in broad populations, where the advanced disease

has a distinct structural imaging signature which can easily and quickly be applied to high-risk states.

Applicability

One advantage to this approach compared to many other Alzheimer’s neuroimaging findings is the range

of MRI images onto which this technique can be feasibly applied. Given that the only pre-processing steps

required are brain extraction and co-registration, this technique could provide a classification in a few

minutes for any comparable T1-weighted image. Furthermore, the model can be retrained with more data,

including data with noise or potential artifact that might otherwise prevent other standard imaging analytic

techniques. It is possible that the retrained model could account for such artifacts better than traditional

analytic streams.
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Practicality

The localization observations also have potential implications for acquisition. Acquisition targeting a focal

field of view can facilitate diagnosis of specific disorders. And, it is important to note that the proposed

method is able to generate a summary score for the structural AD-like pattern with very low computational

cost at inference comparing with most of the current segmentation-based models. This is very critical in

timely diagnosis and evaluation. Additionally, the computational requirement for a study this size was

modest, both in cost and time, and easily adaptable into a pipeline.

Limitations

This study has several important limitations. Firstly, each MRI, even when multiple scans from the same

subject are available, are treated individually. Thus our dataset contains multiple scans from the same

individual and thus those individuals that have received many scans are over-represented relative to those

who undergo fewer scans. Distribution of the number of scans per subject can be found in Figure S3 in the

supplementary material. In order to ensure that the multiple scans per person do not introduce any target

leaks into our learning problem, we take care to construct our training, validation and testing splits on a

per-individual (vs. per-scan) basis, isolating each subject to only one split. Still it is worth noting that

the most heavily scanned individuals contribute more heavily to the learned model and to the evaluation.

Conceivably, if one were interested in assessing the accuracy of predictions on a per-individual level, one

might re-weight the scans in the test set so that each individual contributed equally to the final score.

Additionally, we note that our labels used in both training and evaluation are not ground truth per se

as they are based on physicians’ assessments via clinical criteria in vivo while true diagnosis can only

be confirmed at present through neuropathology, requiring post-mortem brain biopsy. We suspect that

although ante- and post-mortem concordance is generally found to be high, the availability of ground truth

labels would improve our models [Beach et al., 2012].

The probabilistic spatial distribution of different anatomical regions used in the brain lobe based

classification experiment can be further optimized to be more reflective of general population but is not

the aim and beyond the scope of this paper.

The current study aims to make predictions about the diagnosis at the time of scan, which permits
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different diagnosis labels of multiple scans of the same subjects. Future studies with the goal of predicting

longitudinal progression may define the class labels based on the most recent diagnosis label and the

follow-ups.

Future work

Our framework is sufficiently general that it can be easily extended to other diseases such as schizophrenia,

Parkinson’s disease (PD), etc. and to other MRI contrasts such as CBV, CBF or even to other imaging

modalities such as PET, SPECT. One promising direction is a large-scale CBV study enabled by the

recently proposed retrospective CBV technique [Feng et al., 2018]. Moreover, our ability to learn good

representations for AD prediction could be brought to bear on other problems that might be supported only

by smaller datasets. Following a number of successes in deep learning applications ranging from computer

vision to natural language processing, we might employ transfer learning, fine-tuning the representations

from our AD predictor, together with other sources of information such as age, gender, functional imaging

measures, neuropsychological measures, CSF biomarkers, etc. to new tasks.

We are also interested in evaluating cross-sectional age trend, longitudinal progression, and test-retest

reliability. Moreover, we would like to follow-up upon some qualitative observations observed in our

localization experiments. For example, for some scans, the class activation map attributes predictions

to only one side. While this interpretation technique is heuristic and does not by itself tell us anything

conclusive about the localization of AD, this might suggest a hypothesis worth exploring that in some

patients, at some stage in their illness, AD may manifest more unilaterally. However, it’s also possible that

even absent any true underlying lateralization, one side may simply be more predictive for some patients.
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Conclusion

In this study, we propose an AD diagnosis framework based on deep 3D CNN model using structural

MRI, empowered with the inclusion of longitudinal scans. The proposed framework demonstrates high

classification performance in Alzheimer’s disease versus cognitive normal. In addition, we demonstrate

high accuracy in MCI progression prediction applying the model trained on AD vs. CN classification to

the MCI subgroup. Furthermore, through class activation map and rigorous ablation analyses on both

slice-level and lobe-level, we pinpoint hippocampal formation as the most predictive regions for AD

classification, affirming the prominence of hippocampal formation in AD diagnosis, and demonstrating

the importance of regionality even in highly complicated deep neural network models. And importantly,

the proposed classification and regional analyses methods constitute a general framework that can easily

be applied to other disorders and imaging modalities.
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Additional information

Figure S1. 3D rendering of the class activation map (iso-surface at 0.8, red) with the label of
hippocampus (yellow), entorhinal cortex (blue), parahippocampal cortex (green) from FreeSurfer
template.
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Figure S2. Lobe (and cerebellum) probability maps.
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Figure S3. MRI sessions per subject (left) scans of cognitively normal subjects, (right) scans of AD
subjects.
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