
Accumulating computational resource usage of genomic data analysis

workflow to optimize cloud computing instance selection

Tazro Ohta1, Tomoya Tanjo2, Osamu Ogasawara3

Affiliation

1. Database Center for Life Science, Joint Support-Center for Data Science

Research, Research Organization of Information and Systems, Yata 1111,

Mishima, Shizuoka 411-8540, Japan

2. National Institute of Informatics, Research Organization of Information

and Systems, Tokyo 101–8430, Japan

3. DNA Data Bank of Japan, National Institute of Genetics, Research

Organization of Information and Systems, Yata, Mishima 411-8540,

Japan

Correspondence should be addressed to T.O. (t.ohta@dbcls.rois.ac.jp)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

mailto:t.ohta@dbcls.rois.ac.jp
https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Abstract

Background

Container virtualization technologies such as Docker became popular in the

bioinformatics domain as they improve portability and reproducibility of

software deployment. Along with software packaged in containers, the

workflow description standards Common Workflow Language also enabled to

perform data analysis on multiple different computing environments with ease.

These technologies accelerate the use of on-demand cloud computing platform

which can scale out according to the amount of data. However, to optimize the

time and the budget on a use of cloud, users need to select a suitable instance

type corresponding to the resource requirements of their workflows.

Results

We developed CWL-metrics, a system to collect runtime metrics of Docker

containers and workflow metadata to analyze resource requirement of

workflows. We demonstrated the analysis by using seven transcriptome

quantification workflows on six instance types. The result showed instance type

options of lower financial cost and faster execution time with required amount

of computational resources.

Conclusions

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

The summary of resource requirements of workflow executions provided by

CWL-metrics can help users to optimize the selection of cloud computing

instance. The runtime metrics data also accelerate to share workflows among

different workflow management frameworks.

Keywords

High-throughput nucleotide sequencing, Cloud computing, Common Workflow

Language

Background

According to the improvement of DNA sequencing technology in

accuracy and quantity, various sequencing methods are now available to

measure different genomic features. Each method produces a massive amount of

nucleotide sequence data that requires a different data processing approach [1].

Bioinformatics researchers develop data analysis tools for each sequencing

technique, and they publish implementations as open source software [2]. To

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

start data analysis, researchers need to select the tools by their experimental

design and install them to their computing environment.

Installing open source tools in one's computational environment is,

however, not always straightforward. Tools developed by different developers

and different programming framework require different prerequisites, which

forces one to follow the instruction provided by each tool's developer. Installing

various software in one environment also can occur a conflict of software

dependencies that are hard to resolve. Even if one could successfully install all

the tools required for the analysis, maintaining the environment where all the

tools keep working as expected is also a burden. There are also many events that

can break the environment such as changes or updates of hardware, operating

system, or software libraries. Therefore, the complexity of data analysis

environment management gets higher when a project performs genomic data

analysis that requires many tools. The high cost of setting up an environment

results in the prevention of scaling out the computational resources as well. The

difficulty also brings researchers' dependency to the existing computing

platform already set up, and the concentration of data processing jobs to the

limited resource.

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

The container virtualization technology, represented by Docker, enables

users to create a software runtime environment isolated from the host machine

[3]. This technology that is getting popular also in the biomedical research

domain is a promising method to solve the problem of installing software tools

[4]. Along with the containers, using workflow description and execution

frameworks such as those from the Galaxy project [5] or the Common

Workflow Language (CWL) project [6] lowered the barrier to deploy the data

analysis environment to a new computing environment. Moreover, the

workflows described in a standardized format can help researchers to share the

environment with collaborators with ease. The improvement of portability of

data analysis environment, consequently, has made the on-demand cloud

infrastructure an appealing option for researchers.

On-demand cloud is beneficial for most cases in genome science because

users can increase or decrease the number of computing instances without

maintaining hardware as the amount of data from laboratory experiments

changes [7]. For example, some sequencing applications require data analysis

software that uses a considerable amount of memory, but individual research

projects often cannot afford such a large scale computing platform. Users can

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

save their budget by using the on-demand cloud platform as most of the service

providers charge per usage.

However, to use an on-demand cloud environment efficiently regarding

time and economic cost, it is essential to select a suitable computing unit,

so-called instance type, from many options offered by the cloud service

providers. For example, Amazon Web Service (AWS), one of the popular cloud

service providers, offers instance types of different scales for five categories

(general purpose, compute optimized, memory optimized, accelerated

computing, and storage optimized) [8]. Each data analysis tool has the different

minimum requirement of computational resources such as memory or storage,

and it can change by input parameters. Executing data analysis workflows on an

instance without enough computational resource will result in a runtime failure

or unexpected outputs. For example, tools to assemble short reads to construct

genome by constructing De Bruijn graph usually take long processing time and

a large amount of memory. If one failed to estimate the required amount of

memory, the process might fail after a few days of execution, which results in

losing one's time and budget. Thus, users need to know the minimum amount of

computational resource required by the execution of their workflows to select a

suitable instance type.

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

To optimize the instance type selection concerning processing time or

running cost, users need to compare runtime metrics of workflow executions on

environments of different computational specs. Here, we developed

CWL-metrics, a system to accumulate runtime metrics of workflow executions

with information of the workflow and the machine environment. CWL-metrics

provides runtime metrics summary such as usage of CPU, memory, storage I/O

with workflow's input files and parameters to help users to select the proper

cloud instance for their workflows.

Results

Implementation of CWL-metrics

CWL-metrics is designed to capture runtime metrics data of workflows

described in CWL, a workflow description specification developed by an open

source community. We designed the system as it does not require the users to

perform any configurations to capture runtime metrics. Figure 1 shows the

procedures of runtime metrics collection by CWL-metrics. To start collecting

metrics, one only needs to install the system, and then run their workflows with

cwltool, a reference implementation of CWL [9]. After the installation, the

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

system starts monitoring the processes running on the host machine. Once the

system found a cwltool process, it automatically starts collecting runtime

metrics via Docker API and environmental information from the host machine.

CWL-metrics also captures the log file generated by cwltool to extract

workflow metadata such as input files and input parameters.

To capture and store the information from multiple data source,

CWL-metrics launches multiple components as Docker containers (Figure 2).

These components keep running on the host machine after the initialization to

cooperate the data collection. The Telegraf container collects runtime metrics

data from the Docker API for every sixty seconds, and send the data to the

Elasticsearch container. The Elasticsearch container provides data storage and

the data access API. CWL-metrics automatically launches and stops these

components on the single host machine. If users need to collect metrics of

workflows running on multiple instances, they need to install CWL-metrics on

each instance and assemble the summary data after the metrics data capture.

Users can use their Elasticsearch server by setting environment variable

ES_HOST and ES_PORT before initializing CWL-metrics.

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

To access and analyze the data collected by CWL-metrics, users can use

the command cwl-metrics to get the data in JSON (Figure 3) or tab separated

values (TSV) format. The JSON format contains workflow metadata such as the

name of the workflow, the time of start and end of the workflow execution. It

also has the information of the environment including the total amount of

memory and the size of storage available on the machine. The steps field of the

JSON format contains information of the runtime metrics, the executed

container, and the input files and parameters. Users can parse the data to analyze

the performance of a tool execution or the whole workflow. The TSV format

provides minimum information for each container execution so that one can

easily compare the metrics data of steps.

Use CWL-metrics to capture runtime metrics of RNA-Seq workflows

As an example use case to capture and analyze runtime metrics of

workflows, we performed an analysis to optimize instance type selection for

RNA-Seq quantification workflows. We run seven RNA-Seq workflows (Table

1) for nine public human RNA-Seq data with different read length and number

of reads (Table 2) on six types of Amazon Web Service (AWS) Elastic

Compute Cloud (EC2) service (Table 3) to capture the runtime metrics by

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

CWL-metrics for each combination. Each workflow description has two

different options for read layout; single-end and paired-end. For the selection of

workflows, we chose two read mapping tools STAR and Hisat2, with two

transcriptome assembly and read count programs Cufflinks and StringTie. We

also used two popular tools using alignment-like algorithms, Kallisto and

Salmon. TopHat2, the program which was once the most popular, but now

obsolete, was added among them for comparing purpose. We performed metrics

data collection five times for each combination of workflow, input data, and

instance type. The analysis used only the succeeded runs.

Table 4 shows that the summary of runtime metrics, processing duration,

and the calculated cost of instance usage per run for two workflows,

HISAT2-Cufflinks and TopHat2-Cufflinks. The fastest processing time was one

of the HISAT2-Cufflinks workflow run on the c5.4xlarge instance, but the

execution at the cheapest cost was the HISAT2-Cufflinks workflow on the

c5.2xlarge instance. It indicates that workflows on cloud instances can have a

trade-off of the processing time and the financial cost. The priority of the

research project, the execution speed over the financial cost or vice versa, will

be required for the final decision of instance selection optimization. The table

also shows the possibility of loss of time or money when one failed to choose a

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

proper instance type. For example, if one used the r5.4xlarge instance to run the

HISAT2-cufflinks workflow, it is 7% slower than c5.4xlarge, and about 1.6

times expensive per sample. The impact of the instance type optimization failure

will be more serious for the data processing jobs that take days or weeks.

Figure 4 shows the results of processing duration of the

HISAT2-StringTie workflow. There are clear differences of processing time

between the samples, where the samples of the smaller number of reads have

smaller differences between the instance types, but the runs on instance types

with more CPU (4xlarge) marked shorter processing time with the samples of

the larger number of reads. Each workflow runs used as many CPU cores as

available on the environment; thus the difference can be considered as the

difference of the number of threads. The read length and the processing duration

also have a strong linear relationship. This result will be useful to estimate the

resource usage from the size of input data. Supplementary Figure 1 shows the

plots of the processing time of the different workflows in which the similar

results were shown.

On the other hand, the result of the comparison of the total amount of

memory per input data in Supplementary Figure 2 needs a different

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

interpretation. Unlike HISAT2 and TopHat2, Kallisto and Salmon did not show

clear differences in memory usage in different sizes of input data. The result

indicates that the users need to know the behavior of the tool beforehand since

the resource usage depends on the algorithms and the implementations.

The runtime metrics data provided by CWL-metrics also helps to perform

a tool comparison. Figure 5 shows that the difference of processing time

between the used workflows. Although users need to know the difference of the

design concept and the strength of the tools to select the proper one for their

research objectives, this result helps to understand the difference of the resource

requirement of the workflows for similar purpose. For example, HISAT2 and

STAR marked almost the same processing time, but STAR uses far more

amount of memory. The plot of the processing time also shows that the obsolete

tool TopHat2 is remarkably slower than the other tools.

Discussion

CWL-metrics enabled users to choose a proper cloud instance for

workflow runs based on the runtime metrics data. The metrics data summarized

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

by workflow inputs, such as the number of threads to use or total file size of

input data, provides the most efficient cloud use for a research project. The data

will also help the administrator of computational infrastructure to encourage

researchers to use the cloud environment in case their local environment has too

many running jobs to accept new job submissions. Each user might perform

different analyses and visualizations concerning input parameters of their

interest. Thus CWL-metrics outputs JSON and TSV data which are easy to

parse and used for visualization by any language of users' favorite, rather having

a custom visualization tool other than Kibana.

CWL-metrics is applicable for most cases in bioinformatics data analysis.

However, there are cases that the system does not work as effectively as

expected. For example, the current implementation of CWL-metrics cannot

capture the precise runtime metrics data of a tool that scatter its processes to

multiple computation nodes. Also, it cannot estimate the performance of

software that uses hardware acceleration systems such as GPU, since the

information of those specific architectures is not available via Docker API.

Nevertheless, in the example use case using RNA-Seq workflows, we showed

CWL-metrics could provide beneficial information to help users to decide on

the use of cloud infrastructure.

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

There are also the other workflow operation frameworks that have

functions to capture runtime metrics, such as Galaxy [5], Toil [10], or Nextflow

[11]. However, we chose CWL as the workflow description framework and its

reference implementation cwltool as the workflow runner for the system

because CWL is the project providing a way to share the workflow across the

different workflow systems. Once users collected the runtime metrics of

workflows by CWL-metrics, they can use the same workflow description with

multiple workflow runner implementations. There are fifteen implementations

listed as those supporting CWL [12]. Some implementations including Galaxy

are still not covering full functions to import and export CWL description to

share and run workflows, but the others including Arvados, Toil, and Apache

Airflow are already available to users. If one wanted to use a workflow system

that does not support CWL yet, the summary of runtime metrics collected

through Docker container is still valuable resource across the different

frameworks.

CWL project has a subproject, CWL-Prov, to provide the provenance

information of workflow executions to improve reproducibility of workflows by

tracking intermediate files and logs [13]. The provenance information helps

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

users to track inputs and outputs of workflow runs by using file checksum but

does not record the detail of the resource usage. Adding runtime metrics data

into the provenance information will cover the information regarding

deployment, which helps users to reproduce the runs on a proper computing

environment. Thus, the summary of runtime metrics collected by CWL-metrics

should be bundled with the provenance information.

There will be more amount of sequencing data that one researcher needs

to process by the technologies that produce a large amount of sequencing data

such as high-throughput single-cell sequencing. In such a situation, it is

essential to have a flexible computing environment that can quickly scale out

according to the amount of data. The fast deployment of the data analysis

environment to the proper cloud instance supported by Docker, CWL, and

CWL-metrics is a way to achieve the computational scale out, which brings a

huge benefit for bioinformatics researchers.

Potential Implications

The Common Workflow Language project aims to provide the workflow

description specification for all domains that work with data analysis pipelines.

Therefore, CWL-metrics can contribute to other domains through the

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

application of CWL. Sharing CWL workflows with the metrics data captured by

CWL-metrics can help users to deploy them on an appropriate environment.

Methods

CWL-metrics software components

CWL-metrics runtime metrics capturing system is composed of five

software components: Telegraf [14], Fluentd [15], Elasticsearch [16], Kibana

[17], and a Perl daemon script. Telegraf is an agent to collect runtime metrics of

running containers via Docker API using Telegraf Docker plugin. Fluentd

works as a log data collector to send metrics data produced by Telegraf to

Elasticsearch server. Elasticsearch is a data store to accumulate runtime metrics

data and workflow metadata, accepting JSON format data via API endpoint.

Kibana is a data browsing dashboard for Elasticsearch to view raw JSON data

and to summarize and visualize data. Telegraf, Fluentd, Elasticsearch/Kibana

launch as a set of containers during the initialization of CWL-metrics.

CWL-metrics runs a Perl script which monitors processes on the host machine

to capture cwltool processes. Once the script found a cwltool process, the script

runs a function to collect workflow information via debug output of the cwltool

process, "docker info" command output, Docker container log via "docker ps"

15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

command, and output of system commands to collect environment information.

CWL-metrics provides a command cwl-metrics , which allows users to start and

stop the metrics collection system, and fetch summarized runtime metrics data

in a specified format, JSON or tab-separated format. The script to launch the

whole system, CWL-metrics installation instruction, and the documentation are

available on GitHub [18].

Packaging RNA-Seq tools and workflows

We used seven different RNA-Seq quantification workflows to capture

runtime metrics and analyze performance on cloud infrastructure. Each

workflow starts with the tool to download sequence data from Sequence Read

Archive (SRA), then convert SRA format file to FASTQ format. Consequently,

each pipeline does sequence alignment to reference genome sequence (HISAT2,

STAR, and TopHat2) or alignment-like approaches (Kallisto and Salmon) to the

set of reference transcript sequence, then perform transcript quantification. Most

of the tool containers used in the workflows are from the Biocontainers [19]

registry. We containerized the tools those are not available on the registry and

uploaded them to the container registry service Quay [20]. We described tool

definitions such as input and output of tool execution and the workflow

procedures in CWL tool files, which are available on GitHub [21]. Each

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

workflow has two options for sequence read layout single-end and paired-end;

thus we used fourteen workflows in total. The Supplementary Table 1 shows the

tool versions, the online location of the CWL tool files, and the original tool

website locations.

Select RNA-Seq workflow input sequence data from the public data

repository

To analyze the effect of sequence data quality to workflow runtime

performance, we chose nine samples of different read length and number of

reads from the public raw sequencing data repository, SRA (Table 2). We used

the Quanto database [22] to select the data by filtering length and number of

sequence reads, with the condition of read length, 50, 75, or 100 and the

approximate number of sequence, 1,000,000, 5,000,000, or 10,000,000. We

filtered the data with the query "organism == Homo sapiens", "study type ==

RNA-Seq", "read layout == PAIRED", and "instrument model == Illumina

HiSeq", then manually picked suitable data. Both single-end and paired-end

workflows used the same dataset while single-end workflows treated paired-end

read files reads as two single-end read files. The version of the reference

genome is GRCh38. We downloaded the reference genome file from the UCSC

genome browser [23], and the transcriptome was from Gencode [24].

17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Run workflows on AWS EC2

To evaluate the performance on running different RNA-Seq workflows,

we selected instance types of two different sizes 2xlarge and 4xlarge from three

categories, general purpose, compute optimized, and memory optimized to run

all workflows for all samples (Table 3). Each combination of instance type,

workflow, and sample data was executed for five times while CWL-metrics is

running on the same machine to capture the runtime metrics information. All

workflow runs used Elastic Block Storage of General Purpose SSD volumes as

file storage. We downloaded all the reference data used for workflows in

advance. The scripts to get reference data and run workflows are available

online [21].

Collect runtime metrics and summarize

After the workflow executions, we collected summarized metrics data

from Elasticsearch by cwl-metrics fetch command. Exported JSON format data

were parsed by a ruby script to create data summarized per workflow runs,

loaded on Jupyter notebook [25] for further analysis. We calculated statistics of

metrics by R language functions [26], and we created the box plots by the

ggplot2 package [27]. The notebook file is available on GitHub [28].

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Figure legends

Figure 1: The container runtime metrics collection procedure with

CWL-metrics

CWL-metrics was designed to capture runtime metrics of workflow steps

automatically. After the initialization of the system, users only need to run a

workflow by cwltool to start metrics capturing. The system collects runtime

metrics of containers, and then the workflow metadata is captured after the

workflow process finished. To retrieve runtime metrics, using the cwl-metrics

command can output summary data in JSON or tab-delimited format.

Figure 2: The CWL-metrics components and working process

CWL-metrics runs a daemon process and Docker containers on the host

machine. The process and containers keep running until the system is

terminated. Once a cwltool process starts running on the same machine,

CWL-metrics system monitors the process to get the list of workflow step

containers and log files. Every sixty seconds, the Telegraf container try to

access the Docker daemon to get runtime metrics of running containers. Fluentd

container (not shown in the figure) sends runtime metrics data collected by

19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Telegraf to the Elasticsearch container. CWL-metrics daemon process captures

cwltool log file and sends workflow metadata to Elasticsearch.

Figure 3: An example of runtime metrics data summarized by

CWL-metrics

CWL-metrics can output JSON formatted data which includes workflow

metadata, tool container metadata, and tool container runtime metrics. The

workflow metadata appears once for one workflow run with data of multiple

steps in "steps" key while the example only has one step in the workflow to

reduce the number of lines. Each step has a name, exit status, input files with

file size, and details of the Docker container. Runtime metric values can be null

for short-time steps since CWL-metrics collects these metrics with sixty

seconds interval.

Figure 4: Box plot of per sample processing duration distribution of

HISAT2-StringTie workflow

We plotted the values of processing duration of workflow runs excluding data

download time. The x-axis shows SRA Run ID of samples used as input data

with read length and number of reads. The y-axis shows the workflow

processing duration in seconds. Values are separated and colored by the used

20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

instance type. Some runs on specific instance types are not in the plots because

the failed executions are excluded. Each combination of sample and instance

type were iterated five times to show the distribution of metrics. The plot shows

that read length and the number of reads are both the factors that effect to the

processing duration, and the differences between instance types are relatively

small with the smaller number of reads (1G bases), while instances with more

CPU cores (*.4xlarge) show shorter processing duration with 10GB reads.

Figure 5: Box plot of processing duration and maximum memory usage of

sample SRR2567462 per workflow

The values of processing duration were without data download time. Both plots

used values of workflow executions as single end input of SRR2567462. The

x-axis shows workflow names, and the y-axis shows the processing duration in

seconds and total memory usage in bytes. We iterated each combination of

workflow and instance type for five times. The plot of processing duration

shows that there is a significant difference in execution time between the

TopHat2 workflow and the others. While the difference of processing durations

is relatively small, workflows with STAR aligner require four or five times

much memory than HISAT2 workflows. These data suggest users know about

runtime metrics of workflows before selecting cloud instance type.

21

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Supplementary Figure 1: Box plot of processing duration for all workflows

The x-axis shows SRA Run ID of input data with the read length and the

number of reads. The y-axis shows the processing duration in seconds excluding

data downloading time. In most of the used workflows, the read length and the

number of reads of input data affect the processing time. Workflows with STAR

aligner requires a large amount of memory; thus the executions on instance

types with a smaller amount of memory have failed.

Supplementary Figure 2: Box plot of max memory usage for all workflows

The x-axis shows SRA Run ID of input data with the read length and the

number of reads. The y-axis shows the maximum amount of memory used

during the process in bytes. The distributions of values are large especially on

runs which finishes in a short time because sixty seconds interval of metrics

capturing could not get the right values.

Table legends

Table 1: The components of RNA-Seq quantification workflows

We described seven different RNA-Seq quantification workflows in CWL. Each

workflow description has two different options for read layout, single-end and

22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

paired-end. We selected two major read mapping tools STAR and Hisat2, with

two transcriptome assemble and read count programs Cufflinks and StringTie.

We also used two popular tools using alignment-like algorithms, Kallisto and

Salmon. We added TopHat2, one of the most popular but obsolete program for

comparing purpose.

Table 2: The read characteristics of processed RNA-Seq data

We chose nine different RNA-Seq data from the SRA, a public high-throughput

sequencing data. Each data are different in their read length and a total number

of reads for performance comparison. All data are from human sample

sequenced by the Illumina HiSeq platform.

Table 3: The machine specs of AWS EC2 instance types used in the metrics

collection

To compare the performance of workflow runs on different computing

platforms, we selected three categories from AWS EC2 categories, general

purpose, compute optimized, and memory optimized. We further selected two

different instance types from those three categories according to the number of

virtual CPUs, 2xlarge and 4xlarge, with 8 and 16 CPU cores, respectively.

Instance usage prices are as of 14 August 2018 for on-demand use in the US

23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

East (N. Virginia) region. Prices are not including charges for storage, network

usage, and other AWS features.

Table 4: The runtime metrics comparison of TopHat2 and HISAT2

We summarized the runtime metrics values to compare two different workflows

HISAT2-cufflinks and TopHat2-cufflinks. All runs are of input data

SRR2567462. The read length was 100bp, the number of reads was

10,007,044.00, and the read layout was single-end. The shown values are

workflow duration in seconds, the maximum CPU usage in percentage, the total

amount of memory in bytes, the total amount of cache in bytes, the total amount

of block IO in bytes, and the cost per run in USD. We calculated the median

values for metrics values from the data of five times workflow iteration. Values

can be zero for short-time steps since CWL-metrics collects these metrics with

sixty seconds interval.

Supplementary Table 1: The versions and containers of tools used in the

RNA-Seq workflows

We used eleven tools in total to construct seven RNA-Seq quantification

workflows. The two tools we developed, download-sra and pfastq-dump, are

24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

packaged in containers by ourselves. The container of Salmon was available on

its developer's build. We found the rest of tools in Biocontainers registry. We

wrapped all the tools as CWL CommandLineTool class files and available on

GitHub.

Availability of source code and requirements

For CWL-metrics, the runtime metrics capturing system:

Project name: cwl-metrics

Project home page: https://inutano.github.io/cwl-metrics/

Operating system(s): Platform independent

Programming language: Perl v5.18.2 or higher

Other requirements: Docker 18.06.0-ce or higher and Docker Compose 1.22.0

or higher, cwltool 1.0.20180820141117 or higher

License: MIT

Any restrictions to use by non-academics: NA

For the scripts and the notebook for visualization on this manuscript:

Project name: cwl-metrics-manuscript

Project home page: https://github.com/inutano/cwl-metrics-manuscript

25

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Operating system(s): Platform independent

Programming language: Ruby 2.5.1 or higher

Other requirements: Docker 18.06.0-ce or higher

License: MIT

Any restrictions to use by non-academics: NA

Availability of supporting data and materials

The data set used for the visualizations of this article is available in figshare

[29]. The full summary data and visualization on Jupyter notebook is available

on GitHub [30] and nbviewer [31].

Declarations

List of abbreviations

CWL: Common Workflow Language

AWS: Amazon Web Service,

TSV: tab separated values

EC2: Elastic Compute Cloud

SRA: Sequence Read Archive

26

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Competing interests

The authors declare that they have no competing interests.

Funding

This work has been supported by CREST, Japan Science and Technology

Agency (JST), JPMJCR1501.

Authors’ contributions

Conceptualization, Methodology, Software, Investigation: TO TT.

Visualization, Writing original draft: TO. Supervision: OO.

Acknowledgements

The authors are grateful to Prof. Kento Aida and the Inter-Cloud CREST team

for constructive comments and discussions. The authors also thank the open

source communities: Pitagora Galaxy, Galaxy Project, Common Workflow

Language, Bioinformatics Open Source Conference, and the BioHackathon for

27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

many comments and suggestions. We performed implementation and testing of

the system on the NIG supercomputer at ROIS National Institute of Genetics.

References

1. Chang J. Core services: Reward bioinformaticians. Nature

2015;520:151–2.

2. Prins P, de Ligt J, Tarasov A et al. Toward effective software solutions

for big biology. Nature Biotechnology 2015;33:686–7.

3. Merkel D. Docker: lightweight linux containers for consistent

development and deployment. Linux Journal. 2014 Mar 1;2014(239):2.

4. Di Tommaso P, Palumbo E, Chatzou M et al. The impact of Docker

containers on the performance of genomic pipelines. PeerJ 2015;3:e1273.

5. Afgan E, Baker D, Batut B et al. The Galaxy platform for accessible,

reproducible and collaborative biomedical analyses: 2018 update. Nucleic

Acids Research 2018;46:W537–44.

6. Amstutz P, Crusoe MR, Nebojša Tijanić et al. Common Workflow

Language, v1.0. 2016, DOI: 10.6084/m9.figshare.3115156.v2.

7. Stein LD. The case for cloud computing in genome informatics. Genome

Biology 2010;11:207.

28

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

8. Amazon EC2 Instance Types https://aws.amazon.com/ec2/instance-types/

Accessed 30 Oct 2018.

9. common-workflow-language/cwltool

https://github.com/common-workflow-language/cwltool Accessed 30 Oct

2018.

10.Toil: A scalable, efficient, cross-platform pipeline management system

written entirely in Python and designed around the principles of

functional programming. http://toil.ucsc-cgl.org/ Accessed 30 Oct 2018.

11.Di Tommaso P, Chatzou M, Floden EW et al. Nextflow enables

reproducible computational workflows. Nature Biotechnology

2017;35:316–9.

12.Common Workflow Language https://www.commonwl.org/ Accessed on

30 Oct 2018.

13.Khan FZ, Soiland-Reyes S, Sinnott RO et al. CWLProv: Interoperable

Retrospective Provenance Capture And Computational Analysis Sharing.

2018, DOI: 10.5281/zenodo.1473157.

14.Telegraf https://www.influxdata.com/time-series-platform/telegraf/

Accessed 30 Oct 2018.

15.Fluentd https://www.fluentd.org/ Accessed 30 Oct 2018.

29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://aws.amazon.com/ec2/instance-types/
https://github.com/common-workflow-language/cwltool
http://toil.ucsc-cgl.org/
https://www.commonwl.org/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.fluentd.org/
https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

16.Elasticsearch https://www.elastic.co/products/elasticsearch Accessed 30

Oct 2018.

17.Kibana https://www.elastic.co/products/kibana Accessed 30 Oct 2018.

18.CWL-metrics https://inutano.github.io/cwl-metrics/ Accessed 30 Oct

2018.

19.da Veiga Leprevost F, Grüning BA, Alves Aflitos S et al. BioContainers:

an open-source and community-driven framework for software

standardization. Valencia A (ed.). Bioinformatics 2017;33:2580–2.

20.QUAY - inutano https://quay.io/user/inutano Accessed 30 Oct 2018.

21.pitagora-galaxy/cwl https://github.com/pitagora-galaxy/cwl Accessed 30

Oct 2018.

22.Ohta T, Nakazato T, Bono H. Calculating the quality of public

high-throughput sequencing data to obtain a suitable subset for reanalysis

from the Sequence Read Archive. GigaScience 2017;6, DOI:

10.1093/gigascience/gix029.

23.Casper J, Zweig AS, Villarreal C, Tyner C, Speir ML, Rosenbloom KR,

Raney BJ, Lee CM, Lee BT, Karolchik D, Hinrichs AS. The UCSC

genome browser database: 2018 update. Nucleic acids research.

2017;46(D1):D762-9.

30

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://inutano.github.io/cwl-metrics/
https://github.com/pitagora-galaxy/cwl
https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

24.Harrow J, Frankish A, Gonzalez JM et al. GENCODE: The reference

human genome annotation for The ENCODE Project. Genome Research

2012;22:1760–74.

25.Project Jupyter http://jupyter.org Accessed 30 Oct 2018.

26.R Core Team. R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. 2015.

https://www.R-project.org/. Accessed 30 Oct 2018.

27.H. Wickham. ggplot2: Elegant Graphics for Data Analysis.

Springer-Verlag New York; 2009.

28.inutano/cwl-metrics https://github.com/inutano/cwl-metrics Accessed 30

Oct 2018.

29.Ohta, T. Runtime metrics data of 7 different RNA-Seq quantification

workflows. figshare. 2018-10-18

https://doi.org/10.6084/m9.figshare.7222775.v1

30.inutano/cwl-metrics-manuscript

https://github.com/inutano/cwl-metrics-manuscript Accessed 30 Oct

2018.

31.CWL-metrics: workflow runtime metrics analysis

https://nbviewer.jupyter.org/github/inutano/cwl-metrics-manuscript/blob/

31

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

http://jupyter.org/
https://github.com/pitagora-galaxy/cwl
https://doi.org/10.6084/m9.figshare.7222775.v1
https://github.com/inutano/cwl-metrics-manuscript
https://nbviewer.jupyter.org/github/inutano/cwl-metrics-manuscript/blob/master/notebook/CWL-metrics%20runtime%20metrics%20analysis.ipynb
https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

master/notebook/CWL-metrics%20runtime%20metrics%20analysis.ipyn

b Accessed 30 Oct 2018.

32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://nbviewer.jupyter.org/github/inutano/cwl-metrics-manuscript/blob/master/notebook/CWL-metrics%20runtime%20metrics%20analysis.ipynb
https://nbviewer.jupyter.org/github/inutano/cwl-metrics-manuscript/blob/master/notebook/CWL-metrics%20runtime%20metrics%20analysis.ipynb
https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Invoke cwltool

cwltool

Step #1 container

Step #2 container

Step #3 container

Timeline

cwltool.log

cwltool complete

Retrieve metrics
summary

cwl-metrics fetch

metrics.json

CWL-metrics

Actions and Events Processes and Outputs

runtime metrics
collection

Workflow metadata
collection

Retrieve runtime metrics

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Host OS

Run containers
Docker daemon

docker run

cwltool

Automatically collect container metrics via docker API

Telegraf

Output metrics summary

ElasticsearchTool container

Store workflow metadata

CWL-metrics
daemon

Get workflow metadata
cwltool.log metrics.json

Store metrics data

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

{
		"CWL-metrics":	[
				{
						"workflow_id":	"3b66284a-969d-11e8-8d0f-0ae229374f7a",
						"workflow_name":	"hisat2-cufflinks_wf_pe.cwl",
						"workflow_start_date":	"2018-08-02T21:41:43+00:00",
						"workflow_end_date":	"2018-08-02T21:44:25+00:00",
						"workflow_elapsed_sec":	162,
						"platform":	{
								"instance_type":	"c5.4xlarge",
								"region":	"us-east-1a",
								"hostname":	"4138af0fad86",
								"total_memory":	"31897692",
								"disk_size":	"508187044"
						},
						"steps":	{
								"fcc52b5d2d3bf6dc1106c83117f5956c968047cbf0c5642144b86dbee32da619":	{
										"stepname":	"hisat2_mapping",
										"tool_status":	"success",
										"input_files":	{
												"SRR4428678_1.fastq.gz":	43828265,
												"SRR4428678_2.fastq.gz":	53452040,
												"out.sam":	778641728
										},
										"docker_image":	"quay.io/biocontainers/hisat2:2.1.0--py36h2d50403_1",
										"docker_cmd":	"hisat2	-S	/var/spool/cwl/out.sam	-x	/var/lib/cwl/stg94f48183-8e7c-4fcb-
bc4b-58b2a7d33240/hisat2_GRCh38/genome	--downstream-transcriptome-assembly	--dta-cufflinks	-1	
/var/lib/cwl/stge9112392-7277-4049-8410-25324f93ec7c/SRR4428678_1.fastq.gz	-2	
/var/lib/cwl/stg31076a0b-02ab-4de9-9e8b-3b9af44152f8/SRR4428678_2.fastq.gz	--threads	16	--time",
										"docker_start_date":	"2018-08-02T21:41:52+00:00",
										"docker_end_date":	"2018-08-02T21:42:09+00:00",
										"docker_elapsed_sec":	17.517223481,
										"docker_exit_code":	0,
										"metrics":	{
												"cpu_total_percent":	1571.87279333333,
												"memory_max_usage":	5096611840,
												"memory_cache":	309497856,
												"blkio_total_bytes":	null
										}
								}
						}
				}
]
}

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

200

400

600

S
R

R
42

50
75

0
(5

0b
p,

 1
G

 re
ad

s)
S

R
R

51
85

51
8

(5
0b

p,
 5

G
 re

ad
s)

S
R

R
29

32
90

1
(5

0b
p,

 1
0G

 re
ad

s)
S

R
R

44
28

67
8

(7
5b

p,
 1

G
 re

ad
s)

S
R

R
42

41
93

0
(7

5b
p,

 5
G

 re
ad

s)
E

R
R

20
48

93
 (7

5b
p,

 1
0G

 re
ad

s)
S

R
R

51
68

75
6

(1
00

bp
, 1

G
 re

ad
s)

S
R

R
50

23
40

8
(1

00
bp

, 5
G

 re
ad

s)
S

R
R

25
67

46
2

(1
00

bp
, 1

0G
 re

ad
s)

Samples

P
ro

ce
ss

in
g

du
ra

tio
n

Instance type

c5.2xlarge

c5.4xlarge

m5.2xlarge

m5.4xlarge

r5.2xlarge

r5.4xlarge

hisat2−stringtie SINGLE

200

400

600

S
R

R
42

50
75

0
(5

0b
p,

 1
G

 re
ad

s)
S

R
R

51
85

51
8

(5
0b

p,
 5

G
 re

ad
s)

S
R

R
29

32
90

1
(5

0b
p,

 1
0G

 re
ad

s)
S

R
R

44
28

67
8

(7
5b

p,
 1

G
 re

ad
s)

S
R

R
42

41
93

0
(7

5b
p,

 5
G

 re
ad

s)
E

R
R

20
48

93
 (7

5b
p,

 1
0G

 re
ad

s)
S

R
R

51
68

75
6

(1
00

bp
, 1

G
 re

ad
s)

S
R

R
50

23
40

8
(1

00
bp

, 5
G

 re
ad

s)
S

R
R

25
67

46
2

(1
00

bp
, 1

0G
 re

ad
s)

Samples

P
ro

ce
ss

in
g

du
ra

tio
n

Instance type

c5.2xlarge

c5.4xlarge

m5.2xlarge

m5.4xlarge

r5.2xlarge

r5.4xlarge

hisat2−stringtie PAIRED

200

400

600

S
R

R
42

50
75

0
(5

0b
p,

 1
G

 re
ad

s)
S

R
R

51
85

51
8

(5
0b

p,
 5

G
 re

ad
s)

S
R

R
29

32
90

1
(5

0b
p,

 1
0G

 re
ad

s)
S

R
R

44
28

67
8

(7
5b

p,
 1

G
 re

ad
s)

S
R

R
42

41
93

0
(7

5b
p,

 5
G

 re
ad

s)
E

R
R

20
48

93
 (7

5b
p,

 1
0G

 re
ad

s)
S

R
R

51
68

75
6

(1
00

bp
, 1

G
 re

ad
s)

S
R

R
50

23
40

8
(1

00
bp

, 5
G

 re
ad

s)
S

R
R

25
67

46
2

(1
00

bp
, 1

0G
 re

ad
s)

Samples

P
ro

ce
ss

in
g

du
ra

tio
n

Instance type

c5.2xlarge

c5.4xlarge

m5.2xlarge

m5.4xlarge

r5.2xlarge

r5.4xlarge

hisat2−stringtie SINGLE

200

400

600

S
R

R
42

50
75

0
(5

0b
p,

 1
G

 re
ad

s)
S

R
R

51
85

51
8

(5
0b

p,
 5

G
 re

ad
s)

S
R

R
29

32
90

1
(5

0b
p,

 1
0G

 re
ad

s)
S

R
R

44
28

67
8

(7
5b

p,
 1

G
 re

ad
s)

S
R

R
42

41
93

0
(7

5b
p,

 5
G

 re
ad

s)
E

R
R

20
48

93
 (7

5b
p,

 1
0G

 re
ad

s)
S

R
R

51
68

75
6

(1
00

bp
, 1

G
 re

ad
s)

S
R

R
50

23
40

8
(1

00
bp

, 5
G

 re
ad

s)
S

R
R

25
67

46
2

(1
00

bp
, 1

0G
 re

ad
s)

Samples

P
ro

ce
ss

in
g

du
ra

tio
n

Instance type

c5.2xlarge

c5.4xlarge

m5.2xlarge

m5.4xlarge

r5.2xlarge

r5.4xlarge

hisat2−stringtie PAIRED

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

0

2000

4000

6000

his
at

2−
cu

ffli
nk

s

his
at

2−
str

ing
tie

ka
llis

to

sa
lm

on

sta
r−

cu
ffli

nk
s

sta
r−

str
ing

tie

to
ph

at
2−

cu
ffli

nk
s

Workflow name

P
ro

ce
ss

in
g

du
ra

tio
n

Instance type

c5.2xlarge

c5.4xlarge

m5.2xlarge

m5.4xlarge

r5.2xlarge

r5.4xlarge

SRR2567462 SINGLE

0e+00

1e+10

2e+10

3e+10

4e+10

5e+10

his
at

2−
cu

ffli
nk

s

his
at

2−
str

ing
tie

ka
llis

to

sa
lm

on

sta
r−

cu
ffli

nk
s

sta
r−

str
ing

tie

to
ph

at
2−

cu
ffli

nk
s

Workflow name

To
ta

l a
m

ou
nt

 o
f m

em
or

y Instance type

c5.2xlarge

c5.4xlarge

m5.2xlarge

m5.4xlarge

r5.2xlarge

r5.4xlarge

SRR2567462 SINGLE

0

2000

4000

6000

his
at

2−
cu

ffli
nk

s

his
at

2−
str

ing
tie

ka
llis

to

sa
lm

on

sta
r−

cu
ffli

nk
s

sta
r−

str
ing

tie

to
ph

at
2−

cu
ffli

nk
s

Workflow name

P
ro

ce
ss

in
g

du
ra

tio
n

Instance type

c5.2xlarge

c5.4xlarge

m5.2xlarge

m5.4xlarge

r5.2xlarge

r5.4xlarge

SRR2567462 SINGLE

0e+00

1e+10

2e+10

3e+10

4e+10

5e+10

his
at

2−
cu

ffli
nk

s

his
at

2−
str

ing
tie

ka
llis

to

sa
lm

on

sta
r−

cu
ffli

nk
s

sta
r−

str
ing

tie

to
ph

at
2−

cu
ffli

nk
s

Workflow name

To
ta

l a
m

ou
nt

 o
f m

em
or

y Instance type

c5.2xlarge

c5.4xlarge

m5.2xlarge

m5.4xlarge

r5.2xlarge

r5.4xlarge

SRR2567462 SINGLE

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Table 1: The components of RNA-Seq quantification workflows

Workflow name Steps CWL definition files
tophat2-cufflinks download-sra, pfastq-dump, tophat2-mapping, cufflinks https://github.com/pitagora-galaxy/cwl/tree/master/workflows/tophat2-cufflinks
hisat2-cufflinks download-sra, pfastq-dump, hisat2-mapping, samtools_sam2bam, samtools_sort, cufflinks https://github.com/pitagora-galaxy/cwl/tree/master/workflows/hisat2-cufflinks
hisat2-stringtie download-sra, pfastq-dump, hisat2-mapping, samtools_sam2bam, samtools_sort, stringtie https://github.com/pitagora-galaxy/cwl/tree/master/workflows/hisat2-stringtie
star-cufflinks download-sra, pfastq-dump, star-mapping, samtools_sam2bam, samtools_sort, cufflinks https://github.com/pitagora-galaxy/cwl/tree/master/workflows/star-cufflinks
star-stringtie download-sra, pfastq-dump, star-mapping, samtools_sam2bam, samtools_sort, stringtie https://github.com/pitagora-galaxy/cwl/tree/master/workflows/star-stringtie
kallisto download-sra, pfastq-dump, kallisto-quant https://github.com/pitagora-galaxy/cwl/tree/master/workflows/kallisto
salmon download-sra, pfastq-dump, salmon-quant https://github.com/pitagora-galaxy/cwl/tree/master/workflows/salmon

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://github.com/pitagora-galaxy/cwl/tree/master/workflows/tophat2-cufflinks
https://github.com/pitagora-galaxy/cwl/tree/master/workflows/hisat2-cufflinks
https://github.com/pitagora-galaxy/cwl/tree/master/workflows/hisat2-stringtie
https://github.com/pitagora-galaxy/cwl/tree/master/workflows/star-cufflinks
https://github.com/pitagora-galaxy/cwl/tree/master/workflows/star-stringtie
https://github.com/pitagora-galaxy/cwl/tree/master/workflows/kallisto
https://github.com/pitagora-galaxy/cwl/tree/master/workflows/salmon
https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Table 2: The read characteristics of processed RNA-Seq data

SRA Run ID Read length Number of reads per strand BioSample ID Sample description Sequencing instrument
SRR4250750 50 1,000,425.00 SAMN05779985 cultured embryonic stem cells Illumina HiSeq 2500
SRR5185518 50 5,008,398.00 SAMN06239034 cultured embryonic stem cells Illumina HiSeq 2500
SRR2932901 50 10,017,495.00 SAMN04211783 fetal lung fibroblasts Illumina HiSeq 2500
SRR4428678 75 1,043,870.00 SAMN05913930 embryonic stem cell derived macrophage Illumina HiSeq 4000
SRR4241930 75 5,004,985.00 SAMN05770731 PGC-like cells (PGCLCs) Illumina HiSeq 2000
ERR204893 75 10,234,883.00 SAMEA1573291 lymphoblastoid cell line Illumina HiSeq 2000
SRR5168756 100 1,006,868.00 SAMN06218220 subcutaneous metastasis Illumina HiSeq 2500
SRR5023408 100 5,004,554.00 SAMN06017954 primary breast cancer Illumina HiSeq 2500
SRR2567462 100 10,007,044.00 SAMN04147557 prostate cancer cells LNCaP Illumina HiSeq 2500

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Table 3: The machine specs of AWS EC2 instance types used in the metrics collection

Instance type Category vCPU ECU Memory (GiB) Linux/UNIX Usage (per Hour)
m5.2xlarge General Purpose 8 31 32 $0.384
m5.4xlarge General Purpose 16 60 64 $0.768
c5.2xlarge Compute Optimized 8 34 16 $0.34
c5.4xlarge Compute Optimized 16 68 32 $0.68
r5.2xlarge Memory Optimized 8 31 64 $0.504
r5.4xlarge Memory Optimized 16 60 128 $1.008

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

Table 4: The runtime metrics comparison of TopHat2 and HISAT2

Workflow name Instance type Workflow duration Max CPU usage Total amount of memory Total amount of memory cache Total amount of BlockIO Cost per run
HISAT2-Cufflinks c5.2xlarge 1014.5 796.8330796 10033995776 5183479808 4748816384 0.0958
HISAT2-Cufflinks c5.4xlarge 778 1595.031529 9163902976 4314202112 1204879360 0.147
HISAT2-Cufflinks m5.2xlarge 1013 799.0908131 11254398976 6396575744 1204858880 0.1081
HISAT2-Cufflinks m5.4xlarge 846 1538.403444 11802640384 6938824704 331776 0.1805
HISAT2-Cufflinks r5.2xlarge 1015 798.2115564 10912165888 6065545216 3608539136 0.1421
HISAT2-Cufflinks r5.4xlarge 834 1588.403182 9973350400 5116166144 0 0.2335
TopHat2-Cufflinks c5.2xlarge 5139 797.8534259 12310124544 8869050368 12343222272 0.4854
TopHat2-Cufflinks c5.4xlarge 3695 1587.471528 15879102464 7833452544 1204891648 0.6979
TopHat2-Cufflinks m5.2xlarge 5579 799.5529991 15149662208 9395200000 51970048 0.5951
TopHat2-Cufflinks m5.4xlarge 3981 1595.226713 15875092480 7913992192 49848320 0.8493
TopHat2-Cufflinks r5.2xlarge 5487 798.6095883 15152807936 9492783104 49848320 0.7682
TopHat2-Cufflinks r5.4xlarge 4001 1291.353527 15877746688 7930822656 49848320 1.1203

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456756doi: bioRxiv preprint

https://doi.org/10.1101/456756
http://creativecommons.org/licenses/by/4.0/

