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Abstract- 
Knowledge of the genes and alleles underlying elemental composition will be required to 
understand how plants interact with their environment. Modern genetics is capable of quickly, 
and cheaply indicating which regions of DNA are associated with the phenotype in question, but 
most genes remain poorly annotated, hindering the identification of candidate genes. To help 
identify candidate genes underlying elemental accumulations, we have created the known 
ionome gene (KIG) list: a curated collection of genes experimentally shown to change elemental 
uptake. We have also created an automated computational pipeline to generate lists of KIG 
orthologs in other plant species using the PhytoMine database. The current version of KIG 
consists of 96 known genes covering 4 species and 23 elements and their 596 orthologs in 8 
species. Most of the genes were identified in the model plant Arabidopsis thaliana and 
transporter coding genes as well as genes that affect the accumulation of iron and zinc are 
overrepresented in the current list.  
 
Intro-  
Understanding the complex relationships that determine plant adaptation will require detailed 
knowledge of the action of individual genes and the environment. One of the fundamental 
processes that plants must accomplish is to manage the uptake, distribution and storage of 
elements from the environment.  Many different physiological, chemical, biochemical and cell 
biology processes are involved in moving elements, implicating thousands of genes in every 
plant species. Modern genetic techniques have made it easy and inexpensive to identify 
hundreds to thousands of loci for traits such as the elemental composition (or ionome) of plant 
tissues. However, moving from loci to genes is still difficult as the number of possible candidates 
is still extremely large and the ability of researchers to identify a candidate gene by looking at 
annotations is limited by our current knowledge and inherent biases about what is worth 
studying (Stoeger et al. 2018).  
 
The most obvious candidates for genes affecting the ionome in a species are orthologs of genes 
that have been shown to affect elemental accumulation in another species. Indeed, there are 
multiple examples of orthologs affecting elemental accumulation in distantly related species, 
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such as Arabidopsis thaliana and rice (Oryza sativa), including Na+ transporters from the HKT 
family (Ren et al. 2005 , Baxter et al. 2010 ); the heavy metal transporters AtHMA3 and OsHMA3 
(Chao et al. 2012 , Yan et al. 2016 ); E3 ubiquitin ligase BRUTUS and OsHRZs that regulate 
degradation of iron uptake factors (Selote et al. 2015 , Hindt et al. 2017 , Kobayashi et al. 2013 ) 
and the K+ channel AKT1 (Lagarde et al. 1996 , Ahmad et al. 2016). To our knowledge, no 
comprehensive list of genes known to affect elemental accumulation in plants exists. To 
ameliorate this deficiency, we sought to create a curated list of genes based on peer reviewed 
literature along with a pipeline to identify orthologs of the genes in any plant species and a 
method for continuously updating the list. Here we present version 0.1 of the known ionomic 
gene (KIG) list.  
 
 
Materials and Methods 
Criteria for inclusion in the primary KIG list were as follows: we included functionally 
characterized genes from the literature that are linked to changes in the ionome. For being 
considered, the phenotype of knockout or knock-down plants for the specific gene needs to 
show consistent changes in at least one element in at least one experimental condition. Thus, 
we have not included genes that are linked to metal tolerance or sensitivity but do not alter the 
ionome. For double mutants, both genes are listed. In order to identify the KIG genes, we 
created a Google survey that was distributed to members of the ionomicshub research 
coordinators, as well as advertising on Twitter and in oral presentations by the authors. We 
asked submitters to provide the species, gene name (or names where alleles of two genes were 
required for a phenotype), gene ID(s), tissue(s), element(s) altered and a DOI link for the 
primary literature support.  
 
Creating the inferred orthologs list: The known-ionomics gene list contains known genes from 
the primary list and their orthologous genes inferred by inParanoid (v4.1) pairwise species 
comparisons. The inParanoid files were downloaded from Phytozome for each 
organism-to-organism combination of species in the primary list, plus Glycine max, Sorghum 
bicolor, Setaria italica, and S. viridis. Orthologs of the primary genes were labeled as “inferred” 
genes. If a primary gene was also found as an ortholog to a primary gene in another species, 
the status was changed to “Primary/Inferred” in both species. It is important to note that only 
primary genes can infer genes; inferred genes cannot infer other genes. The pipeline for 
transforming the primary list into the known-ionomics gene list can be found at 
github.com/baxterlab/KIG. 
 
Gene Enrichment analysis: Overrepresentation analysis was performed on the primary and 
inferred genes in A. thaliana using the GO Consortium’s web-based GO Enrichment Analysis 
tool powered by PANTHER (GO ontology database, released 09/08/2018) classification system 
tool (Ashburner et al. 2000 , The Gene Ontology Consortium 2017 , Mi et al. 2017). We restricted 
overrepresentation analysis to A. thaliana because of its dominance in the known ionome list 
and our lack of confidence in the functional annotation of the other species in the list. An 
analysis performed by Wimalanathan et al. (2018) found that maize gene annotations in 
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databases like Gramene and Phytozome lacked GO annotations outside of automatically 
assigned, electronic annotations (IEA). IEA annotations are not curated and have the least 
amount of support out of all the evidence codes (Harris et al. 2004). A. thaliana annotations 
come from a variety of evidence types, showing a higher degree of curation compared to maize 
(Wimalanathan et al. 2018).  

We tested both the PANTHER GO-Slim and the GO complete datasets for biological 
processes, molecular function and cellular component. The enriched terms (fold enrichment > 1 
and with a false discovery rate <0.05) were sorted into five specific categories relating to the 
ionome based annotation terms: 

1. Ion homeostasis - terms include homeostasis, stress, detoxification, regulation of an ion 
2. Ion transport - terms specifically states transport, export, import or localization of ion(s). 

Does not include hydrogen ion transport 
3. Metal ion chelation - terms relating to phytochelatins, other chemical reactions or 

pathways of metal chelator synthesis 
4. Response to ions - vaguely states a response to ions, but does not have any child 

annotation terms that offer any more clarification (ie. stress response). Broadly this is 
referring to any change to the state or activity of cell secretion, expression, movement, or 
enzyme production (Carbon et al. 2009). 

5. Other transport - annotation stating the transfer of anything that is not an ion (glucose, 
peptides, etc.) 

Genes may belong to more than one category, but if they belong to a parent and child term in 
the same category, they were only counted once. 
 
Results 

The current primary list (v0.1) consists of 96 genes from A. thaliana, O. sativa , Medicago 
truncatula, and Z. mays  with the majority coming from A. thaliana and O. sativa (Table 1)(Figure 
1).  
 
Table 1. Primary known ionome genes 
Species GeneID GeneName Elements Tissue Citation(s) 

A.thaliana AT1G01580 FRO2 Fe Root (Robinson et al. 1999) 
A.thaliana AT1G18910 BTSL2 Fe,Mn,Zn Leaf (Hindt et al. 2017) 
A.thaliana AT1G20110 FYVE1 Fe,Zn,Co,Mn Root (Barberon et al. 2014) 
A.thaliana AT1G30450 CCC Ca,K,Na,S seeds (McDowell et al. 2013) 

A.thaliana AT1G32450 
AtNRT1.5 / 
AtNPF7.3 K, NO3- Shoots, Roots (Li et al. 2017) 

A.thaliana AT1G36370 AtMSA1 S, Se Shoots (Huang et al. 2016) 
A.thaliana AT1G56160 myb72 Fe,Cd,Zn,Co,Mo Leaf (Palmer et al. 2013) 
A.thaliana AT1G56430 NAS4 Fe,Cd,Co,Mo Leaf 10.1371/journal.pgen.1003953 

A.thaliana AT1G62180 AtAPR2 S, Se Shoots 
(Loudet et al. 2007),(Chao et al. 
2014) 

A.thaliana AT1G71200 AtCITF1 Cu Shoots, Anthers (Yan et al. 2017) 
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A.thaliana AT1G74770 BTSL1 Fe,Mn,Zn Leaf (Hindt et al. 2017) 
A.thaliana AT1G80830 AtNRAMP1 Mn Shoots,roots (Cailliatte et al. 2010) 
A.thaliana AT2G01770 VIT1 Fe Seed (Kim et al. 2006) 
A.thaliana AT2G13540 ABH1 S seeds (McDowell et al. 2013) 
A.thaliana AT2G16770 AtbZIP23 Zn Shoots, roots (Assunção et al. 2010) 

A.thaliana AT2G19110 AtHMA4 Zn Shoots,seeds 
(Hussain et al. 2004) (Olsen et al. 
2016) 

A.thaliana AT2G21045 AtHAC1 As Shoots (Chao et al. 2014) 

A.thaliana AT2G23150 AtNRAMP4 Fe,Mn,Zn Shoots (Lanquar et al. 2010) 
A.thaliana AT2G25680 MOT1 Mo Leaf (Baxter et al. 2008) 

A.thaliana AT2G28670 ESB1 
Ca,Mn,Zn,Na,S,K,A
s, Se,Mo Leaf (Baxter et al. 2009) 

A.thaliana AT2G38460 FPN1 Co Leaf (Morrissey et al. 2009) 
A.thaliana AT2G39450 AtMTP11 Mn Shoots,Roots (Peiter et al. 2007) 
A.thaliana AT2G46430 CNGC3 K Leaf (Gobert et al. 2006) 

A.thaliana AT2G46800 AtMTP1 Zn Shoots 
(Desbrosses-Fonrouge et al. 
2005) 

A.thaliana AT3G06060 TSC10a 
Na,K,Rb,Mg,Ca,Fe,
Mo Leaf (Chao et al. 2011) 

A.thaliana AT3G06100 NIP7 As NA 
(Lindsay and Maathuis 2016) 
(Isayenkov and Maathuis 2008) 

A.thaliana AT3G12820 myb10 Fe,Cd,Zn,Co,Mo Leaf (Palmer et al. 2013) 

A.thaliana AT3G14280  S seeds (McDowell et al. 2013) 
A.thaliana AT3G15380 AtCTL1 Na, Fe, Zn, Mn, Mo Shoots, Roots (Gao et al. 2017) 
A.thaliana AT3G18290 BTS Fe,Zn,Mn Leaf (Hindt et al. 2017) 
A.thaliana AT3G22890 AtATPS1 S Shoos (Koprivova et al. 2013) 
A.thaliana AT3G43790 ZIFL2 Cs Leaf (Remy et al. 2015) 
A.thaliana AT3G47640 PYE Fe,Zn,Mn,Co Root (Long et al. 2010) 
A.thaliana AT3G47950 AHA4 Na Root (Vitart et al. 2001) 

A.thaliana AT3G58060 AtMTP8 Mn Shoots,seeds 
(Eroglu et al. 2016), (Eroglu et al. 
2017) 

A.thaliana AT3G58810 AtMTP3 Zn Shoots (Arrivault et al. 2006) 
A.thaliana AT4G02780 GA1 Fe Root (Wild et al. 2016) 
A.thaliana AT4G10310 AtHKT1;1 Na Leaf (Baxter et al. 2010) 
A.thaliana AT4G16370 OPT3 Fe,Cd Leaf (Zhai et al. 2014) 
A.thaliana AT4G19690 IRT1 Fe,Mn,Co,Cd,Zn Root (Eide et al. 1996) 
A.thaliana AT4G24120 YSL1 Fe,Zn,Cu NA (Waters et al. 2006) 

A.thaliana AT4G30110 AtHMA2 Zn Shoots,seeds 
(Hussain et al. 2004); (Olsen et al. 
2016) 

A.thaliana AT4G30120 HMA3 Cd Leaf (Chao et al. 2012) 
A.thaliana AT4G35040 AtbZIP19 Zn Shoots, roots (Assunção et al. 2010) 
A.thaliana AT5G02600 NaKR1 Na,K,Rb Leaf (Tian et al. 2010) 
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A.thaliana AT5G03570 FPN2 Co Leaf (Morrissey et al. 2009) 
A.thaliana AT5G15410 CNGC2/DND1 Ca,Mg seeds (McDowell et al. 2013) 
A.thaliana AT5G18830 AtSPL7 Cu Shoots, roots (Bernal et al. 2012) 
A.thaliana AT5G35410 SOS2 Na seeds (McDowell et al. 2013) 
A.thaliana AT5G44070 PCS1 Zn,Cd Leaf (Kühnlenz et al. 2016) 
A.thaliana AT5G53130 CNGC1 Pb Leaf (Sunkar et al. 2000).x 
A.thaliana AT5G53550 YSL3 Fe,Zn,Cu NA (Waters et al. 2006) 

A.thaliana AT5G57620 AtMYB36 

Li, B, Na, Mg, K, Ca, 
Mn, Fe, Co, Ni, Cu, 
Zn, Rb, Sr, Mo, Cd Shoots (Kamiya et al. 2015) 

A.thaliana AT5G64930 CPR5 K Leaf (Borghi et al. 2011) 
A.thaliana AT5G67330 AtNRAMP3 Fe,Mn,Zn Shoots (Lanquar et al. 2010) 
A.thaliana AT3G23210 bHLH34 Fe Root, shoot (Li et al. 2016) 
A.thaliana AT4G14410 bHLH104 Fe Root, shoot (Li et al. 2016) 
M.truncatula Medtr1g010270 MtMOT1.2 Mo Nodules (Gil-Díez et al. 2018) 
M.truncatula Medtr3g088460 MtNramp1 Fe Nodules (Tejada-Jiménez et al. 2015) 
M.truncatula Medtr3g464210 MtMOT1.3 Mo Nodules (Tejada-Jiménez et al. 2017) 
M.truncatula Medtr4g019870 MtCOPT1 Cu Nodules (Senovilla et al. 2018) 
M.truncatula Medtr4g064893 MtMTP2 Zn Nodules (León-Mediavilla et al. 2018) 
M.truncatula Medtr4g083570 MtZIP6 Zn Nodules (Abreu et al. 2017) 
O.sativa LOC_Os01g03914 OsMTP9 Mn Shoots (Ueno et al. 2015) 
O.sativa LOC_Os01g45990 AKT1 K NA (Ahmad et al. 2016) 
O.sativa LOC_Os02g06290 OsHAC4 As Seed (Xu et al. 2017) 

O.sativa LOC_Os02g10290 OsHMA4 Cu 
Roots, shoots, 
seeds (Huang et al. 2016) 

O.sativa LOC_Os02g43370 OsYSL2 Fe,Mn Seeds (Ishimaru et al. 2010) 

O.sativa LOC_Os02g43410 OsYSL15 Fe 
Roots, shoots, 
seeds (Lee et al. 2009) 

O.sativa LOC_Os02g53490 OsMTP8.2 Mn Shoots, Roots (Takemoto et al. 2017) 
O.sativa LOC_Os03g12530 OsMTP8.1 Mn Shoots, Roots (Chen et al. 2013) 
O.sativa LOC_Os03g18550 OsMIT Fe Shoots (Bashir et al. 2011) 
O.sativa LOC_Os04g32920 OsHAK1 Cs Shoots, seeds (Rai et al. 2017) 
O.sativa LOC_Os04g38940 OsVIT1 Fe,Zn Shoots,seeds (Zhang et al. 2012) 
O.sativa LOC_Os04g45860 OsYSL9 Fe Shoots,seeds (Senoura et al. 2017) 

O.sativa LOC_Os04g45900 OsYSL16 Cu 
Roots,shoots, 
seeds (Zheng et al. 2012) 

O.sativa LOC_Os04g46940 OsHMA5 Cu Roots,shoots (Deng et al. 2013) 
O.sativa LOC_Os04g52310 OsZIP3 Zn Shoots (Sasaki et al. 2015) 
O.sativa LOC_Os04g52900 OsABCC1 As Seeds (Song et al. 2014) 
O.sativa LOC_Os05g34290 OsPCS1* As Seeds (Hayashi et al. 2017) 
O.sativa LOC_Os05g39560 OsZIP5 Zn Leaf (Lee et al. 2010) 
O.sativa LOC_Os06g01260 OsPCS2* As, Cd Seeds (Uraguchi et al. 2017) 
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O.sativa LOC_Os06g48720 OsHMA2 Zn Shoots,Roots (Takahashi et al. 2012)x 
O.sativa LOC_Os07g01810 TPKb K Leaf,root (Ahmad et al. 2016) 
O.sativa LOC_Os07g12900 OsHMA3 Cd Shoots,seeds (Tanaka et al. 2016) 
O.sativa LOC_Os08g04390 OsPRI1 Fe Shoots, roots (Zhang et al. 2017) 

O.sativa LOC_Os08g10480 OsATX1 Cu 
Shoots, Roots, 
Seeds (Zhang et al. 2018) 

O.sativa LOC_Os09g23300 OsVIT2 Fe,Zn Shoots,seeds (Zhang et al. 2012) 

O.sativa LOC_Os12g18410 OsMIR Fe 
Shoots,Roots, 
seeds (Ishimaru et al. 2009) 

O.sativa Os01g0689300 OsHRZ1 Fe Shoots, seeds (Kobayashi et al. 2013) 
O.sativa Os01g0861700 OsHORZ1 Fe Shoots, seeds (Kobayashi et al. 2013) 
O.sativa Os05g0551000 OsHRZ2 Fe Shoots, seeds (Kobayashi et al. 2013) 
O.sativa Os06g0143700 SPDT P Seed (Yamaji et al. 2017) 
O.sativa Os07g0257200 NRAMP5 Fe,Mn,Cd Leaf (Sasaki et al. 2012) 
Z.mays GRMZM2G060952 YS1 Fe Root (Von Wiren et al. 1994) 

Z.mays GRMZM2G063306 YS3 Fe Leaf 
(Chan-Rodriguez and Walker 
2018) 
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Figure 1. Number of genes for each species that are primary, inferred from other primary 
genes in other species, or both. 
 
Most primary genes have orthologs in other species- which we call inferred genes. Less than 
11% of primary genes in A. thaliana and O.sativa, and less than 2% in M. truncatula, lack 
orthologs (Table 2). G. max, S. bicolor, S. italica , and S. viridis currently contain only inferred 
genes (Table 2, Figure 1).  
 
 
 
 
Table 2. Break down of primary/inferred genes in each species 
 A.thaliana Z.mays G.max* S.bicolor* O.sativa M.truncatula S.italica* S.viridis* 

Gene # 76 88 138 73 77 85 76 79 

Primary 65.79% 2.27% 0.00% 0.00% 31.17% 4.71% 0.00% 0.00% 

Primary/Inferred 9.21% 0.00% 0.00% 0.00% 9.09% 2.35% 0.00% 0.00% 

Inferred 25.00% 97.73% 100.00% 100.00% 59.74% 92.94% 100.00% 100.00% 

Genes w/o 
orthologs 10.53% 0.00% 0.00% 0.00% 10.39% 1.18% 0.00% 0.00% 
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The YSL genes in A. thaliana and O.sativa are an example that provides evidence for the 
validity of the KIG list pipeline: AtYSL3, OsYSL9 and OsYSL16 were listed in their respective 
species as primary genes (Table 1) and after the ortholog search are annotated as 
primary/inferred genes, referencing each other (STable1). However, AtYSL2 in A. thaliana, 
which was not listed as primary gene, was inferred through both OsYSL9 and OsYSL16. 
Additionally, AtYSL1 in A. thaliana is not a paralog of AtYSL3 or an ortholog of OsYSL9 and 
OsYSL16 according to PhytoMine, and is not listed as an ortholog to either of the O. sativa YSL 
genes in the KIG list. Other examples include AtVIT1 and OsVIT1/OsVIT2 (Kim et al. 2006 , 
Zhang et al. 2012) and AtMTP8 and OsMTP8.1 (Eroglu et al. 2016 , Chen et al. 2013). Thus, we 
can reliably generate inferred genes for and create a species specific KIG list for any species in 
PhytoMine. 
 

The primary list covers 23 elements (Figure 2) according to the reported elements from 
authors in the primary list, which is more elements than predicted by the GO term annotations 
for those genes. Some GO annotations for these genes mention only a portion of elements 
listed by the literature in the primary list. This may be due to GO annotation evidence codes 
lacking curation or biological data (IEA,ND,NAS) (Wimalanathan et al. 2018), or it may be due to 
alterations in one element leading to alterations in other elements (Baxter et al. 2008).  

 
Figure 2. Number of primary genes from each species listing each element. 
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A. thaliana studies seem to be driving the elements included in the list, as it is the only species 
to have a gene listing each primary element. There is a bias towards elements like Manganese, 
Zinc and Iron which have 2, 3.5 and 4.5 times more associated genes than the average 8±9 
genes of other elements. Iron is also the only element to contain genes from all four species in 
the primary list. In addition to biases towards certain elements, our primary list is also skewed 
towards an overrepresentation of ionome genes in above ground tissue studies (Figure 3). This 
is likely due to the difficulties in studying the elemental content of below ground tissues.  All of 
our M. truncatula genes come from nodule studies, most likely because it is a model legume 
species. 

 
Figure 3. Number of primary genes each type of tissue contributes to the known 
ionomics list. Above ground is a summary of anther, leaf, seed and shoot, while below 
ground is a summary of root and nodule.  
 

Querying the manually curated PANTHER GO-Slim biological process database, with 
the A. thaliana KIG list returned no terms significantly overrepresented. However, all of the A. 
thaliana genes in the known ionomics list were mapped to significantly (false discovery rate 
<0.05) overrepresented annotation terms within the GO biological processes complete database 
and thus categorized into the five groups listed in the methods (Figure 4).  
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Figure 4. Known ionome genes relating to different biological processes. Ontology groups of 
GO Enrichment Analysis from PANTHER.  
 
Even though some genes were annotated as associated in the “other transport” of glycoside, 
glucose, oligopeptides, or phloem transport, the citations that have added them into our primary 
list show that their mutant alleles altered elemental accumulation. AtBCC1 and AtBCC2 are 
annotated as glycoside transporters, but were inferred orthologs through an O. sativa gene in 
the primary list from a paper finding that OsABCC1 was contributing to the reduction of arsenic 
in rice grain s (Song et al. 2014). The YSL genes and OPT3 are annotated as genes encoding 
oligopeptide transporters, but more specifically they are encoding predicted phloem-localized 
metal-nicotianamine complex and iron/cadmium transporters, respectively (Waters et al. 
2006 ,Zhai et al. 2014). Lastly, NRT1.5/NPF7.3 is also annotated as encoding an oligopeptide 
transporter, but Li et al. (2017) identifies it as a xylem loading potassium ion antiporter. 

The PANTHER GO-Slim molecular function annotation database did show a significant 
overrepresentation for cation transmembrane transporter activity. The results using the GO 
complete molecular function database supported this, with the addition of metal ion binding and 
cyclic nucleotide binding annotations. The cyclic nucleotide binding annotation genes were more 
specifically cyclic nucleotide ion gated channel genes (Gobert et al. 2006). The PANTHER 
GO-Slim cell component and GO complete cell component annotation database both returned 
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significant overrepresentation for vacuoles and the plasma membrane, both known to be critical 
for elemental movement and storage (need refs). The molecular function and cell component 
results are further evidence that our list is dominated by ion transporters. 
 

To test how complete our list is in its current state, we searched PANTHER’s biological 
processes annotations for the number of A. thaliana genes encoding predicted elemental 
transporters predicted to transport elements. We found 634 genes predicted to encode 
elemental transport, and only 18 of these PANTHER genes are listed in the known ionomics list. 
We checked these results against ThaleMine genes with the term “ion transport” in the gene 
name, description, or GO annotation and found only 376 genes, with 53 of these genes listed in 
the known ionomics list. Interestingly, 219 of the genes from ThaleMine were not found in the 
634 from PANTHER. 
 
Discussion 
Here we have produced a curated list of genes known to alter the elemental composition of 
plant tissues. We envision several possible uses for this list: 

1. Researchers can use the list to identify candidate genes in loci from QTL and GWAS 
experiments. 

2. This list can serve as a gold standard for computational approaches. 
3. The list can serve as a reading list for those interested in learning about elemental 

accumulation.  
 
The list is highly enriched for transporters, genes that affect elemental accumulation in above 
ground tissues and genes that affect the accumulation of Fe and Zn. All of these factors, 
however, could be the result of human bias towards research topics. For example, transporter 
genes became obvious candidates for studying plant material nutrition when disruption allele 
collections were produced (McDowell et al. 2013). Fe and Zn are both important nutrients and of 
considerable interest to the community where the ionomics approach was developed. 
Additionally, above ground tissues are easier to study without contamination from the soil, and 
such studies are therefore more prevalent. 
 
Most entries on this list are derived from model organisms which reflects the fact that most of 
our knowledge about genes that affect elemental accumulation comes from these species. A. 
thaliana and M. truncatula account for 65.63% of the primary genes list, and several of the 
genes in crop plants were found due to being orthologs of genes in the model organisms 
(Ahmad et al. 2016, Xu et al. 2017 ).  
 
We conducted all of our analyses of GO terms in Arabidopsis, as it had the highest number of 
high confidence annotations. The lack of good annotations in other species highlights the value 
of creating curated lists like this one.  
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Call for more submissions: While we believe that the current list is useful, we are likely missing 
genes due to our lack of comprehensive knowledge of the literature. Currently, the list contains 
entries from only 9 people. We ask readers who know of genes that we are missing to 
contribute by submitting them here: 
https://docs.google.com/forms/d/e/1FAIpQLSdmS_zeOlxTOLmq2wB45BuSQml1LMKtKnWSat
mFRGR2Q1o0Ew/viewform?c=0&w=1  or email corresponding author. KIG lists 0.1v for each of 
the species can be seen in STable1, and future updates to the list can be found at 
https://docs.google.com/spreadsheets/d/1XI2l1vtVJiHrlXLeOS5yTQQnLYq7BOHpmjuC-kUejUU
/edit?usp=sharing. 
 
 
Contributions: 
Contributed genes: IB, FKR, FM, SC, EW, PK 
Analyzed data: LW, GZ 
Wrote paper: LW, FKR, IB 
Edited paper: FKR, FM, SC, EW, PK, GZ, LW, IB 
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