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1

Abstract2

Protein aggregation has been implicated in many diseases.1–7 Therapeu-3

tic strategies for these diseases propose the use of drugs to inhibit specific4

molecular events during the aggregation process.8–11 However, viable treat-5

ment protocols require balancing the e�cacy of the drug with its toxicity6

while accounting for the underlying events of aggregation and inhibition at7

the molecular level. Here, we combine aggregation kinetics and control the-8

ory to determine optimal protocols which prevent protein aggregation via9

specific reaction pathways. We find that the optimal inhibition of primary10

and fibril-dependent secondary nucleation require fundamentally di↵erent11

drug administration protocols. We test the e�cacy of our approach on12

experimental data for Amyloid-� aggregation of Alzheimer’s disease in the13

model organism C. elegans. Our results pose and answer the question of the14

link between the molecular basis of protein aggregation and optimal strate-15
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gies for inhibiting it, opening up new avenues for the design of rational16

therapies to control pathological protein aggregation.17

Over 50 current human diseases, including Alzheimer’s disease, Parkinson’s disease and18

Type-II diabetes, are intimately connected with the aggregation of precursor peptides and19

proteins into pathological fibrillar structures known as amyloids.1–5 However, the develop-20

ment of e↵ective therapeutics to prevent protein-aggregation-related diseases has been very21

challenging, in part due to the complex nature of aggregation process itself, which involves22

several microscopic events operating at multiple timescales.6,7 A promising and recent ap-23

proach is the use of molecular inhibitors designed to target di↵erent types of aggregate24

species, including the mature amyloid fibrils, or the intermediate oligomeric species, and, in25

this manner, interfere directly with specific microscopic steps of aggregation.8–11 Examples of26

such compounds include small chemical molecules, such as the anticancer drug Bexarotene,927

molecular chaperones,15,16 antibodies or other organic or inorganic nanoparticles.17 Just as28

large quantities of the aggregates are toxic, in large doses the inhibitors themselves are also29

toxic, suggesting the following questions: what is the optimal strategy for the inhibition of30

aggregation arising from a balance between the degree of inhibition and the toxicity of the31

inhibitor? And most importantly, how does this optimal strategy depend on the detailed32

molecular pathways involved in aggregation and its inhibition?33

To address these questions, we combine kinetic theory of protein aggregation18 with34

control theory19 to devise optimal treatment protocols that emerge directly from an under-35

standing of the molecular basis of aggregation and its inhibition. To test our theory, we36

consider the example of the inhibition of Amyloid-� (A�) aggregation by two compounds,37

Bexarotene9 and DesAb29�35
17 , that selectively target di↵erent microscopic events of aggre-38

gation and qualitatively confirm the theoretically predicted e�cacy of the drug protocol in39

a model organism, C. elegans.40

The molecular mechanisms driving protein aggregation involve a number of steps (Fig. 1a),41

including primary nucleation followed by fibril elongation,20 as well as fibril fragmentation42
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and surface-catalyzed secondary nucleation, which generally fall into the class of secondary43

nucleation mechanisms.21–26 These steps can be a↵ected by the presence of a drug through44

four pathways (Fig. 1b): (i) binding to free monomers, (ii) binding to primary or secondary45

oligomers, (iii) binding to aggregate ends to block elongation, and (iv) binding to the fibril46

surface to suppress fragmentation or surface-catalyzed secondary nucleation. These diverse47

microscopic aggregation and inhibition mechanisms can be quantified via a master equation48

approach that tracks the population balance of the various aggregate species as a result49

of their interactions with monomeric proteins and drug molecules (Supplementary Eq. (S3)50

and subsequent discussion).15,18 This approach shows that at the early times of aggregation,51

before appreciable amounts of monomer have been sequestered into aggregates, i.e. pre-52

cisely when drug treatments are likely to be most e�cacious, the monomer concentration53

is approximately constant in time. This constant-monomer concentration scenario may also54

emerge when the monomeric protein concentration is maintained at constant levels by the55

action of external mechanisms such as protein synthesis. Since the progression of aggregation56

is relatively slow compared to the binding rate of drugs, an explicit treatment of the full57

nonlinear master equation in this limit shows that the dynamics of the particle concentration58

ca(t) of aggregates at time t is well described by the following linear di↵erential equation59

(see Supplementary S1 for a derivation):60

dca(t)

dt
= ↵(cd) + (cd) ca(t) . (1)

Note that Eq. (1), albeit simple, is explicitly derived from a microscopic description of61

aggregation through a non-linear master equation describing the time evolution of the entire62

aggregate size distribution (Supplementary S1); the complex interplay between the multiple63

aggregation pathways and the drug is captured explicitly in Eq. (1) by the parameters ↵(cd)64

and (cd), which depend on the drug concentration cd and are specific functions of the kinetic65

parameters of aggregation as well as the equilibrium binding constant of the drug to the66
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targeted species, Keq, which is a measure of a�nity (Supplementary Eq. (S26)).15,27 In the67

absence of a drug, Eq. (1) describes exponential growth of the concentration of aggregates68

with time, ca(t) ' (↵0/0)e0t,26 where ↵0 = k1(M tot
m )n1 and 0 =

p
2k+k2(M tot

m )n2+1.69

Here, k1, k+, k2 are the rate constants for primary nucleation, elongation, and secondary70

nucleation, M tot
m is the total monomer concentration, and n1, n2 are the reaction orders of71

the primary and secondary nucleation steps relative to free monomer.29 With a drug, the72

unperturbed coe�cients ↵0 and 0 are replaced by renormalized parameters ↵(cd) and (cd)73

(Supplementary Eq. (S26)). Note that, in the constant-monomer concentration scenario, a74

linear proportionality relationship (Supplementary Eq. (S14)) links the particle concentration75

of aggregates with the concentration of intermediate-sized oligomers, which have emerged as76

key cytotoxic species linked to protein aggregation.12–14 Hence, after appropriate rescaling of77

concentration, the same Eq. (1) can be used to describe oligomeric populations; throughout78

this paper, we shall thus use the generic term ‘aggregate’ to refer to the relevant population79

of toxic aggregates.80

To find the optimal therapeutic treatment which inhibits the formation of toxic aggregates81

requires a cost functional that balances aggregate toxicity against drug toxicity:82

C = Cost [ca(t), cd(t)] =

Z T

0

dtL (ca(t), cd(t)) , (2)

where T is the total available time for treatment, and L is a function that characterizes83

the cost rate which increases for larger aggregate and drug concentrations. L is expected84

to be a complicated function of drug and aggregate concentrations, but without loss of85

generality we can focus on the simple linearized function, L = ca(t) + ⇣ cd(t), where ⇣ > 086

quantifies the relative toxicity of aggregate and drug molecules. In Supplementary S2E we87

show that the predictions from the linearized cost function remain qualitatively valid for a88

nonlinear cost function, making our approach generalizable in a straight-forward way should89

future experiments provide detailed insights into the form of the cost function. The optimal90
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drug administration protocol cd(t) minimizes the cost functional (2) given the aggregation91

dynamics governed by Eq. (1), thus enabling us to couch our problem within the realm92

of classical optimal control theory19 that allows for bang-bang control solutions, given the93

linear nature of the cost rate.94

Indeed, the optimal treatment protocol consists of piece-wise constant concentration lev-

els of the drug over varying time spans of the treatment (Figs. 2a,b) determined by the drug

toxicity, the aggregation kinetic parameters and the mechanism inhibition (Supplementary

S2). In this protocol, T1 is the waiting time for drug administration, T2�T1, denotes the time

period during which the drug is applied, and T � T2, is a drug-free period after medication.

We find that, depending on whether the drug suppresses primary nucleation or secondary

nucleation and growth at the ends of the aggregates, the optimal protocol for drug adminis-

tration is fundamentally distinct.30 When the drug inhibits primary nucleation (↵ = ↵(cd),

 = 0), there is no waiting period for drug administration (T1 = 0, “early administration”),

and the optimal treatment duration reads:

T2 = T � 1

0
ln

✓
⇣cd0

↵0 � ↵

◆
. (3)

When the drug a↵ects secondary nucleation or elongation ( = (cd), ↵ = ↵0), the optimal

protocol is qualitatively di↵erent: the drug must be administered after a waiting period T1

(“late administration”) and the optimal treatment duration is:

T2 � T1 =
0

0 � 


T � 1

0
ln

✓
⇣cd2

0

↵0(0 � )

◆�
. (4)

In either case, the optimal treatment time decreases with increasing drug concentration or95

toxicity. Moreover, at low drug concentrations, there is a regime where the drug must be96

administered for the full time period T , while if the drug concentration exceeds a critical97

threshold, cd > (↵0/⇣0) e0T , the preferable choice is no treatment. The optimal treatment98

duration corresponds to a minimum in cost and reflects the competition between drug-99
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induced suppression of aggregates and drug toxicity (Fig. 3a). The achievability of optimal100

treatment conditions is determined by the curvature of the cost function at the optimal101

treatment, ' (0 � )⇣cd (Supplementary S2D4); overall, lower curvature around the opti-102

mal treatment parameters facilitates a robust possibility to find mostly optimal treatment103

conditions. The optimal protocol for the administration of a drug that inhibits multiple104

aggregation steps is a combination of Eqs. (3) and (4).105

Our optimization approach allows to use the cost function to compare quantitatively dif-106

ferent inhibition strategies and to identify the regions in the parameter space where a certain107

strategy is to be preferred over an other; we demonstrate this by comparing the costs for108

inhibition of primary or secondary nucleation (Fig. 3b and Supplementary S2D6). We find109

that at large drug concentrations, and short available times 0T , inhibiting primary nucle-110

ation represents the optimal treatment strategy compared to inhibiting secondary nucleation111

or elongation, as the former strategy exhibits lower costs. Indeed, a drug that inhibits pri-112

mary nucleation must be administered from the beginning; hence, preventing aggregation113

over a longer time 0T necessarily requires longer periods of drug administration, eventually114

making the inhibition of primary nucleation costlier than blocking secondary nucleation at115

later stages. A boundary line, corresponding to equal costs for both strategies, separates116

the regimes of optimal treatment. The position of the boundary line depends on the relative117

a�nity of the drug to the primary oligomers compared to secondary oligomers, fibril ends118

or surfaces. For known values of the relative toxicity, our approach suggests how to select119

specific drugs corresponding to di↵erent mechanisms of action either in an early or late stage120

of the detection of protein aggregation disorders and depending on experimentally accessible121

parameters, such as drug a�nity.122

We next use the cost function to characterize longevity gain as a function of the parame-123

ters of drug-induced inhibition of aggregation (Fig. 3c and Supplementary S2D5). We define124

the life time as the time at which the cost reaches a critical value corresponding to the cost125

that a cell or an organism can tolerate before it dies. In the absence of any drug treatment,126
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the cost function grows exponentially with available time T , i.e., Cost⇥ ' (↵0/2
0 )e

0T .127

Crucially, the addition of a drug following the optimized treatment protocol lowers the cost128

down to a linear increase in time, Costopt ' ⇣cdT . Hence, the di↵erence in life times between129

an optimized treatment and the situation when no treatment is applied can be significant.130

The expected life time as a function of treatment duration displays a distinct maximum131

where the gain in longevity is maximal in correspondence of the optimal treatment protocol132

(Fig. 3d). The maximal life expectancy decreases with increasing drug concentration.133

We finally tested qualitatively the e�cacy of the optimal protocol in practice by consid-134

ering previous data on the inhibition of A�42 amyloid fibril formation of Alzheimer’s disease135

using the drug Bexarotene in a C. elegans model of A�42-induced dysfunction (Fig. 4a).9136

Figure 4b shows the e↵ect of administering increasing concentrations of Bexarotene to A�42137

worms in their larval stages on the frequency of body bends, a key parameter that indicates138

the viability of worms. At low drug concentrations, increasing Bexarotene concentration has139

beneficial e↵ects on worm fitness, but too large drug concentrations decrease worm fitness.140

Thus, there is an optimal dose of Bexarotene (10 µM) that leads to maximal the recovery141

of the worms. This optimal dose emerges from the competition between the inhibition of142

protein aggregation by Bexarotene (Fig. S3a,b) and its toxicity (Fig. S3c), as anticipated143

by our cost function (Supplementary S2E). At a mechanistic level, Bexarotene has been144

shown to a↵ect protein aggregation by inhibiting selectively primary nucleation in vitro and145

in the C. elegans model of A�42-induced toxicity.9 Thus, the key prediction from our model146

is that Bexarotene would be most e↵ective with an early administration protocol. This147

prediction is qualitatively in line with the experimental observations (Fig. 4c)9 that show148

that the administration of Bexarotene following a late administration protocol at day 2 of149

worm adulthood does not induce any observable improvement in fitness relative to untreated150

worms. In contrast, administering Bexarotene at the onset of the disease in the larval stages151

(early administration), leads to a significant recovery of worm mobility. To further sup-152

port our predictions, we consider in Fig. 4d the inhibition of A�42 aggregation by another153
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compound, DesAb29�36, which has been shown to inhibit selectively secondary nucleation.17154

The data in this case show that DesAb29�36 is more e�cacious when administered at late155

times than during the early stages of aggregation, an observation which is in line with the156

theoretical predictions of our model.157

Overall, our results highlight and rationalize the fundamental importance of understand-158

ing the relationship between the mechanistic action, at the molecular level, of an inhibitor159

and the optimal timing of its administration during macroscopic profiles of aggregation.160

This understanding could have important implications in drug design against pathological161

protein aggregation. For example, using the cost function could provide a new platform for162

systematically ranking drugs in terms of their e�ciency to inhibit protein aggregation mea-163

sured under optimal conditions. More generally, accounting explicitly in the cost function164

for additional factors such as organismal absorption, distribution, and clearance of the drug165

or its degradation over time in our theory could allow extrapolating most e↵ective protocols166

from a model system, such as C. elegans, to clinically relevant conditions, which may help167

e�cient design of future medical trials in this area; accounting for these factors would also168

suggest moving towards optimal drug cocktails or oscillatory protocols, all natural topics for169

future studies.170
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Figure 1: Elementary molecular events of pathological protein aggregation and the
diversity of mechanisms by which a drug can inhibit fibril formation. a. Fibrillar

aggregates are formed through an initial, primary nucleation step followed by elongation. Once a

critical concentration of aggregates is reached, secondary nucleation (in the form of fragmentation

or, as illustrated in the figure here, surface-catalyzed secondary nucleation) introduces a feedback

cycle leading exponential growth of aggregate concentration. b. A drug can bind monomers;

in addition it can bind primary or secondary oligomers to inhibit primary or surface-catalyzed

secondary nucleation. Alternatively, the drug can bind to the fibril ends or the fibril surface to

suppress elongation, fragmentation or surface-catalyzed secondary nucleation.
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Figure 2: Distinct optimal treatment protocols characterize the timing of drug ad-
ministration for compounds that inhibit primary or secondary nucleation processes.
a. Optimal treatment protocol for the administration of a drug that inhibits primary nucleation

(top). In this case, the drug must be administered as early as possible (T1 = 0) and for a duration

T2. Increasing drug concentration decreases the overall duration T2 of the optimal treatment (bot-

tom), but without a↵ecting the need for an early administration. When the drug concentration

is large, no treatment is favorable (red), while at low drug concentrations, the optimal treatment

can take the full available time T (green). b. For a drug that inhibits either fibril elongation or

secondary nucleation, a late, rather than early, administration of the drug is required (top). The

optimal treatment protocol is thus characterized by two switching times, T1 and T2, that define the

start and the end of drug administration, respectively (bottom). The duration of the treatment,

T2 � T1 decreases with increasing concentration of the drug. The parameters used in the plots are:

a. ⇣↵0/(0K
eq
oligo,1) = 1.2, 0T = 1.3; b. ↵0/0 = 2 ⇥ 10

�8
, ⇣ = 10, Keq

surf = 0.15µM
�1

, 0T = 9.
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minimum (Eq. (4)) as function of the dimensionless treatment duration 0(T2 � T1). At lower

drug concentration (dashed line), the minimum of the cost becomes broader, indicating an easier

access to the optimal protocol in the presence of fluctuations or limited knowledge of cellular kinetic

parameters or concentrations. b. Phase diagram indicating the region of parameter space where

inhibition of protein aggregation by a drug that binds primary oligomers has a lower cost than

inhibition by a drug that attacks secondary oligomers, fibril ends or surfaces. The blue dashed line

indicates how the boundary line shifts when drug toxicity is increased by a factor of 2. Note that

cd/↵ ' (0/↵0)c
3/2
d Keq

1o/
q

Keq
2nd

, where Keq
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are the binding constants (a�nities) for

the inhibition of primary, respectively, secondary nucleation. Thus, decreasing Keq
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Keq
2nd

favors the inhibition of secondary nucleation over primary nucleation. c. Cost without drug

(blue) and optimal cost (red) as a function of available time 0T . Note the dramatic di↵erence

in the time dependence of the cost for the optimal treatment (linear in T ) and without treatment

(exponential in T ). d. Expected life expectancy as a function of treatment duration. There is a

distinct maximum where the gain in life time is maximal in correspondence of the optimal treatment

protocol. The parameters used in the plots are: a. ↵0/0 = 2 ⇥ 10
�8
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�1
,

0T = 13, cd = 2 µM (dashed), cd = 6 µM (solid); d. 0Costc = 10
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with such a difference, the levels of aggregates monitored using the
fluorescence intensity of the amyloid-specific dye NIAD-4 (47) differ
significantly between the two models, with essentially no aggregates
being detected on the same day the worms reached adulthood in
the Ab worm model in the presence of bexarotene (Fig. 6, C and D).

We then explored the effect of increasing concentrations of
bexarotene added at the larval stages of the C. elegans life cycle
(Fig. 6A) and observed a concentration-dependent maintenance of
the motility of the Ab worm model. Indeed, the motility of the Ab
worms was maintained completely upon addition of 10 mM bexarotene
in two bursts at the L1 and L4 larval stages, that is, reached the level
observed in the control worms (Fig. 4, A and B). In addition, imaging
studies (see Materials and Methods) showed that the addition of
10 mM bexarotene to the Ab worms suppressed the formation of Ab42
fibrils for 9 days of adulthood (Fig. 6D). The level of Ab42 expression

in the Ab worms in the absence and in the presence of bexarotene was
found to be closely similar (Fig. 6E). This result indicates that main-
taining the level of motility in the Ab worms could be achieved by
preventing the aggregation of Ab42 by bexarotene. In accord with this
conclusion, the addition of bexarotene did not show any effects in the
control worm model (fig. S5A). The normal motility observed for the
Ab worms in the presence of bexarotene could be consistent with two
distinct scenarios. One possibility could be a strong delay in primary
nucleation, which would substantially delay the aggregation of Ab42
and hence maintain the motility of the Ab worms to values similar to
those of the control worms. Alternatively, these results could arise from
a combination of effects on primary and secondary nucleation. This
latter possibility is particularly relevant because although bexarotene
preferentially inhibits primary nucleation, it could also affect sec-
ondary nucleation when present in excess. Indeed, our experiments
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Fig. 6. Bexarotene restores the motility of C. elegans models of Ab42-mediated toxicity by preventing Ab42 aggregation. (A) Experimental
procedure for the measurement of the effects of bexarotene on the frequency of body bends and on the quantity of aggregates in C. elegans
GMC101 (that is, the Ab worm model) and CL2122 (that is, the control worm model) models. Bexarotene was given to the worms at larval stages
L1 and L4. (B) Measurements of the effect of increasing concentrations of bexarotene ranging from 5 to 10 mM on the frequency of body bends in
the Ab worm model. Normalized values with respect to day 0 are shown. The experimental data are shown for a single experiment but are re-
presentative in each case of three independent experiments. Complete recovery of the motility of the Ab worm model can be observed at 10 mM
bexarotene; the inset shows the dose dependence of the effects of bexarotene on Ab worms at day 3 of adulthood. (C) In vivo imaging of ag-
gregates stained using the amyloid-specific dye NIAD-4 in the absence and in the presence of 10 mM bexarotene; images from days 6 and 9 only are
shown for clarity. (D) Time course of the reaction of amyloid aggregates formed in the Ab worms in the absence and in the presence of 1 mM
bexarotene. Quantification of fluorescence intensity was performed using ImageJ software (see Materials and Methods). In all panels, error bars
represent the SEM. (E) Insoluble fraction of the protein extracts from C. elegans in the presence and in the absence of bexarotene with immuno-
detection of Ab and a-tubulin (see Materials and Methods).
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with such a difference, the levels of aggregates monitored using the
fluorescence intensity of the amyloid-specific dye NIAD-4 (47) differ
significantly between the two models, with essentially no aggregates
being detected on the same day the worms reached adulthood in
the Ab worm model in the presence of bexarotene (Fig. 6, C and D).

We then explored the effect of increasing concentrations of
bexarotene added at the larval stages of the C. elegans life cycle
(Fig. 6A) and observed a concentration-dependent maintenance of
the motility of the Ab worm model. Indeed, the motility of the Ab
worms was maintained completely upon addition of 10 mM bexarotene
in two bursts at the L1 and L4 larval stages, that is, reached the level
observed in the control worms (Fig. 4, A and B). In addition, imaging
studies (see Materials and Methods) showed that the addition of
10 mM bexarotene to the Ab worms suppressed the formation of Ab42
fibrils for 9 days of adulthood (Fig. 6D). The level of Ab42 expression

in the Ab worms in the absence and in the presence of bexarotene was
found to be closely similar (Fig. 6E). This result indicates that main-
taining the level of motility in the Ab worms could be achieved by
preventing the aggregation of Ab42 by bexarotene. In accord with this
conclusion, the addition of bexarotene did not show any effects in the
control worm model (fig. S5A). The normal motility observed for the
Ab worms in the presence of bexarotene could be consistent with two
distinct scenarios. One possibility could be a strong delay in primary
nucleation, which would substantially delay the aggregation of Ab42
and hence maintain the motility of the Ab worms to values similar to
those of the control worms. Alternatively, these results could arise from
a combination of effects on primary and secondary nucleation. This
latter possibility is particularly relevant because although bexarotene
preferentially inhibits primary nucleation, it could also affect sec-
ondary nucleation when present in excess. Indeed, our experiments
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Fig. 6. Bexarotene restores the motility of C. elegans models of Ab42-mediated toxicity by preventing Ab42 aggregation. (A) Experimental
procedure for the measurement of the effects of bexarotene on the frequency of body bends and on the quantity of aggregates in C. elegans
GMC101 (that is, the Ab worm model) and CL2122 (that is, the control worm model) models. Bexarotene was given to the worms at larval stages
L1 and L4. (B) Measurements of the effect of increasing concentrations of bexarotene ranging from 5 to 10 mM on the frequency of body bends in
the Ab worm model. Normalized values with respect to day 0 are shown. The experimental data are shown for a single experiment but are re-
presentative in each case of three independent experiments. Complete recovery of the motility of the Ab worm model can be observed at 10 mM
bexarotene; the inset shows the dose dependence of the effects of bexarotene on Ab worms at day 3 of adulthood. (C) In vivo imaging of ag-
gregates stained using the amyloid-specific dye NIAD-4 in the absence and in the presence of 10 mM bexarotene; images from days 6 and 9 only are
shown for clarity. (D) Time course of the reaction of amyloid aggregates formed in the Ab worms in the absence and in the presence of 1 mM
bexarotene. Quantification of fluorescence intensity was performed using ImageJ software (see Materials and Methods). In all panels, error bars
represent the SEM. (E) Insoluble fraction of the protein extracts from C. elegans in the presence and in the absence of bexarotene with immuno-
detection of Ab and a-tubulin (see Materials and Methods).
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Figure 4: Application to the inhibition of Alzheimer’s A�42 aggregation in C. elegans
model of A�42-mediated toxicity. a. C. elegans model of A�42-mediated toxicity. A�42

worms express A�42 in their muscle cells, leading to age-progressive paralysis which is detected

e.g. through the reduction in the number of body bends per second compared to healthy worms,

which do not express A�42. b. Inhibition and toxicity by Bexarotene in the C. elegans A�42 worm

model (from Ref.
9
). In each case, increasing concentrations of Bexarotene were administered 72

hours before day 0 to A�42 worms, the e↵ect on fitness (body bends per second) was measured at

day 6 of adulthood and compared to healthy worms and untreated A�42 worms. c. E↵ect of early

and late administration of Bexarotene, which selectively inhibits primary nucleation, in C. elegans
model of A�42-mediated toxicity (from Ref.

9
). 10 µM Bexarotene was administered 72 hours

before day 0 of adulthood (early administration) or at day 2 of adulthood (late administration);

worm fitness (body bends per second) was measured at day 6 of adulthood. The data show that

early administration of Bexarotene is significantly more e↵ective in alleviating the symptoms of

A�42-mediated worm paralysis compared to the late administration of the same drug. In the latter

case, there was no observable improvement of worm fitness compared to untreated A�42 worms. d.
E↵ect of early and late administration of a selective inhibitor of secondary nucleation (DesAb29�35)

in the C. elegans A�42 worm model (from Ref.
17

). In this case, the pathological phenotype was

induced at day 0 of adulthood and the compound was administered either at day 1 of adulthood

(early administration) or at day 6 of adulthood (late administration); worm fitness was measured

at day 7 of adulthood. The data show that a late administration of DesAb29�35 is more e↵ective

than an early administration in causing worm recovery.
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Methods185

Determination of optimal protocol for inhibition of protein aggregation. To obtain186

the optimal inhibition protocol, we use the Pontryagin minimum principle of optimal control187

theory.19 In particular, the cost functional Cost [ca(t), cd(t)] (see Eq. (2)) must be minimized188

subject to a dynamic constraint of the form dca(t)/dt = f (ca(t), cd(t)) (see Eq. (1)). This189

variational problem can be solved most conveniently by introducing a time-dependent La-190

grange multiplier �(t) (also known as co-state variable in the context of optimal control191

theory) and considering the extended functional192

F [ca(t), cd(t)] = Cost [ca(t), cd(t)] +

Z T

0

dt�(t)


dca(t)

dt
� f (ca(t), cd(t))

�
, (5)

where the second term ensures that the kinetic equation dca(t)/dt = f (ca(t), cd(t)) is satisfied
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for all times t. The optimal inhibition protocol is then determined by solving the dynamic

equation dca(t)/dt = f (ca(t), cd(t)) together with the Euler-Lagrange equations for F

�F
�ca

=
@L
@ca

� �(t)
@f

@ca
� d�(t)

dt
= 0 (6a)

�F
�cd

=
@L
@cd

� �(t)
@f

@cd
= 0 , (6b)

subject to the initial condition ca(0) = 0 and the constraint �(T ) = 0 (transversality con-193

dition). Equation (6a) describes the dynamics of the Lagrange multiplier �(t); once �(t) is194

known, Eq. (6b) yields the optimal protocol.195

Since the drug concentration is constant in the case of fast drug binding (see Supplemen-196

tary Material), the optimal control consists of discrete jumps, yielding a bang-bang control of197

the form cd = cmax
d [✓(t�T1)�✓(t�T2)], where ✓(x) is the Heaviside function and T1 and T2 are198

the switching times (see Eq. (3)). For the choices f (ca(t), cd(t)) = ↵ (cd(t)) +  (cd(t)) ca(t)199

and L (ca(t), cd(t)) = ca(t) + ⇣cd(t) discussed in the main text, the evolution equation for200

the Lagrange multiplier, Eq. (6a), reads d�(t)/dt = �1 �  (cd(t))�(t), while the optimal201

control can be calculated from202

�(Ti) [↵
0 + 0 ca(Ti)] = ⇣ , i = 1, 2 , (7)

where continuous derivatives with respect to cd in Eq. (6b) have been replaced by discrete203

jumps 0 = (0 � (cmax
d ))/cmax

d and ↵0 = (↵0 � ↵(cmax
d ))/cmax

d . Equation (7) determines204

the optimal values for the times to begin, T1, and to end the drug treatment, T2. Finally,205

considering the cases ↵0 = 0 and 0 = 0 separately, and, in the latter case, exploiting the206

fact that Ti � �1, we arrive at the analytical results presented in Eqs. (3) and (4).207
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S 1. IRREVERSIBLE AGGREGATION KINETICS OF PROTEINS

In this section we show that the following single linear equation can approximately capture

the irreversible kinetics of aggregates (a) or intermediate-sized oligomers (o), in the absence

and even presence of a drug cd:

dci(t)

dt
= α(cd) + κ(cd) ci(t) , (S 1)

where ci denotes the concentration of aggregates or oligomers, i = a,o. The drug affects

the aggregation process via the coefficients α(cd) and κ(cd). Below we explain the under-

lying approximations and present the derivation in the absence of drug (section S 1 A), in

the presence of drug (section S 1 B) and for the case with drug and additional oligomers

(section S 1 C).

A. Kinetic equations in the absence of drug

The aggregation kinetics of a system of monomers irreversibly growing into aggregates can

be captured by the concentration of monomer mass Mm(t), and the particle and mass con-

centrations of the aggregates/fibrils/polymers, denoted as ca(t) and Ma(t), respectively [1–4].

The particle and mass concentrations of aggregates can be defined in terms of the concen-

trations f(t, j) of fibrils of size j as:

ca(t) =
∞∑

j=n1

f(t, j), Ma(t) =
∞∑

j=n1

jf(t, j), (S 2)

where n1 denotes the size of the smallest stable aggregate (see below). The dynamic equa-

tions for ca(t) and Ma(t) can be obtained explicitly from considering the time evolution of
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the concentrations f(t, j) of aggregates of size j, which is described by the following master

equation [1–4]:

df(t, j)

dt
= 2k+ Mm(t)f(t, j − 1)− 2k+Mm(t)f(t, j) (S 3)

+ 2k−

∞∑
i=j+1

f(t, i)− k−(j − 1)f(t, j)

+ k1Mm(t)n1δj,n1 + k2Mm(t)n2δj,n2

∞∑
i=n2

if(t, i) ,

where k+, k−, k1 and k2 denote the rate constants describing elongation of aggregates, frag-

mentation, primary and secondary nucleation, respectively, and n1, n2 are the reaction orders

of the primary and secondary nucleation. Summation of (S 3) over j yields the following

set of kinetic equations describing the dynamics of the particle and mass concentrations of

aggregates:

dMm(t)

dt
= −2

[
k+Mm(t)− k−n1(n1 − 1)

2

]
ca(t) (S 4a)

− n1k1Mm(t)n1 − n2k2Mm(t)n2 Ma(t) = −dMa(t)

dt
,

dca(t)

dt
= k1Mm(t)n1 + k2Mm(t)n2 Ma(t) + k−[Ma(t)− (2n1 − 1)ca(t)] , (S 4b)

Eqs. (S 6) have a straightforward physical interpretation in the case of linear aggre-

gates/fibrils/polymers. The term in Eq. (S 4a) proportional to the elongation rate k+

describe the decrease of monomer mass or the increase of aggregate mass through the ad-

dition of monomers at the ends of the aggregates. There are two ends per aggregate in

the case of linear fibrils or polymers leading to the factor of two. The term proportional

to k−n1(n1 − 1)/2 describes the release of monomers associated with the formation of an

unstable aggregate when a fibril breaks at a location that is closer than (n1− 1) bonds from

one of its ends. Eq. (S 4b) states that the number of aggregates in the system increases

either due to primary nucleation of monomers with a rate k1, or through surface-catalyzed,

secondary nucleation with a rate k2. We note that the surface of a linear aggregate (e.g.

fibril or polymer) scales with its mass Ma(t), while mass conservation causes both nucleation

terms appear as sink terms in Eq. (S 4a). The term k−[Ma(t)− (2n1− 1)ca(t)] describes the

formation of new fibrils when a fibril breaks at a location that is at least (n1 − 1) bonds

away from either end.

4
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Typically, the dominant sink term for the change in monomer mass concentration is the

growth at the ends with a rate k+ [1–3]. This is because changes in monomer mass due to

nucleation events are negligible in Eq. (S 4a) relative to growth at the ends. In particular, for

most known protein aggregation processes the ratio of rates ν1 = k1(M tot
m )n1−2/(2k+) � 1

and ν2 = k2(M tot
m )n2−1/(2k+)� 1 (and ν2 = k−/(2k+M

tot
m )� 1 for fragmentation). Indeed,

the steady-state “length” of aggregates (measured in terms of the number of monomers) is

given by ' 1/
√
ν2 (see Supplemental Materials of Ref. [5], Section 4). Since aggregates are

typically very long (several thousands of monomers), it follows 1/
√
ν2 � 1. Moreover, in

most protein aggregating systems, such as in vitro assays with Alzheimer’s Amyloid-β [6],

the secondary pathway dominates primary nucleation hence ν1 � ν2 � 1. Thus we can

neglect primary and secondary nucleation in the kinetic equation for the monomers, and

use the conservation of monomer mass, dMa/dt = −dMm/dt, leading to a set of only two

independent equations:

−dMm(t)

dt
=

dMa(t)

dt
' 2k+Mm(t) ca(t) , (S 5a)

dca(t)

dt
= k1Mm(t)n1 +

[
k2Mm(t)n2 + k−

]
Ma(t) . (S 5b)

Note that secondary nucleation and fragmentation enter additively in the term multiplying

Ma(t) in (S 5b). Thus, we can consider fragmentation as a special case of secondary nucle-

ation by setting k− = k2 and n2 = 0. This allows us to write down the following kinetic

equations

−dMm(t)

dt
=

dMa(t)

dt
' 2k+Mm(t) ca(t) , (S 6a)

dca(t)

dt
= k1Mm(t)n1 + k2Mm(t)n2Ma(t) , (S 6b)

where the secondary nucleation pathway now describes both fragmentation and surface-

catalyzed secondary nucleation with the same term proportional to Ma(t).

1. Early stage of aggregation

In the following we will simplify the Eq. (S 6) by restricting ourselves to the early time of

the aggregation kinetics. The resulting equations are valid up to a time where the growth

of aggregates deviates from an exponential growth and begins to saturate due to depletion

of monomers.

5
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For the simplification we consider the case where the system is initialized at t = 0 with

a monomer mass Mm(0) = M tot
m and zero aggregates, i.e., Ma(0) = 0 and ca(0) = 0; M tot

m

refers to the total protein mass in form of aggregates and monomers in the system. During

the early stages of the aggregation kinetics, the monomer mass Mm(t) hardly changes, while

aggregates are already nucleated and grow. In this early stage we can thus linearize the right

hand side of Eq. (S 6b) by replacing the kinetic monomer mass concentration Mm(t) with

the constant total protein mass M tot
m . Moreover, if the change of Mm(t) is small compared

M tot
m , one can also replace Mm(t) with M tot

m in Eq. (S 6a). We thus arrive at the following

simplified set of linear equations valid at the early stages of the aggregation kinetics:

dca(t)

dt
' α0 + β0Ma(t) , (S 7a)

dMa(t)

dt
' µ0 ca(t) . (S 7b)

In the equations above we abbreviated the following constant coefficients as α0 = k1(M tot
m )n1 ,

β0 = k2(M tot
m )n2 and µ0 = 2k+M

tot
m . Using the initial conditions Ma(0) = 0 and ca(0) = 0,

the solutions of the particle and mass concentrations of the aggregates/fibrils/polymers is

ca(t) =
α0 sinh(κ0t)

κ0

, (S 8a)

Ma(t) =
α0[cosh(κ0t)− 1]

β0

, (S 8b)

where rate κ0 =
√
µ0β0 sets the time-scale of the exponentially growing concentrations and

represents a geometrical mean of the rates characterizing the elongation and the secondary

nucleation of aggregates, while primary nucleation only enters as a prefactor. This property

is a consequence of restricting ourselves to the early stage of the aggregation kinetics where

the two concentration fields grow exponentially. Due to their “circular” couplings this is

referred to as “Hinshelwood circle” [7].

2. Proportionality between aggregate mass and aggregate concentration

In the early stage of the clustering kinetics, there are two relevant time regimes, t . κ−1
0

and t & κ−1
0 . The latter regime occurs when aggregate concentration and mass significantly

varies in time. To match the initial conditions the final expression for the particle and mass

6
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concentrations of the aggregates/fibrils/polymers are written as

ca(t) ' α0

2κ0

(eκ0t − 1) , (S 9a)

Ma(t) ' α0

2β0

(eκ0t − 1) . (S 9b)

Hence, we have a linear proportionality relationship between the two concentrations

Ma(t) = (κ0/β0) ca(t) . (S 10)

By substituting this relationship into Eq. (S 7a) we obtain a single linear equation for the

time evolution of the aggregate/fibril/polymer concentration, ca(t), in the early stage of the

clustering kinetics:
dca(t)

dt
= α0 + κ0 ca(t) . (S 11)

3. Proportionality between aggregate concentration and oligomer concentration

Oligomers are small aggregate species populated during amyloid formation and that have

been identified as potent cytotoxins [12–15]. To study their dynamics, we extend the dy-

namic equations (S 7) to account for an additional field co(t) describing the concentration of

oligomers. Oligomers are formed through the nucleation pathways and are depleted due to

their growth into larger fibrillar structures. Thus, we have:

dco(t)

dt
= α0 + β0Ma(t)− µ0co(t) (S 12a)

dca(t)

dt
= µ0co(t). (S 12b)

Since growth is fast compared to the overall rate of aggregation κ0, we can assume pre-

equilibrium in Eq. (S 12a). Setting dco(t)
dt
' 0 in Eq. (S 12a) yields

co(t) ' α0 + β0Ma(t)

µ0

. (S 13)

Since Ma(t) grows exponentially with time with rate κ0, also co(t) grows exponentially with

the same rate. Thus, when t & κ−1
0 we have a linear relationship between the aggregate

concentration and the concentration of oligomers

co(t) ' β0

µ0

Ma(t) ' κ0

µ0

ca(t). (S 14)

7
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B. Kinetic equations in the presence of a drug affecting aggregation

1. Impact of the drug

Now we incorporate the drug into the kinetics of aggregation described by Eqs. (S 6).

To this end, we consider three scenarios of how a drug can interfere with the aggregation

kinetics (see sketch in main text, Fig. 1(a,b)):

(i) The drug could influence the aggregation process by affecting the primary nucle-

ation through binding to the monomers, and thereby deactivating or activating the

monomers with a rate kon
m or koff

m , respectively. Deactivated (referred to as “bound” to

the drug) monomers cannot participate in the aggregation process, i.e., they cannot

nucleate to aggregates via primary and secondary nucleation, nor they can attach at

the aggregate end and drive elongation.

(ii) Moreover, the drug could suppress the secondary nucleation step of surface-catalyzed

aggregation by occupying (“blocking”) the surface with a rate kon
surf for further binding.

These “blocked” aggregates (shortly referred to as “bound” to the drug) stop growing.

When the drug detaches with a rate koff
surf aggregates can again catalyze secondary

nucleation events of new aggregates.

(iii) Finally, the drug could affect the growth of the aggregates by binding (“blocking”)

the two ends of the aggregates. Binding and unbinding of the drug occurs with a rate

koff
ends and koff

ends, respectively. Aggregates with “blocked” ends, reffered to as “bound”

aggregates, do not grow.

All these three mechanism have been verified by in vitro measurement of aggregating pro-

teins, including the aggregation of the Amyloid-β peptide of Alzheimer’s disease [4, 8–10] or

the aggregation of the protein α-synuclein of Parkinson’s disease [11].

2. Kinetic equations in the presence of a drug

To describe the impact of the drug we have to include additional species. In particular,

we introduce species for the monomer mass concentration, and the particle and mass con-

centration of the aggregates/fibrils/polymers which are either active and not bound to the

8
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drug (“free”), or deactivated due to the binding of the drug (“bound”), respectively. The

“bound” species do not participate in the aggregation kinetics. The kinetics of the “free”

and “bound” species can be captured by the following set of equations (see Supplemental

Information in Ref. [4] for a derivation from kinetic theory of irreversible aggregation):

dM free
m (t)

dt
' −2k+M

free
m (t)cfree

a (t)− kon
m M

free
m (t)cd(t) + koff

m Mbound
m (t) , (S 15a)

dMbound
m (t)

dt
= kon

m M
free
m (t)cd(t)− koff

m Mbound
m (t) , (S 15b)

dM free
a (t)

dt
= 2k+M

free
m (t)cfree

a (t)− kon
surfM

free
a (t)cd(t) + koff

surfM
bound
a (t) , (S 15c)

dMbound
a (t)

dt
= kon

surfM
free
a (t)cd(t)− koff

surfM
bound
a (t) , (S 15d)

dcfree
a (t)

dt
= k1M

free
m (t)n1 + k2M

free
m (t)n2M free

a (t)− kon
endsc

free
a (t)cd(t) + koff

endsc
bound
a (t) ,

(S 15e)

dcbound
a (t)

dt
= kon

endsc
free
a (t)cd(t)− koff

endsc
bound
a (t) . (S 15f)

Again we have neglected the nucleation terms in the kinetic equations for the monomer mass

concentration in Eq. (S 15a); see section S 1 A for a discussion.

We now introduce the total monomer mass concentration Mm(t), and the total mass and

particle concentration of the aggregates, Ma(t) and ca(t):

Mm(t) = M free
m (t) +Mbound

m (t) , (S 16a)

Ma(t) = M free
a (t) +Mbound

a (t) , (S 16b)

ca(t) = cfree
a (t) + cbound

a (t) . (S 16c)

Conservation of total protein mass (monomer and aggregates), M tot
m = constant, implies

M tot
m = Mm(t) +Ma(t) = M free

m (t) +Mbound
m (t) +M free

a (t) +Mbound
a (t) . (S 17)

Conservation of the total amount of drug ctot
d = constant gives

ctot
d = cd(t) +Mbound

m (t) +Mbound
a (t) + cbound

a (t) , (S 18)

from which the time evolution of the drug follows,

dcd(t)

dt
= −dMbound

m (t)

dt
− dMbound

a (t)

dt
− dcbound

a (t)

dt
. (S 19)

9
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3. Simplified kinetic equations in the limit of fast drug binding

Eqs. (S 15) can be simplified in the limit of fast binding kinetics of the drug with monomers

and aggregates. Specifically, if the process of primary nucleation is slow compared to the

on/off binding of the drug (k1(M tot
m )n1−1 � kon

··· cd, k
off
··· ), the time change of the bound species

can be approximated as

dMbound
m (t)

dt
' 0 ,

dcbound
a (t)

dt
' 0 ,

dMbound
a (t)

dt
' 0 , (S 20)

leading according to Eq. (S 19) to

dcd(t)

dt
' 0 , thus cd(t) ' cd , (S 21)

where cd is the constant drug level in the system. It can be shown that any drug that is able

to significantly inhibit protein aggregation must bind quickly compared to the dominant

rate that contributes to the growth of aggregates. Otherwise, the effect of inhibitor does not

alter significantly the aggregation reaction.

The condition (S 20) further implies that there is a linear relationship between the free

and bound material:

Mbound
m (t) = Keq

m cdM
free
m (t) , (S 22a)

Mbound
a (t) = Keq

surfcd M
free
a (t) , (S 22b)

cbound
a (t) = Keq

endscd c
free
a (t) , (S 22c)

where Keq
m = kon

m /k
off
m , Keq

surf = kon
surf/k

off
surf and Keq

ends = kon
ends/k

off
ends are the equilibrium bind-

ing constants for the drug binding to the monomers, the surface or the ends of the ag-

gregates/fibril/polymers, respectively. These values have been accessed experimentally for

various types of drugs using in vitro assays for protein aggregation (see [4], or Fig. 1 in

Ref. [8]) or from measurements of binding kinetics using Surface Plasmon Resonance (SPR)

(see Fig. 3 in Ref. [8]).

Eqs. (S 16) together with Eqs. (S 22) can be written as

M free
m (t) =

Mm(t)

1 +Keq
m cd

, (S 23a)

M free
a (t) =

Ma(t)

1 +Keq
surf cd

, (S 23b)

cfree
a (t) =

ca(t)

1 +Keq
ends cd

. (S 23c)

10
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Now we insert the relationships above into Eqs. (S 15a), (S 15c) and (S 15e), leading to

three kinetic equations for the total mass of monomers Mm(t), and the mass and particle

concentration of aggregates, Ma(t) and ca(t), valid in the limit of fast drug binding:

−dMm(t)

dt
' dMa(t)

dt
= 2k+

(
Mm(t)

1 +Keq
m cd

)(
ca(t)

1 +Keq
ends cd

)
, (S 24a)

dca(t)

dt
= k1

(
Mm(t)

1 +Keq
m cd

)n1

+ k2

(
Mm(t)

1 +Keq
m cd

)n2
(

Ma(t)

1 +Keq
surfcd

)
. (S 24b)

4. Linearized set of equations for fast drug binding and early stage of aggregation

Eqs. (S 24) resemble the kinetic equations (S 6) in the absence of drug, allowing us to

further simplify Eqs. (S 24).

In the early regime of aggregation we can linearize the total monomer mass concentration

Mm(t) around the total protein mass M tot
m . Considering the initial conditions Ma(0) = 0

and ca(0) = 0, we find

dMa(t)

dt
' µ(cd) ca(t) , (S 25a)

dca(t)

dt
' α(cd) + β(cd)Ma(t) , (S 25b)

where rates now depend on the drug concentration cd:

µ(cd) = µ0

(
1

1 +Keq
m cd

)(
1

1 +Keq
endscd

)
, (S 26a)

α(cd) = α0

(
1

1 +Keq
m cd

)n1

, (S 26b)

β(cd) = β0

(
1

1 +Keq
m cd

)n2
(

1

1 +Keq
surfcd

)
. (S 26c)

The constant coefficients are defined as µ0 = 2k+M
tot
m , α0 = k1(M tot

m )n1 and β0 = k2(M tot
m )n2

(see also Section S 1 A 1).

5. Final kinetic equation in the presence of drug and the linear relationship between particle

and mass concentration of aggregates

Eqs. (S 25) have the form as Eqs. (S 7). Following the same steps as outlined in Sec-

tion S 1 A 2, we can derive a single kinetic equation for t & κ(cd)−1, which has the charac-
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teristic rate

κ(cd) =
√
µ(cd)β(cd) = κ0

(
1

1 +Keq
m cd

)(n2+1)/2(
1

1 +Keq
endscd

)1/2(
1

1 +Keq
surfcd

)1/2

,

(S 26d)

and κ0 =
√
µ0β0 =

√
2k+k2(M tot

m )n2+1. The geometric mean arises from the exponential

growth of the two concentration fields and their circular couplings and is referred to as

“Hinshelwood circle” [7]. Our final equation in the presence of the drug that is valid at the

early stages of the aggregation kinetics then reads

dca(t)

dt
= α(cd) + κ(cd) ca(t) , (S 27)

where κ(cd) is given in Eq. (S 26d) and α(cd) is given by Eq. (S 26b).

As in the absence of drug (Eq. (S 11)), the aggregation kinetics with drug can be captured

by a single, linear kinetic equation (Eq. (S 27)) in the regime of fast drug binding and

the early stage of the aggregation kinetics, t & κ(cd)−1. The coefficients α(cd) and κ(cd)

characterize how the drug inhibits the aggregation kinetics. Most importantly, for cd →∞,

α(cd) and κ(cd) decrease to zero and the aggregation kinetics arrests.

C. Kinetic equations in the presence of a drug affecting aggregation: Impact of

toxic oligomers

In the following, we extend our kinetic approach to explicitly account for populations

of low-molecular weight aggregates, commonly called oligomers. There is increasing recent

evidence suggesting that oligomeric aggregates might carry increased cytotoxic potential

compared to their high-molecular weight fibrillar counterparts [12–15]. Oligomers might

correspond to short fibrillar species consisting of a few to a few tens of monomers or might

represent structurally distinct species from small fibrillar aggregates which thus need to

undergo a conversion step before being able to recruit further monomers and grow into

mature fibrils.

We thus extend the set of equations presented in the last section S 1 B by a further

species, the oligomers. In addition, we allow for a further pathways of how the drug affect the

aggregation kinetics. We consider the “deactivation” of the oligomers by blocking the surface

or ends of the oligomers, thereby suppressing secondary nucleation and elongation/growth of
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oligomers. Since the growth and nucleation of oligomers and aggregates require monomers

and because aggregates can mediate secondary nucleation of oligomers, there will be an

interesting competition between oligomers and aggregates.

1. Kinetic equations with oligomers in the presence of a drug

In addition to the monomer mass concentration, and the particle and mass concentration

of the aggregates/fibrils/polymers we introduce a concentration of the oligomers. As in the

last section, all species exits in two “states”, i.e., they are active and not bound to the drug

(“free”), or deactivated due to the binding to the drug (“bound”). The “bound” species no

more participate in the aggregation kinetics. The kinetics of the “free” and “bound” species

can be captured by the following set of equations for the monomers (m),

dM free
m (t)

dt
' −2k+M

free
m (t)cfree

a (t)− kon
m M

free
m (t)cd(t) + koff

m Mbound
m (t) , (S 28a)

dMbound
m (t)

dt
= kon

m M
free
m (t)cd(t)− koff

m Mbound
m (t) , (S 28b)

the oligomers (o),

dcfree
o (t)

dt
= k1M

free
m (t)n1 + k2M

free
m (t)n2M free

a (t) (S 28c)

−2kconvM
free
m (t)nconvcfree

o (t)− kon
o c

free
o (t)cd(t) + koff

o cbound
o (t) ,

dcbound
o (t)

dt
= kon

o c
free
o (t)cd(t)− koff

o cbound
o (t) , (S 28d)

and the larger aggregates (a):

dM free
a (t)

dt
= 2k+M

free
m (t)cfree

a (t)− kon
surf,aM

free
a (t)cd(t) + koff

surf,aM
bound
a (t) , (S 28e)

dMbound
a (t)

dt
= kon

surf,aM
free
a (t)cd(t)− koff

surf,aM
bound
a (t) , (S 28f)

dcfree
a (t)

dt
= 2kconvM

free
m (t)nconvcfree

o (t)− kon
ends,ac

free
a (t)cd(t) + koff

ends,ac
bound
a (t) , (S 28g)

dcbound
a (t)

dt
= kon

ends,ac
free
a (t)cd(t)− koff

ends,ac
bound
a (t) . (S 28h)

The free oligomers are formed through primary and secondary nucleation pathways with

rate constants k1 and k2; see Eq. (S 28c). Here, the rate constants k1 and k2 describe

only the formation step of oligomers and need not to correspond to the corresponding rate

constants used in Sec. S 1 A. As in section S 1 A we neglect the nucleation of oligomers in
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the kinetics of the monomer mass concentration Eq. (S 28a). In addition, there is a term

describing the conversion of oligomers to large aggregates with a rate kconv (Eqs. (S 28c)

and Eq. (S 28g)). Large aggregates grow via their ends by recruiting free monomers with

rate constant k+; see Eq. (S 28e). The on/off kinetics between “free” and “bound” species

is captured by appropriate couplings to the drug concentration cd similar to Eqs. (S 15). To

derive Eqs. (S 28a)-(S 28h), we have neglected the contribution of oligomeric populations to

the overall mass of aggregates; this assumption is justified as oligomers are small aggregate

species that consists of maximally order 10 monomers, as opposed to mature fibrils, which

typically consists of several thousands of monomeric subunits and thus are expected to

dominate the aggregate mass fraction.

As in section S 1 B, we introduce the total monomer mass concentration Mm(t), and the

total mass and particle concentration of the aggregates, Ma(t) and ca(t), as well as for mass-

and particle concentration of the oligomers:

Mm(t) = M free
m (t) +Mbound

m (t) , (S 29a)

co(t) = cfree
o (t) + cbound

o (t) , (S 29b)

Ma(t) = M free
a (t) +Mbound

a (t) , (S 29c)

ca(t) = cfree
a (t) + cbound

a (t) . (S 29d)

Conservation of total protein mass (monomer and aggregates), M tot
m = constant, implies

M tot
m 'Mm(t) +Ma(t) = M free

m (t) +Mbound
m (t) +M free

a (t) +Mbound
a (t) . (S 30)

Note that we have neglected the mass of the oligomers in the equation above. Conservation

of the total amount of drug ctot
d = constant gives

ctot
d = cd(t) +Mbound

m (t) + cbound
o (t) +Mbound

a (t) + cbound
a (t) (S 31)

from which the time evolution of the drug follows,

dcd(t)

dt
= −dMbound

m (t)

dt
− dcbound

o (t)

dt
− dMbound

a (t)

dt
− dcbound

a (t)

dt
. (S 32)

2. Simplified kinetic equations with oligomers in the limit of fast drug binding

Eqs. (S 28) can be simplified in the limit of fast binding of the drug to monomers and

aggregates (for more details see section S 1 B 3), such that the time change of the bound
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species can be approximated as

dMbound
m (t)

dt
' 0 ,

dcbound
o (t)

dt
' 0 ,

dcbound
a (t)

dt
' 0 ,

dMbound
a (t)

dt
' 0 , (S 33)

leading according to Eq. (S 32) to

dcd(t)

dt
' 0 , thus cd(t) ' cd , (S 34)

where cd is the constant drug level in the system. The condition (S 20) can also be used to

equate the left hand side of Eqs. (S 28b), (S 28d), (S 28f), (S 28h), to zero. This gives linear

relationships between the free and bound material:

Mbound
m (t) = Keq

m cdM
free
m (t) , (S 35a)

cbound
o (t) = Keq

o cd c
free
o (t) , (S 35b)

Mbound
a (t) = Keq

surf,acdM
free
a (t) , (S 35c)

cbound
a (t) = Keq

ends,acd c
free
a (t) , (S 35d)

where Keq
m = kon

m /k
off
m , Keq

o = kon
o /k

off
o , Keq

surf,a = kon
surf,a/k

off
surf,a, Keq

ends,a = kon
ends,a/k

off
ends,a, are

the equilibrium binding constants for the drug binding to the monomers, the oligomers

or the surface/ends of aggregates/fibril/polymers, respectively. Eqs. (S 29) together with

Eqs. (S 35) can be written as

M free
m (t) =

Mm(t)

1 +Keq
m cd

, (S 36a)

cfree
o (t) =

co(t)

1 +Keq
o cd

, (S 36b)

M free
a (t) =

Ma(t)

1 +Keq
surf,a cd

, (S 36c)

cfree
a (t) =

ca(t)

1 +Keq
ends,a cd

. (S 36d)

Now we insert the relationships above into Eqs. (S 28a), (S 28c), (S 28e), (S 28g), leading to

three kinetic equations for the total mass of monomers Mm(t), and the particle concentration

of oligomers, co(t), and the mass and particle concentration of aggregates, Ma(t) and ca(t),
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valid in the limit of fast drug binding:

−dMm(t)

dt
' dMa(t)

dt
= 2k+

(
Mm(t)

1 +Keq
m cd

)(
ca(t)

1 +Keq
ends cd

)
, (S 37a)

dco(t)

dt
= k1

(
Mm(t)

1 +Keq
m cd

)n1

+ k2

(
Mm(t)

1 +Keq
m cd

)n2
(

Ma(t)

1 +Keq
surfcd

)
(S 37b)

− 2kconv

(
Mm(t)

1 +Keq
m cd

)nconv
(

co(t)

1 +Keq
o cd

)
,

dca(t)

dt
= 2kconv

(
Mm(t)

1 +Keq
m cd

)nconv
(

co(t)

1 +Keq
o cd

)
. (S 37c)

3. Linearized set of equations for fast drug binding and early stage of aggregation with oligomers

Linearizing Eqs. (S 37) with the total monomer mass concentration Mm(t) close to the

total protein mass M tot
m and considering the initial conditions Ma(0) = 0 and ca(0) = 0, we

find

dMa(t)

dt
' µ(cd) ca(t) , (S 38a)

dco(t)

dt
' α(cd) + β(cd)Ma(t)− γ(cd)co(t) , (S 38b)

dca(t)

dt
' γ(cd)co(t) , (S 38c)

where the rates now depend on the drug concentration cd:

µ(cd) = µ0

(
1

1 +Keq
m cd

)(
1

1 +Keq
endscd

)
, (S 39a)

α(cd) = α0

(
1

1 +Keq
m cd

)n1

, (S 39b)

β(cd) = β0

(
1

1 +Keq
m cd

)n2
(

1

1 +Keq
surfcd

)
, (S 39c)

γ(cd) = γ0

(
1

1 +Keq
m cd

)nconv
(

1

1 +Keq
o cd

)
. (S 39d)

The constant coefficients are defined as µ0 = 2k+M
tot
m , α0 = k1(M tot

m )n1 , β0 = k2(M tot
m )n2

and γ0 = 2kconv(M tot
m )nconv .

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/456590doi: bioRxiv preprint 

https://doi.org/10.1101/456590


4. Final kinetic equations with oligomers in the presence of drug and the linear relationship

between particle and mass concentration of aggregates

The linearized equations Eqs. (S 38) can be written in matrix form

d

dt


Ma(t)

co(t)

ca(t)

 =


0 0 µ

β −γ 0

0 γ 0



Ma(t)

co(t)

ca(t)

+


0

α

0

 . (S 40)

We are interested in the exponentially growing solutions to Eqs. (S 40). Thus we search for

the largest eigenvalue of the matrix above. The characteristic polynomial for the eigenvalue

x is

x3 + γx2 − γβµ = 0 . (S 41)

To find the largest (positive) eigenvalue, we use the method of dominant balance in the limit

of small γ [16]. The basic idea of this method is to show that two terms of the equation

Eq. (S 41) balance while the remaining terms vanish as γ → 0. The relevant dominant

balance for our problem is obtained when

x = O(γ1/3) . (S 42)

In fact, writing x = γ1/3X with X = O(1), we find

X3 + γ2/3X2 − βµ = 0
γ→0⇒ X3 − βµ = 0 ⇒ X ' (βµ)1/3 . (S 43)

The largest eigenvalue of interest is therefore approximatively equal to

x ' (γβµ)1/3 ≡ κ̄ . (S 44)

Similar to sections S 1 A 1 and S 1 B 5 the largest eigenvalue corresponds to the geometrical

mean of rates. Due to the exponential growth of all three concentration fields and their

circular coupling, the origin of the geometric mean can be illustrated by a so called “Hin-

shelwood circle” [7]. In the case of early stage aggregation with oligomers it is the geometric

mean between γ, β and µ, while in the absence of oligomers, the largest eigenvalue is the

geometric mean of β and µ only.

For t & κ̄, Ma(t) ' Aeκ̄t, co(t) ' Beκ̄t, ca(t) ' Ceκ̄t, where κ̄ = (γβµ)1/3. Moreover,

using Eqs. (S 38), we find A = µγ/κ̄2, C = γ/κ̄ and B = (α + γβµ/κ̄2)/(κ̄+ γ) and

Ma(t) ' µ

κ̄
ca(t) ' µγ

κ̄2
co(t) . (S 45)
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Substituting these relationships back into our linearized kinetic equations Eqs. (S 38), we

obtain a single, independent (due to Eq. (S 45)) equation describing the aggregation kinetics:

dco(t)

dt
' α +

(
γβµ

κ̄2
− γ
)
co(t) = α(cd) + κ̃(cd) co(t) , (S 46)

where κ̃ = (γβµ/κ̄2) − γ = κ̄ − γ. The drug dependence of the coefficients are given in

Eqs. (S 39).

Equation (S 46) has the same mathematical form as the kinetic equations for the early

stage aggregation in the absence of drug, Eq. (S 11), and in the presence of drug solely

restricting to large aggregates, Eq. (S 27). This mathematical equivalence is only true in

the limit of fast drug binding. Of course, the corresponding coefficients are different for

each of the mentioned cases. In the next chapter we will use this mathematical similarity

and discuss optimal inhibition of irreversible aggregation considering this type of kinetic

equation (S 1).
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S 2. OPTIMAL INHIBITION OF IRREVERSIBLE AGGREGATION OF PRO-

TEINS

We are interested to find the solution to Eq. (S 1), which lead to the “optimal” inhibition

of aggregates or oligomers, respectively (see Fig. S 1(a)). Each solution is characterized by

the drug concentration (in general referred to as control). In our case, the drug reduces

the amount of aggregates and oligomers. From a naive perspective, the drug level could

simply be increased to infinity suppressing all three pathways of aggregation, i.e., primary

and secondary nucleation and the growth of the aggregates at their ends (see section S 1 B 1).

However, the presence of a large amount of drug may be toxic [17]. An increase in concen-

tration of a toxic drug competes with an decrease in concentration of aggregates/oligomers

that are toxic as well. This competition is mathematically captured by a functional, denoted

as “Cost[·]”, which may depend on drug, oligomer and aggregate concentrations. This func-

tional is called “action” (in the context of physics [18]) or “cost” (in the context of optimal

control theory) and allows to select the “optimal solution”. The optimal solution corre-

sponds to a minimum value of this action/cost functional. It is obtained by minimizing

this functional with the constraint that the corresponding controlling drug concentration

and aggregate/oligomer concentration are solutions to Eq. (S 1). In the next section we will

discuss the central equations of this variational problem and apply it to the inhibition of

aggregation in the following sections.

A. Introduction to variational calculus with constraint and optimal control theory

Let us consider the time dependent control cd(t) (e.g. the drug concentration) which

controls the solution ca(t) to the differential equation

dca(t)

dt
= f (cd(t), ca(t)) . (S 47)

We aim at the control cd(t) that minimizes the “action” or “cost”

Cost [cd(t), ca(t)] =

∫ T

0

dt′ L (ca(t′), cd(t′)) , (S 48)

with the constraint that f (cd(t), ca(t)) is a solution to Eq. (S 47). Thus we have to minmize

the functional

F [cd(t), ca(t)] = Cost [cd(t), ca(t)]−
∫ T

0

dt′ λ(t′)

(
dca(t′)

dt′
− f (ca(t′), cd(t′))

)
, (S 49)
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where λ(t) is a continuous Lagrange multiplier (or co-state variable in the context of optimal

control theory) which ensures that the constraint Eq. (S 47) is satisfied for all times t.

Minimization yields

δF [cd(t), ca(t)] =

∫ T

0

dt′
(
δF
δcd

δcd +
δF
δca

δca

)
+ λ(t) δca(t)

∣∣∣∣T
0

. (S 50)

The integrated terms on the right hand side vanish for λ(0) = 0 and λ(T ) = 0, or δca(0) = 0

and δca(T ) = 0, or δca(0) = 0 and λ(T ) = 0, or λ(0) = 0 and δca(T ) = 0. With one of

these combinations of initial condition at t = 0 and fixed constraint at t = T , we obtain the

following set of equations:

0 =
δF
δcd

=
∂L
∂cd

+ λ(t)
∂f

∂cd

, (S 51a)

0 =
δF
δca

=
∂L
∂ca

+ λ(t)
∂f

∂ca

+
dλ(t)

dt
. (S 51b)

We have the same number of conditions, Eqs. (S 51) and Eq. (S 47), as unknowns, namely

the Lagrange multiplier λ(t), the solution ca(t) and the control cd(t).

The three conditions can be rewritten to establish a “recipe” as commonly presented in

textbooks on optimal control theory [19]. Defining the “Hamiltonian”

H (cd(t), ca(t), λ(t)) = L (cd(t), ca(t)) + λ(t) f (cd(t), ca(t)) , (S 52)

Eqs. (S 51) and Eq. (S 47) can be rewritten as

dca(t)

dt
=
∂H
∂λ

, (S 53a)

dλ(t)

dt
= −∂H

∂ca

, (S 53b)

0 =
∂H
∂cd

. (S 53c)

The defined “Hamiltonian” is conserved along the optimal trajectory, i.e., using Eqs. (S 53),

d

dt
H (cd(t), ca(t), λ(t)) =

∂H
∂cd

dcd

dt
+
∂H
∂ca

dca(t)

dt
+
∂H
∂λ

dλ(t)

dt
= 0 . (S 54)

In the field of optimal control theory, the corresponding mathematical theorem is called

Pontryagin minimum principle (PMP) [19]. The Pontryagin theorem ensures the existence

of a control cd(t) characterizing a unique solution ca(t) which leads to the smallest value of

the Cost[·].
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B. Optimal control theory applied to the inhibition of protein aggregation

To capture the competition between drug-induced inhibition of aggregation, ca(t) '
co(t)(γ/κ̄) (see Eq. (S 46)), and the toxic action of the controlling drug concentration, cd(t),

we introduce the following functional called “cost” or “action”,

Cost[cd, ca] =

∫ T

0

dt

(
ca(t) + ζ cd(t)

)
, (S 55)

where we consider a linear dependence on the concentrations for simplicity. We introduce

a toxicity ζ for the drug measured relative to the toxicity to the large aggregates (a) or

oligomers (o), respectively. Note that the amplitude of the cost functional, Cost[·], does not

matter for results obtained by variational calculus. The cost above increases for larger time

periods T and for higher concentrations of drug and aggregates and oligomers. Increasing the

drug concentration creates extra “costs” for the cell, to degrade the drug and/or maintain the

biological function the cellular machinery in the presence of the drug for example. Similarly,

too many aggregates/oligomers also increase these cellular costs.

Alternatively, the presence of aggregates/oligomers for t < T may not create any costs

for the cell, while there is a “terminal cost” at t = T ,

Cost[cd, ca(T )] = T ca(T ) +

∫ T

0

dt ζ cd,i(t) . (S 56)

In the following we will study both cases of integrated cost (Eq. (S 55)) and terminal cost

(Eq.(S 56)) as they may represent limiting cases for a living system in which aggregates may

cause both type of costs. For the considered equation (S 1), however, we will see that there

is no qualitative difference in the results between integrated and terminal costs.

By means of the cost function we can select the optimal solution set by the drug con-

centration cd(t). This drug inhibits protein aggregation by at least one of the mechanisms

discussed in section S 1 B 1, by some combination of them or via all three mechanisms. To

solve the optimal control problem described in the last section, we apply the variational

recipe as introduced in section S 2 A. To this end, we introduce the Lagrange multiplier or

co-state variable λ(t) and define the following Hamiltonian in the case of integrated costs

(Eq. (S 55)),

H[cd(t), ca(t), λ(t)] = ca(t) + ζ cd(t) + λ(t)
[
α (cd(t)) + κ (cd(t)) ca(t)

]
, (S 57)
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while for terminal costs (Eq.(S 56)), the Hamiltonian reads

H[cd(t), ca(t), λ(t)] = ζ cd(t) + λ(t)
[
α (cd(t)) + κ (cd(t)) ca(t)

]
. (S 58)

The evolution equation for the Lagrange multiplier or co-state variable λ(t) is

dλ(t)

dt
= −∂H

∂ca

= −1− κ(cd)λ(t) . (S 59)

Since the concentration of aggregates at t = T is free, we solve Eq. (S 59) subject to the

condition

λ(T ) = A , (S 60)

which is referred to as transversality condition in the context of optimal control theory [19].

Here, A is a constant. In particular, A = 0 for integrated costs (Eq. (S 55)) and A = T for

terminal costs (Eq.(S 56)). By construction, the kinetic equation for the drug concentration

reads
dca(t)

dt
=
∂H
∂λ

= α (cd(t)) + κ (cd(t)) ca(t) . (S 61)

The optimal control can be calculated by the condition

∂H
∂cd

= 0 , (S 62)

i.e., the optimal drug concentration cd(t) corresponds to a minimum of the Hamiltonian

with respect to the drug concentration. If the drug concentration were a continuous con-

centration profile, the condition for the minimum is given in equation (S 62). However, the

drug concentration may jump at the times T1 and T2 (see Eq. (S 66) in the next section).

Therefore, the derivatives of the rates κ(cd) and α(cd) with respect to cd jump as well, i.e.,

κ′ = (κ(cd) − κ0)/cd and α′ = (α(cd) − α0)/cd. The minimum condition gives different

conditions at t = Ti,
∂H
∂cd

= ζ + λ(Ti) [α′ + κ′ ca(Ti)] = 0 , (S 63)

where the times Ti are determined by the actual drug protocol which we discuss in the

following section.

C. Drug protocols for optimal inhibition

To discuss the drug protocol we consider the case of zero aggregates at time t = 0,

ca(0) = 0 , (S 64)
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i.e., the patient is initially healthy.

The drug concentration in Eq. (S 1) is constant in the limit of fast binding of the drug to

the aggregates and the monomers (see sections S 1 B 3 and S 1 C 2). Consistently, we can only

use a constant concentration for the drug. However, concentration levels may be different

in different time spans of the treatment. Depending on the value of the toxicity ζ and the

kinetic parameters, α and κ, there are two different type of drug protocols (see Fig. S 1(d,e)

on the right hand side). Each drug protocol can be derived from the minimization of the

Hamiltonian, Eq. (S 63), which can be written as

ζ = λ(Ti) (|α′|+ |κ′| ca(Ti)) = 0 , (S 65)

noting that α′(cd) < 0 and κ′(cd) < 0 (see e.g. Eq. (S 26b) and Eq. (S 26d)). This con-

dition either yields two solutions, T1 and T2, or just one, T2 (see Fig. S 1(b,c,d,e)). The

corresponding protocols either read

cd(t) =


0 for 0 ≤ t < T1 ,

cd for T1 ≤ t < T2 ,

0 for T2 ≤ t ≤ T ,

(S 66)

or

cd(t) =

cd for 0 ≤ t < T2 ,

0 for T2 ≤ t ≤ T ,
(S 67)

where T1 or t = 0, respectively, is the time of drug administration, T2−T1 or just T2 denotes

the time period the drug is applied, and T − T2 is a drug-free period after medication.

In the following we compare two different physical scenarios, where each corresponds to

the drug protocol Eq. (S 66) or Eq. (S 67), respectively:

1) The first scenario is the case where primary nucleation is not affected by the drug, i.e.,

α(cd) = α0; the drug only decreases secondary nucleation and growth at the ends of the

aggregates. This case leads to the drug protocol Eq. (S 66) illustrated in Fig. S 1(d).

2) The second scenario corresponds to κ(cd) = κ0, i.e., secondary nucleation and growth

at the ends are not affected by the drug. Instead the drug only inhibits primary

nucleation. This case leads to the drug protocol Eq. (S 67) illustrated in Fig. S 1(e).
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Later we will determine the parameter regimes where one of these strategies is more efficient

to inhibit protein aggregation than the other. The optimal protocol for a drug inhibiting

multiple aggregation steps can be obtained explicitly by solving Eq. (S 65) and is a combi-

nation of the scenarios (1) and (2) discussed here below.

D. Optimal inhibition

We seek for the optimal treatment leading to the most effective inhibition of aggregate

growth. We would like optimize the treatment, characterized by the times T1 and T2 and the

drug concentration cd, such that the aggregate concentration ca(t = T ) at the final time t = T

is an output of the optimization procedure. Thus we let the final aggregate concentration

ca(t = T ) “free” and fix the final time T , which corresponds to the condition (S 60).

The optimal drug treatment can be found by calculating the optimal times to begin, T1,

and to end the drug treatment, T2, which minimize the cost functional Eq. (S 55) given the

aggregation kinetics governed by Eq. (S 27).

By means of the optimization we will determine the weakest and optimal growth of the

concentration of aggregates, ca(t), and oligomers, co(t); see section S 2 D 1. We calculate the

dependencies of the times to begin, T1, and end, T2, the drug treatment as a function of the

aggregation parameters and the relative toxicities ζ (section (S 2 D 2)). These results will

allow us to discuss how the life time expectance of patients is decreased if the treatment

deviates from the optimum or if there is no drug treatment (section S 2 D 5).

1. Solutions for Lagrange multiplier (co-state variable) and solution to aggregation kinetics

For T2 ≤ t ≤ T , we solve Eq. (S 59) considering that cd(t = T ) = 0 and thus κ(cd = 0) =

κ0 (see Eq. (S 66)):

λ(t) =
eκ0(T−t) − 1

κ0

+ Aeκ0(T−t) , T2 ≤ t ≤ T . (S 68a)

To obtain the solution in the time period T1 ≤ t < T2, we solve Eq. (S 59) with cd = cd, and

match with the solution above at t = T2:

λ(t) =
eκ(cd)[T2−t] − 1

κ(cd)
+ λ(T2) eκ(cd)[T2−t] , T1 ≤ t < T2 . (S 68b)
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FIGURE S3

FIG. S 1. (a) Effect of optimal control on aggregate concentration. While the aggregate con-

centration ca(t) grows exponentially in time in the absence of drug, a drug treatment within the

time interval [T1, T2] can significantly inhibit the aggregate growth. (b) Sketch of time evolution of

co-state variable λ(t) with the transversality condition λ(T ) = 0 (in the case of integrated costs).

Please refer to section S 2 D 1 for the solutions of co-state variable λ(t) as a function of time. (c)

Illustration of the time evolution of the quantity λ(t)[|α′|+ |κ′|ca(t)] which essentially determines

the drug protocol. Note that λ(t)[|α′|+ |κ′|ca(t)] is the product of λ(t) (monotonically decreasing;

see section S 2 D 1) and |α′| + |κ′|ca(t) (monotonically increasing or constant; see section S 2 D 1),

hence it can have a non-monotonic behavior. The switching times T1 and T2 are set by the condi-

tion Eq. (S 65). (d) Optimal protocol for the case α′ = 0. Drug is administered at t = T1 > 0 with

the drug protocol Eq. (S 66) illustrated on the right hand side. (e) Optimal protocol for the case

κ′ = 0. Drug is administered already at t = 0 with the drug protocol Eq. (S 67) illustrated to the

right. 25
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For 0 ≤ t < T1, we find:

λ(t) =
eκ0(T1−t) − 1

κ0

+ λ(T1) eκ0(T1−t) , 0 ≤ t < T1 . (S 68c)

Please refer to Fig. S 1(b) for an illustration of λ(t). Since we have fixed the form of the drug

as a function of time ca(t) (Eq. (S 66)), we can already calculate of the optimal concentration

of aggregates as a function of time, ca(t), governed by

dca(t)

dt
=
∂H
∂λ

= α(cd) + κ(cd) ca(t) . (S 69)

Using the initial condition ca(0) = 0, we find:

ca(t) =
α0

κ0

[
eκ0t − 1

]
, 0 ≤ t ≤ T1 , (S 70a)

ca(t) =
α(cd)

κ(cd)

[
eκ(cd)[t−T1] − 1

]
+ ca(T1) eκ(cd)[t−T1], T1 < t ≤ T2 , (S 70b)

ca(t) =
α0

κ0

[
eκ0[t−T2] − 1

]
+ ca(T2) eκ0[t−T2], T2 < t ≤ T . (S 70c)

Note that in the absence of any drug treatment,

ca(t) =
α0

κ0

[
eκ0t − 1

]
, 0 ≤ t ≤ T . (S 71)

Please refer to Fig. S 1(a) for an illustration of how the concentration of aggregates changes

with time, in the presence and absence of drug.

2. Optimal start and end of drug treatment

So far we have not yet determined the optimal values for the times to begin, T1, and to

end the drug treatment, T2. To this end, we consider the two cases outlined in section S 2 C.

Case α(cd) = α0 and α′ = 0 corresponding to the drug protocol Eq. (S 66):

Using Eqs. (S 68) and (S 70), we find

−ζ =

[
eκ[T2−T1] − 1

κ
+

Γ eκ0(T−T2) − 1

κ0

eκ[T2−T1]

]
κ′
α0

κ0

(
eκ0T1 − 1

)
, (S 72a)

−ζ =

[
Γ eκ0(T−T2) − 1

κ0

] [
κ′
α0

κ

(
eκ[T2−T1] − 1

)
+ κ′

α0

κ0

(
eκ0T1 − 1

)
eκ[T2−T1]

]
, (S 72b)
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where we have suppressed the dependence on cd of κ for the ease of notation, i.e., κ = κ(cd).

Moreover, we have introduced the following abbreviation

Γ(A) = 1 + κ0A , (S 73)

where A = 0, i.e., Γ = 1 for integrated cost (Eq. (S 55)) and A = T for terminal cost

(Eq. (S 56)).

The equations above determine the optimal values for T1 and T2. To obtain an analytic

result, we consider the case where Ti � κ−1. This condition has already been used to derive

the underlying kinetic equation for aggregation (see section S 1 B 5). In particular, this

implies that eκTi � 1. The resulting two equations can be subtracted or added, respectively,

leading to

T − T2 ' T1 −
1

κ0

ln (Γ) , (S 74a)

T2 − T1 '
1

κ0 − κ

[
Tκ0 − ln

(
ζκ2

0cd

α0(κ0 − κ)Γ

)]
. (S 74b)

Eqs. (S 74b) desribes the optimal treatment periode (T2−T1). The expression for the treat-

ment period T2 − T1 (Eq. (S 74b)) indeed minimizes the cost (see next section). Depending

on the parameters such as relative toxicity ζ or aggregation rates, there is a regime at large

toxicity where a drug treatment makes no sense since the drug is too toxic. In the case of a

drug of low toxicity, the optimal treatment duration approaches T . For integrated cost, the

drug administration protocol is symmetric, i.e. T − T2 = T1. The start and end times are

then explicitly given by:

T1 '
T

2
− 1

2(κ0 − κ)

[
Tκ0 − ln

(
ζκ2

0cd

α0(κ0 − κ)Γ

)]
, (S 75a)

T2 '
T

2
+

1

2(κ0 − κ)

[
Tκ0 − ln

(
ζκ2

0cd

α0(κ0 − κ)Γ

)]
. (S 75b)

Case κ(cd) = κ0 and κ′ = 0 corresponding to the drug protocol Eq. (S 67):

Following the analog steps as sketched in the previous paragraph, we find for the switching

time T2:

T2 = T − 1

κ0

ln

[
Γ−1

(
ζκ0cd

(α0 − α(cd))
+ 1

)]
. (S 76)
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3. Optimal costs and treatments deviating from the optimum

Here we compute the cost as the treatment deviates from the optimum to estimate the

additional “life time” gained by the optimization. One limiting case is no drug treatment.

Using Eq. (S 71) and the definition of the cost Eq. (S 55) for a single drug, we find the cost

in the absence of drug treatment

Cost× '
α0

κ2
0

eκ0T . (S 77)

To calculate the cost with treatment, we consider the contributions from the drug and from

the aggregates separately. For the drug, the cost is given as:

Cost[0, cd] =

∫ T

0

dt ζ cd(t) = ζcd(T2 − T1) . (S 78)

The opimized contribution from the drug is obtained by using Eq. (S 74b):

Costopt[0, cd] =
ζcd

κ0 − κ

[
Tκ0 − ln

(
ζκ2

0cd

α0(κ0 − κ)Γ

)]
(S 79)

= ζφ(cd)

[
T − 1

κ0

ln

(
ζκ0φ(cd)

α0Γ

)]
,

where

φ(cd) =
cdκ0

κ0 − κ
=

cd

1− 1/(1 + cdK)n
=

cd cd � K−1

1
nK

+ n+1
2n
cd cd � K−1

, (S 80)

where K is the equilibrium binding constant of the drug via some of the discussed mecha-

nisms and n is some exponent (which depends on the reaction orders for nucleation and the

mechanism of inhibition etc.). For the cost from the aggregates, we consider the two cases

outlined in section S 2 C separately.

Case α(cd) = α0 and α′ = 0 corresponding to the drug protocol Eq. (S 66):

The cost of the aggregates will slightly differ between of integrated and terminal costs. In

the case of integrated cost

Cost[ca, 0] =

∫ T

0

dt ca(t) =

∫ T1

0

dt ca(t) +

∫ T2

T1

dt ca(t) +

∫ T

T2

dt ca(t)

' α0

κ2
0

eκ0T1eκ[T2−T1]eκ0(T−T2) =
α0

κ2
0

eκ0T · e−(κ0−κ)(T2−T1) , (S 81)
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where we extracted the dominant exponential terms in ca(t). The optimized contribution

from the aggregates is found by using Eqs. (S 74a) and (S 74b):

Costopt[ca, 0] ' ζ

|κ′| =
ζ

κ0

φ(cd) . (S 82)

In the case of terminal costs (see Eq. (S 56)), the costs from the aggregates reads Cost[ca, 0] =

Tca(T ) and the optimized contribution using Eq. (S 73) is

Costopt[ca, 0] =
κ0Tζ

|κ′|Γ(A = T )
=

Tζ

1 + κ0T
φ(cd) . (S 83)

Due to the exponential growth, integrated and terminal costs only differ by a multiplicative

factor. So we focus on integrated cost with Γ = 1 (Eq. (S 73)) for the remaining discussions

without the loss of generality.

In the case of integrated the total cost is is approximately given as

Cost[ca, cd] = Cost[0, cd] + Cost[ca, 0]

' ζcd(T2 − T1) +
α0

κ2
0

eκ0T · e−(κ0−κ)(T2−T1) , (S 84)

and the corresponding optimized cost is

Costopt[ca, cd] = Costopt[0, cd] + Costopt[ca, 0]

' ζφ(cd)

[
T +

1

κ0

− 1

κ0

ln

(
ζκ0φ(cd)

α0Γ

)]
. (S 85)

Case κ(cd) = κ0 and κ′ = 0 corresponding to the drug protocol Eq. (S 67):

Following similar steps as outlined above we find for the total cost

Cost[ca, cd] ' α0 − α
κ2

0

eκ0(T−T2) +
α

κ2
0

eκ0T + ζcdT2 . (S 86)

The optimal cost is then

Costopt '
α

κ2
0

eκ0T + ζcd

[
T +

1

κ0

− 1

κ0

ln

(
ζκ0cd

α0 − α

)]
+
α0 − α
κ2

0

. (S 87)

4. Sensitivity of optimal control

Here we discuss the sensitivity to find the optimal treatment. As an example we restrict

ourselves to the case α(cd) = α0 and α′ = 0 corresponding to the drug protocol Eq. (S 66)

and integrated costs.
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The cost function is given by Eq. (S 84):

Cost[ca, cd] = ζcd(T2 − T1) +
α0

κ2
0

eκ0T · e−(κ0−κ)(T2−T1) . (S 88)

Minimization of this cost function with respect to treatment duration, T2 − T1, i.e.,

∂Cost[ca, cd]

∂(T2 − T1)
= ζcd −

α0(κ0 − κ)

κ2
0

eκ0T · e−(κ0−κ)(T2−T1) = 0 , (S 89)

yields the optimal treatment duration

T2 − T1 =
1

κ0 − κ

[
κ0T − ln

(
ζκ2

0cd

α0(κ0 − κ)

)]
, (S 90)

which, consistently, is equivalent to Eq. (S 74b) obtained by the optimal control recipe. In

addition, we can determine the curvature of the cost function,

∂2Cost[ca, cd]

∂(T2 − T1)2
=
α0(κ0 − κ)2

κ2
0

eκ0T · e−(κ0−κ)(T2−T1) ,

which reads at the optimal treatment duration (Eq. (S 74b)):

∂2Cost[ca, cd]

∂(T2 − T1)2

∣∣∣∣
opt

=
(
κ0 − κ (cd)

)
ζcd .

Hence, at low drug concentration cd or low drug toxicity ζ, the curvature of the cost func-

tion at the optimal treatment is smaller. A low curvature around the optimal treatment

implies that the optimal treatment is easier to find. In other words, at low toxicity or drug

concentration, the optimal treatment is less sensitive to deviations from the optimal value.

5. Life-time expectancy

By means of the cost function we can discuss how the life time expectancy, denoted

as T life, changes as the treatment is not optimal or in the case without drug treatment.

To define the life expectancy, we introduce a critical value of the cost, Costc. If the the

cost is above this critical value, the cell (for example) dies. Without drug treatment (use

Eq. (S 77)), we find that the life expectancy is

T life
× =

1

κ0

ln

(
Costc κ

2
0

α0

)
. (S 91)

Similarly, the life expectancies T life with drug treatment of optimized duration and fixed

drug concetration is determined by:

Costc ' ζφ(cd)

[
T life +

1

κ0

− 1

κ0

ln

(
ζκ0φ(cd)

α0Γ

)]
, (S 92)
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where we used Eq. (S 85) thus considered the case α(cd) = α0 and α′ = 0 corresponding to

the drug protocol Eq. (S 66)). The life time gain by an optimized drug treatment relative

to no treatment is then given as

T life − T life
× '

Costc
ζφ(cd)

− 1

κ0

+
1

κ0

ln

(
ζφ(cd)

κ0ΓCostc

)
. (S 93)

6. Comparing strategies: Inhibition of primary nucleation against inhibition of secondary nu-

cleation and growth at ends

Interestingly, Eq. (S 87) shows that targeting the primary nucleation pathway only does

not get rid of the exponential term eκ0T in the total cost. This is in contrast to the situation

when κ is targeted (see Eq. (S 85)). Thus, we expect that for large κ0T targeting primary

nucleation only is more costly than targeting κ. This observation can be formalized by

comparing Eq. (S 87) with Eq. (S 85) finding that affecting primary nucleation only is more

favorable than targeting κ when the cost associated with the inhibition of primary nucleation

is lower than that associated with the inhibition of secondary nucleation:

α

κ2
0

eκ0T + ζcd

[
T +

1

κ0

− 1

κ0

ln
ζκ0cd

(α0 − α)

]
+
α0 − α
κ2

0

< ζcd
κ0

κ0 − κ

[
T +

1

κ0

− 1

κ0

ln

(
ζκ2

0cd

α0(κ0 − κ)

)]
. (S 94)

We can simplify the above expression for α0−α
κ20
� eκ0T , ln(...)� κ0T � 1, leading to:

α

κ2
0

eκ0T + ζcdT <
ζcdκ0T

κ0 − κ
. (S 95)

Hence, inhibiting primary nucleation is to be preferred over the inhibition of secondary

nucleation when:
eκ0T

κ0T
<

ζcdκ

κ0 − κ
κ0

α
' ζcdκ

α
. (S 96)

E. Optimal drug concentration

For a fixed treatment duration, the cost function exhibits a minimum as a function of

drug concentration. For the inhibition of primary nucleation, the optimal drug concentration

is obtained by minimizing

Cost[ca, cd] ' α0 − α
κ2

0

eκ0(T−T2) +
α

κ2
0

eκ0T + ζcdT2 . (S 97)
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t

FIG. S 2. Schematic representation of the optimal protocols for the inhibition of primary nucleation

(a) and secondary nucleation or growth (b) for a non-linear cost function. The resulting optimal

protocols are “smoothed-out versions” of the bang-bang controls that emerge in the linear case

(dashed lines).

with respect to cd, while for the inhibition of secondary nucleation or fibril elongation, it

emerges from the minimization of

Cost[ca, cd] = ζcd(T2 − T1) +
α0

κ2
0

eκ0T−(κ0−κ)(T2−T1). (S 98)

F. Optimal protocols emerging from non-linear cost functions

In the main text, we have opted for a cost function that is linear in the drug and aggregate

concentrations. This choice for the cost function resulted in optimal bang-bang controls and

a key finding was that inhibition of primary nucleation requires early administration, while

inhibition of secondary nucleation or growth requires late administration. We now show

that this finding is robust in the sense that it remains valid also when the cost function

is non-linear; the resulting optimal protocols are smoothed out versions of the bang bang

control that emerges from the linear cost function. The function L(cd, ca) can be expanded

as Taylor series in the variables cd and ca. Hence, it is sufficient to focus on a cost function

of the following form:

Cost[cd, ca] =

∫ T

0

dt

(
ca(t)m + ζ cd(t)n

)
, (S 99)

where m,n ≥ 1. To solve the resulting optimal control problem, we apply again the varia-

tional recipe as introduced in section S 2 A and consider the Hamiltonian function, which is
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defined in Eq. (S 54) and with a non-linear cost function (S 99) reads:

H[cd(t), ca(t), λ(t)] = ca(t)m + ζ cd(t)n + λ(t)
[
α (cd(t)) + κ (cd(t)) ca(t)

]
, (S 100)

The optimal control corresponds to a minimum of the Hamiltonian with respect to the drug

concentration
∂H
∂cd

= 0 , (S 101)

which yields the following condition

∂H
∂cd

= nζcd(t)n−1 + λ(t) [α′(cd(t)) + κ′(cd(t)) ca(t)] = 0 . (S 102)

Let us now consider the situations when the drug affects α or κ only separately.

• When the drug affects only primary nucleation, we have κ′ = 0, and so the optimal

protocol is obtained as solution to the following equation

cd(t)n−1

|α′(cd(t))| =
λ(t)

nζ
. (S 103)

The function α(cd) is a monotonically decreasing function of cd without points of

inflection. Hence, the expression on the left-hand side of Eq. (S 103) is a monotonically

increasing function g of drug concentration cd, which can therefore be inverted to yield

the optimal protocol:

cd(t) = g−1

(
λ(t)

nζ

)
. (S 104)

Since g is a monotonically increasing function, also its inverse g−1 is monotonically

increasing (follows directly from the inverse function theorem). The co-state variable

λ(t) is a monotonically decreasing function of time with λ(t = T ) = 0. Hence, from

(S 104) it follows also that the optimal protocol cd(t) is a monotonically decreasing

function of time, which is maximal when t = 0 and equals zero when t = T (note

that g(cd = 0) = 0; hence g−1(0) = 0). Thus, inhibition of primary nucleation always

requires an early administration optimal protocol irrespective of the exponent n in the

cost function (Fig. S5(a)).

• When the drug inhibits secondary nucleation or growth, i.e. α′ = 0, the optimal

protocol is obtained by solving the following equation

cd(t)n−1

|κ′(cd(t))| =
λ(t)ca(t)

nζ
. (S 105)
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Using similar arguments as for the inhibition of primary nucleation only, we introduce

a function h(cd) = cn−1
d /|κ′(cd)| and the optimal protocol emerges as

cd(t) = h−1

(
λ(t)ca(t)

nζ

)
. (S 106)

The concentration of aggregates satisfies ca(t = 0) = 0, while the co-state variable λ

satisfies λ(t = T ) = 0. Thus, the optimal protocol is a non-monotonic function of

time, which is zero at the start t = 0 and at the end t = T and has a maximum in

between 0 and T . Thus, inhibition of secondary nucleation or elongation requires a

late administration optimal protocol (Fig. S5(b)).
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with such a difference, the levels of aggregates monitored using the
fluorescence intensity of the amyloid-specific dye NIAD-4 (47) differ
significantly between the two models, with essentially no aggregates
being detected on the same day the worms reached adulthood in
the Ab worm model in the presence of bexarotene (Fig. 6, C and D).

We then explored the effect of increasing concentrations of
bexarotene added at the larval stages of the C. elegans life cycle
(Fig. 6A) and observed a concentration-dependent maintenance of
the motility of the Ab worm model. Indeed, the motility of the Ab
worms was maintained completely upon addition of 10 mM bexarotene
in two bursts at the L1 and L4 larval stages, that is, reached the level
observed in the control worms (Fig. 4, A and B). In addition, imaging
studies (see Materials and Methods) showed that the addition of
10 mM bexarotene to the Ab worms suppressed the formation of Ab42
fibrils for 9 days of adulthood (Fig. 6D). The level of Ab42 expression

in the Ab worms in the absence and in the presence of bexarotene was
found to be closely similar (Fig. 6E). This result indicates that main-
taining the level of motility in the Ab worms could be achieved by
preventing the aggregation of Ab42 by bexarotene. In accord with this
conclusion, the addition of bexarotene did not show any effects in the
control worm model (fig. S5A). The normal motility observed for the
Ab worms in the presence of bexarotene could be consistent with two
distinct scenarios. One possibility could be a strong delay in primary
nucleation, which would substantially delay the aggregation of Ab42
and hence maintain the motility of the Ab worms to values similar to
those of the control worms. Alternatively, these results could arise from
a combination of effects on primary and secondary nucleation. This
latter possibility is particularly relevant because although bexarotene
preferentially inhibits primary nucleation, it could also affect sec-
ondary nucleation when present in excess. Indeed, our experiments
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Fig. 6. Bexarotene restores the motility of C. elegans models of Ab42-mediated toxicity by preventing Ab42 aggregation. (A) Experimental
procedure for the measurement of the effects of bexarotene on the frequency of body bends and on the quantity of aggregates in C. elegans
GMC101 (that is, the Ab worm model) and CL2122 (that is, the control worm model) models. Bexarotene was given to the worms at larval stages
L1 and L4. (B) Measurements of the effect of increasing concentrations of bexarotene ranging from 5 to 10 mM on the frequency of body bends in
the Ab worm model. Normalized values with respect to day 0 are shown. The experimental data are shown for a single experiment but are re-
presentative in each case of three independent experiments. Complete recovery of the motility of the Ab worm model can be observed at 10 mM
bexarotene; the inset shows the dose dependence of the effects of bexarotene on Ab worms at day 3 of adulthood. (C) In vivo imaging of ag-
gregates stained using the amyloid-specific dye NIAD-4 in the absence and in the presence of 10 mM bexarotene; images from days 6 and 9 only are
shown for clarity. (D) Time course of the reaction of amyloid aggregates formed in the Ab worms in the absence and in the presence of 1 mM
bexarotene. Quantification of fluorescence intensity was performed using ImageJ software (see Materials and Methods). In all panels, error bars
represent the SEM. (E) Insoluble fraction of the protein extracts from C. elegans in the presence and in the absence of bexarotene with immuno-
detection of Ab and a-tubulin (see Materials and Methods).
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In vivo aggregation data
In[418]:= Aggregationerrdata =

{{{0, 100 542.3}, ErrorBar[17122.23]}, {{6, 2 239096}, ErrorBar[884 789.1]},
{{9, 3630433}, ErrorBar[573 263.1]}, {{12, 12124400}, ErrorBar[859419.9]}};

Aggregationerrdatabex = {{{0, 62 914.98}, ErrorBar[7550.274]},
{{6, 650072.1}, ErrorBar[37892.45]}, {{9, 909652.8}, ErrorBar[220503.9]},
{{12, 4125 514}, ErrorBar[801019.2]}};

Aggregationcontrolerrdata = {{{0, 120084}, ErrorBar[71685.97]},
{{6, 231973.8}, ErrorBar[57359.99]}, {{9, 549889.1}, ErrorBar[138479]},
{{12, 1028 074}, ErrorBar[318259.2]}};

Aggregationdata = {{0, 100542.3}, {6, 2 239096}, {9, 3 630433}, {12, 12124400}};
Aggregationdatabex =

{{0, 62914.98}, {6, 650072.1}, {9, 909652.8}, {12, 4 125514}};

nlm = NonlinearModelFit[Aggregationdata, a * (Exp[b * t] - 1), {a, b}, t]
nlmb = NonlinearModelFit[Aggregationdatabex, a * (Exp[0.34 * t] - 1), {a, b}, t]

Show[Plot[{nlm[x], nlmb[x]}, {x, 0, 12.5}, Frame → True, AspectRatio → 0.7,
BaseStyle → {FontFamily → "Arial", FontSize → 15}, FrameStyle → Black,
FrameLabel → {"Time (days)", "Aggregate fluorescence"}, PlotRange → All],

ErrorListPlot[{Aggregationerrdata, Aggregationerrdatabex,
Aggregationcontrolerrdata}, Frame → True, AspectRatio → 0.7,

BaseStyle → {FontFamily → "Arial", FontSize → 15},
FrameStyle → Black, PlotMarkers → {Automatic, 11},
FrameLabel → {"Time (days)", "Aggregate fluorescence"}, PlotRange → All,
PlotLegends → {"Aβ42 worms", "+ 10μM Bexarotene", "Control"}]]

Out[423]= FittedModel 200927. -1+ⅇ0.34242 t 

Out[424]= FittedModel 68436.9 -1+ⅇ0.34 t 
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with such a difference, the levels of aggregates monitored using the
fluorescence intensity of the amyloid-specific dye NIAD-4 (47) differ
significantly between the two models, with essentially no aggregates
being detected on the same day the worms reached adulthood in
the Ab worm model in the presence of bexarotene (Fig. 6, C and D).

We then explored the effect of increasing concentrations of
bexarotene added at the larval stages of the C. elegans life cycle
(Fig. 6A) and observed a concentration-dependent maintenance of
the motility of the Ab worm model. Indeed, the motility of the Ab
worms was maintained completely upon addition of 10 mM bexarotene
in two bursts at the L1 and L4 larval stages, that is, reached the level
observed in the control worms (Fig. 4, A and B). In addition, imaging
studies (see Materials and Methods) showed that the addition of
10 mM bexarotene to the Ab worms suppressed the formation of Ab42
fibrils for 9 days of adulthood (Fig. 6D). The level of Ab42 expression

in the Ab worms in the absence and in the presence of bexarotene was
found to be closely similar (Fig. 6E). This result indicates that main-
taining the level of motility in the Ab worms could be achieved by
preventing the aggregation of Ab42 by bexarotene. In accord with this
conclusion, the addition of bexarotene did not show any effects in the
control worm model (fig. S5A). The normal motility observed for the
Ab worms in the presence of bexarotene could be consistent with two
distinct scenarios. One possibility could be a strong delay in primary
nucleation, which would substantially delay the aggregation of Ab42
and hence maintain the motility of the Ab worms to values similar to
those of the control worms. Alternatively, these results could arise from
a combination of effects on primary and secondary nucleation. This
latter possibility is particularly relevant because although bexarotene
preferentially inhibits primary nucleation, it could also affect sec-
ondary nucleation when present in excess. Indeed, our experiments
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Fig. 6. Bexarotene restores the motility of C. elegans models of Ab42-mediated toxicity by preventing Ab42 aggregation. (A) Experimental
procedure for the measurement of the effects of bexarotene on the frequency of body bends and on the quantity of aggregates in C. elegans
GMC101 (that is, the Ab worm model) and CL2122 (that is, the control worm model) models. Bexarotene was given to the worms at larval stages
L1 and L4. (B) Measurements of the effect of increasing concentrations of bexarotene ranging from 5 to 10 mM on the frequency of body bends in
the Ab worm model. Normalized values with respect to day 0 are shown. The experimental data are shown for a single experiment but are re-
presentative in each case of three independent experiments. Complete recovery of the motility of the Ab worm model can be observed at 10 mM
bexarotene; the inset shows the dose dependence of the effects of bexarotene on Ab worms at day 3 of adulthood. (C) In vivo imaging of ag-
gregates stained using the amyloid-specific dye NIAD-4 in the absence and in the presence of 10 mM bexarotene; images from days 6 and 9 only are
shown for clarity. (D) Time course of the reaction of amyloid aggregates formed in the Ab worms in the absence and in the presence of 1 mM
bexarotene. Quantification of fluorescence intensity was performed using ImageJ software (see Materials and Methods). In all panels, error bars
represent the SEM. (E) Insoluble fraction of the protein extracts from C. elegans in the presence and in the absence of bexarotene with immuno-
detection of Ab and a-tubulin (see Materials and Methods).
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In vivo aggregation data
In[418]:= Aggregationerrdata =

{{{0, 100 542.3}, ErrorBar[17122.23]}, {{6, 2239096}, ErrorBar[884789.1]},
{{9, 3630433}, ErrorBar[573263.1]}, {{12, 12124400}, ErrorBar[859 419.9]}};

Aggregationerrdatabex = {{{0, 62 914.98}, ErrorBar[7550.274]},
{{6, 650072.1}, ErrorBar[37892.45]}, {{9, 909652.8}, ErrorBar[220503.9]},
{{12, 4125 514}, ErrorBar[801019.2]}};

Aggregationcontrolerrdata = {{{0, 120084}, ErrorBar[71685.97]},
{{6, 231973.8}, ErrorBar[57359.99]}, {{9, 549889.1}, ErrorBar[138479]},
{{12, 1028 074}, ErrorBar[318259.2]}};

Aggregationdata = {{0, 100542.3}, {6, 2239096}, {9, 3 630433}, {12, 12124400}};
Aggregationdatabex =

{{0, 62 914.98}, {6, 650072.1}, {9, 909652.8}, {12, 4 125514}};

nlm = NonlinearModelFit[Aggregationdata, a * (Exp[b * t] - 1), {a, b}, t]
nlmb = NonlinearModelFit[Aggregationdatabex, a * (Exp[0.34 * t] - 1), {a, b}, t]

Show[Plot[{nlm[x], nlmb[x]}, {x, 0, 12.5}, Frame → True, AspectRatio → 0.7,
BaseStyle → {FontFamily → "Arial", FontSize → 15}, FrameStyle → Black,
FrameLabel → {"Time (days)", "Aggregate fluorescence"}, PlotRange → All],

ErrorListPlot[{Aggregationerrdata, Aggregationerrdatabex,
Aggregationcontrolerrdata}, Frame → True, AspectRatio → 0.7,

BaseStyle → {FontFamily → "Arial", FontSize → 15},
FrameStyle → Black, PlotMarkers → {Automatic, 11},
FrameLabel → {"Time (days)", "Aggregate fluorescence"}, PlotRange → All,
PlotLegends → {"Aβ42 worms", "+ 10μM Bexarotene", "Control"}]]
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with such a difference, the levels of aggregates monitored using the
fluorescence intensity of the amyloid-specific dye NIAD-4 (47) differ
significantly between the two models, with essentially no aggregates
being detected on the same day the worms reached adulthood in
the Ab worm model in the presence of bexarotene (Fig. 6, C and D).

We then explored the effect of increasing concentrations of
bexarotene added at the larval stages of the C. elegans life cycle
(Fig. 6A) and observed a concentration-dependent maintenance of
the motility of the Ab worm model. Indeed, the motility of the Ab
worms was maintained completely upon addition of 10 mM bexarotene
in two bursts at the L1 and L4 larval stages, that is, reached the level
observed in the control worms (Fig. 4, A and B). In addition, imaging
studies (see Materials and Methods) showed that the addition of
10 mM bexarotene to the Ab worms suppressed the formation of Ab42
fibrils for 9 days of adulthood (Fig. 6D). The level of Ab42 expression

in the Ab worms in the absence and in the presence of bexarotene was
found to be closely similar (Fig. 6E). This result indicates that main-
taining the level of motility in the Ab worms could be achieved by
preventing the aggregation of Ab42 by bexarotene. In accord with this
conclusion, the addition of bexarotene did not show any effects in the
control worm model (fig. S5A). The normal motility observed for the
Ab worms in the presence of bexarotene could be consistent with two
distinct scenarios. One possibility could be a strong delay in primary
nucleation, which would substantially delay the aggregation of Ab42
and hence maintain the motility of the Ab worms to values similar to
those of the control worms. Alternatively, these results could arise from
a combination of effects on primary and secondary nucleation. This
latter possibility is particularly relevant because although bexarotene
preferentially inhibits primary nucleation, it could also affect sec-
ondary nucleation when present in excess. Indeed, our experiments

Motility measurements Aggregate time course imaging
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Fig. 6. Bexarotene restores the motility of C. elegans models of Ab42-mediated toxicity by preventing Ab42 aggregation. (A) Experimental
procedure for the measurement of the effects of bexarotene on the frequency of body bends and on the quantity of aggregates in C. elegans
GMC101 (that is, the Ab worm model) and CL2122 (that is, the control worm model) models. Bexarotene was given to the worms at larval stages
L1 and L4. (B) Measurements of the effect of increasing concentrations of bexarotene ranging from 5 to 10 mM on the frequency of body bends in
the Ab worm model. Normalized values with respect to day 0 are shown. The experimental data are shown for a single experiment but are re-
presentative in each case of three independent experiments. Complete recovery of the motility of the Ab worm model can be observed at 10 mM
bexarotene; the inset shows the dose dependence of the effects of bexarotene on Ab worms at day 3 of adulthood. (C) In vivo imaging of ag-
gregates stained using the amyloid-specific dye NIAD-4 in the absence and in the presence of 10 mM bexarotene; images from days 6 and 9 only are
shown for clarity. (D) Time course of the reaction of amyloid aggregates formed in the Ab worms in the absence and in the presence of 1 mM
bexarotene. Quantification of fluorescence intensity was performed using ImageJ software (see Materials and Methods). In all panels, error bars
represent the SEM. (E) Insoluble fraction of the protein extracts from C. elegans in the presence and in the absence of bexarotene with immuno-
detection of Ab and a-tubulin (see Materials and Methods).
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FIG. S 3. (a) Aggregation of Aβ42 inside C. elegans worms as a function of time for Aβ42 worms

(blue), Aβ42 worms treated with 10 µM Bexarotene, administered 72 hours before adulthood

(orange), and control worms (green). The aggregation data in untreated and treated Aβ42 worms

are fitted to exponential increase, Ma(t) = α0
2β0

(eκ0t − 1) (solid lines). The fit to untreated worms

yields κ0 ' 0.34 days−1; the data for aggregation with Bexarotene are fitted by keeping κ0 fixed and

varying α0 (rate of primary nucleation) only. Thus, the action of Bexarotene on aggregation data

in worms is consistent with inhibition of primary nucleation. (b) Frequency of body bends over

time for Aβ42 worms (blue), Aβ42 worms treated with 10 µM Bexarotene, administered 72 hours

before adulthood (orange), and control worms (green). (c) Toxicity of Bexarotene in C. elegans

worms. The data show normalized reduction in frequency of body bends (relative to healthy control

worms) measured in healthy C. elegans worms treated with increasing concentration of Bexarotene.

The reduction in frequency of body bends is shown at days T = 12, 6, 3, and 2 of adulthood. The

toxic effects of Bexarotene increase with Bexarotene concentration and exposure time.
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