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Abstract 

 
Background 

Container virtualization technologies such as Docker became popular in the          

bioinformatics domain as they improve portability and reproducibility of         

software deployment. Along with software packaged in containers, the         

workflow description standards Common Workflow Language also enabled to         

perform data analysis on multiple different computing environments with ease.          

These technologies accelerate the use of on-demand cloud computing platform          

which can scale out according to the amount of data. However, to optimize the              

time and the budget on a use of cloud, users need to select a suitable instance                

type corresponding to the resource requirements of their workflows. 

Results 

We developed CWL-metrics, a system to collect runtime metrics of Docker           

containers and workflow metadata to analyze resource requirement of         

workflows. We demonstrated the analysis by using seven transcriptome         

quantification workflows on six instance types. The result showed instance type           

options of lower financial cost and faster execution time with required amount            

of computational resources. 

Conclusions 
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The summary of resource requirements of workflow executions provided by          

CWL-metrics can help users to optimize the selection of cloud computing           

instance. The runtime metrics data also accelerate to share workflows among           

different workflow management frameworks. 
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Background 

 

According to the improvement of DNA sequencing technology in         

accuracy and quantity, various sequencing methods are now available to          

measure different genomic features. Each method produces a massive amount of           

nucleotide sequence data that requires a different data processing approach [1].           

Bioinformatics researchers develop data analysis tools for each sequencing         

technique, and they publish implementations as open source software [2]. To           
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start data analysis, researchers need to select the tools by their experimental            

design and install them to their computing environment. 

 

Installing open source tools in one's computational environment is,         

however, not always straightforward. Tools developed by different developers         

and different programming framework require different prerequisites, which        

forces one to follow the instruction provided by each tool's developer. Installing            

various software in one environment also can occur a conflict of software            

dependencies that are hard to resolve. Even if one could successfully install all             

the tools required for the analysis, maintaining the environment where all the            

tools keep working as expected is also a burden. There are also many events that               

can break the environment such as changes or updates of hardware, operating            

system, or software libraries. Therefore, the complexity of data analysis          

environment management gets higher when a project performs genomic data          

analysis that requires many tools. The high cost of setting up an environment             

results in the prevention of scaling out the computational resources as well. The             

difficulty also brings researchers' dependency to the existing computing         

platform already set up, and the concentration of data processing jobs to the             

limited resource. 
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The container virtualization technology, represented by Docker, enables        

users to create a software runtime environment isolated from the host machine            

[3]. This technology that is getting popular also in the biomedical research            

domain is a promising method to solve the problem of installing software tools             

[4]. Along with the containers, using workflow description and execution          

frameworks such as those from the Galaxy project [5] or the Common            

Workflow Language (CWL) project [6] lowered the barrier to deploy the data            

analysis environment to a new computing environment. Moreover, the         

workflows described in a standardized format can help researchers to share the            

environment with collaborators with ease. The improvement of portability of          

data analysis environment, consequently, has made the on-demand cloud         

infrastructure an appealing option for researchers. 

 

On-demand cloud is beneficial for most cases in genome science because           

users can increase or decrease the number of computing instances without           

maintaining hardware as the amount of data from laboratory experiments          

changes [7]. For example, some sequencing applications require data analysis          

software that uses a considerable amount of memory, but individual research           

projects often cannot afford such a large scale computing platform. Users can            
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save their budget by using the on-demand cloud platform as most of the service              

providers charge per usage. 

 

However, to use an on-demand cloud environment efficiently regarding         

time and economic cost, it is essential to select a suitable computing unit,             

so-called instance type, from many options offered by the cloud service           

providers. For example, Amazon Web Service (AWS), one of the popular cloud            

service providers, offers instance types of different scales for five categories           

(general purpose, compute optimized, memory optimized, accelerated       

computing, and storage optimized) [8]. Each data analysis tool has the different            

minimum requirement of computational resources such as memory or storage,          

and it can change by input parameters. Executing data analysis workflows on an             

instance without enough computational resource will result in a runtime failure           

or unexpected outputs. For example, tools to assemble short reads to construct            

genome by constructing De Bruijn graph usually take long processing time and            

a large amount of memory. If one failed to estimate the required amount of              

memory, the process might fail after a few days of execution, which results in              

losing one's time and budget. Thus, users need to know the minimum amount of              

computational resource required by the execution of their workflows to select a            

suitable instance type. 
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To optimize the instance type selection concerning processing time or          

running cost, users need to compare runtime metrics of workflow executions on            

environments of different computational specs. Here, we developed        

CWL-metrics, a system to accumulate runtime metrics of workflow executions          

with information of the workflow and the machine environment. CWL-metrics          

provides runtime metrics summary such as usage of CPU, memory, storage I/O            

with workflow's input files and parameters to help users to select the proper             

cloud instance for their workflows. 

Results 

 

Implementation of CWL-metrics 

 

CWL-metrics is designed to capture runtime metrics data of workflows          

described in CWL, a workflow description specification developed by an open           

source community. We designed the system as it does not require the users to              

perform any configurations to capture runtime metrics. Figure 1 shows the           

procedures of runtime metrics collection by CWL-metrics. To start collecting          

metrics, one only needs to install the system, and then run their workflows with              

cwltool, a reference implementation of CWL [9]. After the installation, the           
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system starts monitoring the processes running on the host machine. Once the            

system found a cwltool process, it automatically starts collecting runtime          

metrics via Docker API and environmental information from the host machine.           

CWL-metrics also captures the log file generated by cwltool to extract           

workflow metadata such as input files and input parameters. 

 

To capture and store the information from multiple data source,          

CWL-metrics launches multiple components as Docker containers (Figure 2).         

These components keep running on the host machine after the initialization to            

cooperate the data collection. The Telegraf container collects runtime metrics          

data from the Docker API for every sixty seconds, and send the data to the               

Elasticsearch container. The Elasticsearch container provides data storage and         

the data access API. CWL-metrics automatically launches and stops these          

components on the single host machine. If users need to collect metrics of             

workflows running on multiple instances, they need to install CWL-metrics on           

each instance and assemble the summary data after the metrics data capture.            

Users can use their Elasticsearch server by setting environment variable          

ES_HOST and ES_PORT before initializing CWL-metrics. 
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To access and analyze the data collected by CWL-metrics, users can use            

the command cwl-metrics to get the data in JSON (Figure 3) or tab separated              

values (TSV) format. The JSON format contains workflow metadata such as the            

name of the workflow, the time of start and end of the workflow execution. It               

also has the information of the environment including the total amount of            

memory and the size of storage available on the machine. The steps field of the               

JSON format contains information of the runtime metrics, the executed          

container, and the input files and parameters. Users can parse the data to analyze              

the performance of a tool execution or the whole workflow. The TSV format             

provides minimum information for each container execution so that one can           

easily compare the metrics data of steps. 

 

Use CWL-metrics to capture runtime metrics of RNA-Seq workflows 

 

As an example use case to capture and analyze runtime metrics of            

workflows, we performed an analysis to optimize instance type selection for           

RNA-Seq quantification workflows. We run seven RNA-Seq workflows (Table         

1) for nine public human RNA-Seq data with different read length and number             

of reads (Table 2) on six types of Amazon Web Service (AWS) Elastic             

Compute Cloud (EC2) service (Table 3) to capture the runtime metrics by            
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CWL-metrics for each combination. Each workflow description has two         

different options for read layout; single-end and paired-end. For the selection of            

workflows, we chose two read mapping tools STAR and Hisat2, with two            

transcriptome assembly and read count programs Cufflinks and StringTie. We          

also used two popular tools using alignment-like algorithms, Kallisto and          

Salmon. TopHat2, the program which was once the most popular, but now            

obsolete, was added among them for comparing purpose. We performed metrics           

data collection five times for each combination of workflow, input data, and            

instance type. The analysis used only the succeeded runs. 

 

Table 4 shows that the summary of runtime metrics, processing duration,           

and the calculated cost of instance usage per run for two workflows,            

HISAT2-Cufflinks and TopHat2-Cufflinks. The fastest processing time was one         

of the HISAT2-Cufflinks workflow run on the c5.4xlarge instance, but the           

execution at the cheapest cost was the HISAT2-Cufflinks workflow on the           

c5.2xlarge instance. It indicates that workflows on cloud instances can have a            

trade-off of the processing time and the financial cost. The priority of the             

research project, the execution speed over the financial cost or vice versa, will             

be required for the final decision of instance selection optimization. The table            

also shows the possibility of loss of time or money when one failed to choose a                
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proper instance type. For example, if one used the r5.4xlarge instance to run the              

HISAT2-cufflinks workflow, it is 7% slower than c5.4xlarge, and about 1.6           

times expensive per sample. The impact of the instance type optimization failure            

will be more serious for the data processing jobs that take days or weeks. 

 

Figure 4 shows the results of processing duration of the          

HISAT2-StringTie workflow. There are clear differences of processing time         

between the samples, where the samples of the smaller number of reads have             

smaller differences between the instance types, but the runs on instance types            

with more CPU (4xlarge) marked shorter processing time with the samples of            

the larger number of reads. Each workflow runs used as many CPU cores as              

available on the environment; thus the difference can be considered as the            

difference of the number of threads. The read length and the processing duration             

also have a strong linear relationship. This result will be useful to estimate the              

resource usage from the size of input data. Supplementary Figure 1 shows the             

plots of the processing time of the different workflows in which the similar             

results were shown. 

 

On the other hand, the result of the comparison of the total amount of              

memory per input data in Supplementary Figure 2 needs a different           
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interpretation. Unlike HISAT2 and TopHat2, Kallisto and Salmon did not show           

clear differences in memory usage in different sizes of input data. The result             

indicates that the users need to know the behavior of the tool beforehand since              

the resource usage depends on the algorithms and the implementations. 

 

 

The runtime metrics data provided by CWL-metrics also helps to perform           

a tool comparison. Figure 5 shows that the difference of processing time            

between the used workflows. Although users need to know the difference of the             

design concept and the strength of the tools to select the proper one for their               

research objectives, this result helps to understand the difference of the resource            

requirement of the workflows for similar purpose. For example, HISAT2 and           

STAR marked almost the same processing time, but STAR uses far more            

amount of memory. The plot of the processing time also shows that the obsolete              

tool TopHat2 is remarkably slower than the other tools. 

 

Discussion 

 

CWL-metrics enabled users to choose a proper cloud instance for          

workflow runs based on the runtime metrics data. The metrics data summarized            
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by workflow inputs, such as the number of threads to use or total file size of                

input data, provides the most efficient cloud use for a research project. The data              

will also help the administrator of computational infrastructure to encourage          

researchers to use the cloud environment in case their local environment has too             

many running jobs to accept new job submissions. Each user might perform            

different analyses and visualizations concerning input parameters of their         

interest. Thus CWL-metrics outputs JSON and TSV data which are easy to            

parse and used for visualization by any language of users' favorite, rather having             

a custom visualization tool other than Kibana. 

 

CWL-metrics is applicable for most cases in bioinformatics data analysis.          

However, there are cases that the system does not work as effectively as             

expected. For example, the current implementation of CWL-metrics cannot         

capture the precise runtime metrics data of a tool that scatter its processes to              

multiple computation nodes. Also, it cannot estimate the performance of          

software that uses hardware acceleration systems such as GPU, since the           

information of those specific architectures is not available via Docker API.           

Nevertheless, in the example use case using RNA-Seq workflows, we showed           

CWL-metrics could provide beneficial information to help users to decide on           

the use of cloud infrastructure. 
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There are also the other workflow operation frameworks that have          

functions to capture runtime metrics, such as Galaxy [5], Toil [10], or Nextflow             

[11]. However, we chose CWL as the workflow description framework and its            

reference implementation cwltool as the workflow runner for the system          

because CWL is the project providing a way to share the workflow across the              

different workflow systems. Once users collected the runtime metrics of          

workflows by CWL-metrics, they can use the same workflow description with           

multiple workflow runner implementations. There are fifteen implementations        

listed as those supporting CWL [12]. Some implementations including Galaxy          

are still not covering full functions to import and export CWL description to             

share and run workflows, but the others including Arvados, Toil, and Apache            

Airflow are already available to users. If one wanted to use a workflow system              

that does not support CWL yet, the summary of runtime metrics collected            

through Docker container is still valuable resource across the different          

frameworks. 

 

CWL project has a subproject, CWL-Prov, to provide the provenance          

information of workflow executions to improve reproducibility of workflows by          

tracking intermediate files and logs [13]. The provenance information helps          
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users to track inputs and outputs of workflow runs by using file checksum but              

does not record the detail of the resource usage. Adding runtime metrics data             

into the provenance information will cover the information regarding         

deployment, which helps users to reproduce the runs on a proper computing            

environment. Thus, the summary of runtime metrics collected by CWL-metrics          

should be bundled with the provenance information. 

 

There will be more amount of sequencing data that one researcher needs            

to process by the technologies that produce a large amount of sequencing data             

such as high-throughput single-cell sequencing. In such a situation, it is           

essential to have a flexible computing environment that can quickly scale out            

according to the amount of data. The fast deployment of the data analysis             

environment to the proper cloud instance supported by Docker, CWL, and           

CWL-metrics is a way to achieve the computational scale out, which brings a             

huge benefit for bioinformatics researchers. 

 

Potential Implications 

The Common Workflow Language project aims to provide the workflow          

description specification for all domains that work with data analysis pipelines.           

Therefore, CWL-metrics can contribute to other domains through the         
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application of CWL. Sharing CWL workflows with the metrics data captured by            

CWL-metrics can help users to deploy them on an appropriate environment. 

 

Methods 

 

CWL-metrics software components 

CWL-metrics runtime metrics capturing system is composed of five         

software components: Telegraf [14], Fluentd [15], Elasticsearch [16], Kibana         

[17], and a Perl daemon script. Telegraf is an agent to collect runtime metrics of               

running containers via Docker API using Telegraf Docker plugin. Fluentd          

works as a log data collector to send metrics data produced by Telegraf to              

Elasticsearch server. Elasticsearch is a data store to accumulate runtime metrics           

data and workflow metadata, accepting JSON format data via API endpoint.           

Kibana is a data browsing dashboard for Elasticsearch to view raw JSON data             

and to summarize and visualize data. Telegraf, Fluentd, Elasticsearch/Kibana         

launch as a set of containers during the initialization of CWL-metrics.           

CWL-metrics runs a Perl script which monitors processes on the host machine            

to capture cwltool processes. Once the script found a cwltool process, the script             

runs a function to collect workflow information via debug output of the cwltool             

process, "docker info" command output, Docker container log via "docker ps"           
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command, and output of system commands to collect environment information.          

CWL-metrics provides a command cwl-metrics , which allows users to start and           

stop the metrics collection system, and fetch summarized runtime metrics data           

in a specified format, JSON or tab-separated format. The script to launch the             

whole system, CWL-metrics installation instruction, and the documentation are         

available on GitHub [18].  

 

Packaging RNA-Seq tools and workflows 

We used seven different RNA-Seq quantification workflows to capture         

runtime metrics and analyze performance on cloud infrastructure. Each         

workflow starts with the tool to download sequence data from Sequence Read            

Archive (SRA), then convert SRA format file to FASTQ format. Consequently,           

each pipeline does sequence alignment to reference genome sequence (HISAT2,          

STAR, and TopHat2) or alignment-like approaches (Kallisto and Salmon) to the           

set of reference transcript sequence, then perform transcript quantification. Most          

of the tool containers used in the workflows are from the Biocontainers [19]             

registry. We containerized the tools those are not available on the registry and             

uploaded them to the container registry service Quay [20]. We described tool            

definitions such as input and output of tool execution and the workflow            

procedures in CWL tool files, which are available on GitHub [21]. Each            
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workflow has two options for sequence read layout single-end and paired-end;           

thus we used fourteen workflows in total. The Supplementary Table 1 shows the             

tool versions, the online location of the CWL tool files, and the original tool              

website locations. 

 

Select RNA-Seq workflow input sequence data from the public data          

repository 

To analyze the effect of sequence data quality to workflow runtime           

performance, we chose nine samples of different read length and number of            

reads from the public raw sequencing data repository, SRA (Table 2). We used             

the Quanto database [22] to select the data by filtering length and number of              

sequence reads, with the condition of read length, 50, 75, or 100 and the              

approximate number of sequence, 1,000,000, 5,000,000, or 10,000,000. We         

filtered the data with the query "organism == Homo sapiens", "study type ==             

RNA-Seq", "read layout == PAIRED", and "instrument model == Illumina          

HiSeq", then manually picked suitable data. Both single-end and paired-end          

workflows used the same dataset while single-end workflows treated paired-end          

read files reads as two single-end read files. The version of the reference             

genome is GRCh38. We downloaded the reference genome file from the UCSC            

genome browser [23], and the transcriptome was from Gencode [24].  
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Run workflows on AWS EC2 

To evaluate the performance on running different RNA-Seq workflows,         

we selected instance types of two different sizes 2xlarge and 4xlarge from three             

categories, general purpose, compute optimized, and memory optimized to run          

all workflows for all samples (Table 3). Each combination of instance type,            

workflow, and sample data was executed for five times while CWL-metrics is            

running on the same machine to capture the runtime metrics information. All            

workflow runs used Elastic Block Storage of General Purpose SSD volumes as            

file storage. We downloaded all the reference data used for workflows in            

advance. The scripts to get reference data and run workflows are available            

online [21]. 

 

Collect runtime metrics and summarize 

After the workflow executions, we collected summarized metrics data         

from Elasticsearch by cwl-metrics fetch command. Exported JSON format data          

were parsed by a ruby script to create data summarized per workflow runs,             

loaded on Jupyter notebook [25] for further analysis. We calculated statistics of            

metrics by R language functions [26], and we created the box plots by the              

ggplot2 package [27]. The notebook file is available on GitHub [28]. 
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Figure legends 

 

Figure 1: The container runtime metrics collection procedure with         

CWL-metrics 

CWL-metrics was designed to capture runtime metrics of workflow steps          

automatically. After the initialization of the system, users only need to run a             

workflow by cwltool to start metrics capturing. The system collects runtime           

metrics of containers, and then the workflow metadata is captured after the            

workflow process finished. To retrieve runtime metrics, using the cwl-metrics          

command can output summary data in JSON or tab-delimited format. 

 

Figure 2: The CWL-metrics components and working process 

CWL-metrics runs a daemon process and Docker containers on the host           

machine. The process and containers keep running until the system is           

terminated. Once a cwltool process starts running on the same machine,           

CWL-metrics system monitors the process to get the list of workflow step            

containers and log files. Every sixty seconds, the Telegraf container try to            

access the Docker daemon to get runtime metrics of running containers. Fluentd            

container (not shown in the figure) sends runtime metrics data collected by            
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Telegraf to the Elasticsearch container. CWL-metrics daemon process captures         

cwltool log file and sends workflow metadata to Elasticsearch. 

 

Figure 3: An example of runtime metrics data summarized by          

CWL-metrics 

CWL-metrics can output JSON formatted data which includes workflow         

metadata, tool container metadata, and tool container runtime metrics. The          

workflow metadata appears once for one workflow run with data of multiple            

steps in "steps" key while the example only has one step in the workflow to               

reduce the number of lines. Each step has a name, exit status, input files with               

file size, and details of the Docker container. Runtime metric values can be null              

for short-time steps since CWL-metrics collects these metrics with sixty          

seconds interval. 

 

Figure 4: Box plot of per sample processing duration distribution of           

HISAT2-StringTie workflow 

We plotted the values of processing duration of workflow runs excluding data            

download time. The x-axis shows SRA Run ID of samples used as input data              

with read length and number of reads. The y-axis shows the workflow            

processing duration in seconds. Values are separated and colored by the used            
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instance type. Some runs on specific instance types are not in the plots because              

the failed executions are excluded. Each combination of sample and instance           

type were iterated five times to show the distribution of metrics. The plot shows              

that read length and the number of reads are both the factors that effect to the                

processing duration, and the differences between instance types are relatively          

small with the smaller number of reads (1G bases), while instances with more             

CPU cores (*.4xlarge) show shorter processing duration with 10GB reads. 

 

Figure 5: Box plot of processing duration and maximum memory usage of            

sample SRR2567462 per workflow  

The values of processing duration were without data download time. Both plots            

used values of workflow executions as single end input of SRR2567462. The            

x-axis shows workflow names, and the y-axis shows the processing duration in            

seconds and total memory usage in bytes. We iterated each combination of            

workflow and instance type for five times. The plot of processing duration            

shows that there is a significant difference in execution time between the            

TopHat2 workflow and the others. While the difference of processing durations           

is relatively small, workflows with STAR aligner require four or five times            

much memory than HISAT2 workflows. These data suggest users know about           

runtime metrics of workflows before selecting cloud instance type. 
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Supplementary Figure 1: Box plot of processing duration for all workflows 

The x-axis shows SRA Run ID of input data with the read length and the               

number of reads. The y-axis shows the processing duration in seconds excluding            

data downloading time. In most of the used workflows, the read length and the              

number of reads of input data affect the processing time. Workflows with STAR             

aligner requires a large amount of memory; thus the executions on instance            

types with a smaller amount of memory have failed. 

 

Supplementary Figure 2: Box plot of max memory usage for all workflows 

The x-axis shows SRA Run ID of input data with the read length and the               

number of reads. The y-axis shows the maximum amount of memory used            

during the process in bytes. The distributions of values are large especially on             

runs which finishes in a short time because sixty seconds interval of metrics             

capturing could not get the right values. 

Table legends 

 

Table 1: The components of RNA-Seq quantification workflows 

We described seven different RNA-Seq quantification workflows in CWL. Each          

workflow description has two different options for read layout, single-end and           
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paired-end. We selected two major read mapping tools STAR and Hisat2, with            

two transcriptome assemble and read count programs Cufflinks and StringTie.          

We also used two popular tools using alignment-like algorithms, Kallisto and           

Salmon. We added TopHat2, one of the most popular but obsolete program for             

comparing purpose. 

 

Table 2: The read characteristics of processed RNA-Seq data 

We chose nine different RNA-Seq data from the SRA, a public high-throughput            

sequencing data. Each data are different in their read length and a total number              

of reads for performance comparison. All data are from human sample           

sequenced by the Illumina HiSeq platform. 

 

Table 3: The machine specs of AWS EC2 instance types used in the metrics              

collection 

To compare the performance of workflow runs on different computing          

platforms, we selected three categories from AWS EC2 categories, general          

purpose, compute optimized, and memory optimized. We further selected two          

different instance types from those three categories according to the number of            

virtual CPUs, 2xlarge and 4xlarge, with 8 and 16 CPU cores, respectively.            

Instance usage prices are as of 14 August 2018 for on-demand use in the US               
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East (N. Virginia) region. Prices are not including charges for storage, network            

usage, and other AWS features. 

 

Table 4: The runtime metrics comparison of TopHat2 and HISAT2 

We summarized the runtime metrics values to compare two different workflows           

HISAT2-cufflinks and TopHat2-cufflinks. All runs are of input data         

SRR2567462. The read length was 100bp, the number of reads was           

10,007,044.00, and the read layout was single-end. The shown values are           

workflow duration in seconds, the maximum CPU usage in percentage, the total            

amount of memory in bytes, the total amount of cache in bytes, the total amount               

of block IO in bytes, and the cost per run in USD. We calculated the median                

values for metrics values from the data of five times workflow iteration. Values             

can be zero for short-time steps since CWL-metrics collects these metrics with            

sixty seconds interval. 

 

 

Supplementary Table 1: The versions and containers of tools used in the            

RNA-Seq workflows 

We used eleven tools in total to construct seven RNA-Seq quantification           

workflows. The two tools we developed, download-sra and pfastq-dump, are          
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packaged in containers by ourselves. The container of Salmon was available on            

its developer's build. We found the rest of tools in Biocontainers registry. We             

wrapped all the tools as CWL CommandLineTool class files and available on            

GitHub. 

 

Availability of source code and requirements 

 

For CWL-metrics, the runtime metrics capturing system: 

Project name: cwl-metrics 

Project home page: https://inutano.github.io/cwl-metrics/ 

Operating system(s): Platform independent 

Programming language: Perl v5.18.2 or higher 

Other requirements: Docker 18.06.0-ce or higher and Docker Compose 1.22.0          

or higher, cwltool 1.0.20180820141117 or higher 

License: MIT 

Any restrictions to use by non-academics: NA 

 

For the scripts and the notebook for visualization on this manuscript: 

Project name: cwl-metrics-manuscript 

Project home page: https://github.com/inutano/cwl-metrics-manuscript 
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Operating system(s): Platform independent 

Programming language: Ruby 2.5.1 or higher 

Other requirements: Docker 18.06.0-ce or higher 

License: MIT 

Any restrictions to use by non-academics: NA 

 

Availability of supporting data and materials 

 
The data set used for the visualizations of this article is available in figshare 

[29]. The full summary data and visualization on Jupyter notebook is available 

on GitHub [30] and nbviewer [31]. 

 

Declarations 

List of abbreviations 

CWL: Common Workflow Language 

AWS: Amazon Web Service, 

TSV: tab separated values 

EC2: Elastic Compute Cloud 

SRA: Sequence Read Archive 
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{
		"CWL-metrics":	[
				{
						"workflow_id":	"3b66284a-969d-11e8-8d0f-0ae229374f7a",
						"workflow_name":	"hisat2-cufflinks_wf_pe.cwl",
						"workflow_start_date":	"2018-08-02T21:41:43+00:00",
						"workflow_end_date":	"2018-08-02T21:44:25+00:00",
						"workflow_elapsed_sec":	162,
						"platform":	{
								"instance_type":	"c5.4xlarge",
								"region":	"us-east-1a",
								"hostname":	"4138af0fad86",
								"total_memory":	"31897692",
								"disk_size":	"508187044"
						},
						"steps":	{
								"fcc52b5d2d3bf6dc1106c83117f5956c968047cbf0c5642144b86dbee32da619":	{
										"stepname":	"hisat2_mapping",
										"tool_status":	"success",
										"input_files":	{
												"SRR4428678_1.fastq.gz":	43828265,
												"SRR4428678_2.fastq.gz":	53452040,
												"out.sam":	778641728
										},
										"docker_image":	"quay.io/biocontainers/hisat2:2.1.0--py36h2d50403_1",
										"docker_cmd":	"hisat2	-S	/var/spool/cwl/out.sam	-x	/var/lib/cwl/stg94f48183-8e7c-4fcb-
bc4b-58b2a7d33240/hisat2_GRCh38/genome	--downstream-transcriptome-assembly	--dta-cufflinks	-1	
/var/lib/cwl/stge9112392-7277-4049-8410-25324f93ec7c/SRR4428678_1.fastq.gz	-2	
/var/lib/cwl/stg31076a0b-02ab-4de9-9e8b-3b9af44152f8/SRR4428678_2.fastq.gz	--threads	16	--time",
										"docker_start_date":	"2018-08-02T21:41:52+00:00",
										"docker_end_date":	"2018-08-02T21:42:09+00:00",
										"docker_elapsed_sec":	17.517223481,
										"docker_exit_code":	0,
										"metrics":	{
												"cpu_total_percent":	1571.87279333333,
												"memory_max_usage":	5096611840,
												"memory_cache":	309497856,
												"blkio_total_bytes":	null
										}
								}
						}
				}
		]
}
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Table 1: The components of RNA-Seq quantification workflows

Workflow name Steps CWL definition files
tophat2-cufflinks download-sra, pfastq-dump, tophat2-mapping, cufflinks https://github.com/pitagora-galaxy/cwl/tree/master/workflows/tophat2-cufflinks
hisat2-cufflinks download-sra, pfastq-dump, hisat2-mapping, samtools_sam2bam, samtools_sort, cufflinks https://github.com/pitagora-galaxy/cwl/tree/master/workflows/hisat2-cufflinks
hisat2-stringtie download-sra, pfastq-dump, hisat2-mapping, samtools_sam2bam, samtools_sort, stringtie https://github.com/pitagora-galaxy/cwl/tree/master/workflows/hisat2-stringtie
star-cufflinks download-sra, pfastq-dump, star-mapping, samtools_sam2bam, samtools_sort, cufflinks https://github.com/pitagora-galaxy/cwl/tree/master/workflows/star-cufflinks
star-stringtie download-sra, pfastq-dump, star-mapping, samtools_sam2bam, samtools_sort, stringtie https://github.com/pitagora-galaxy/cwl/tree/master/workflows/star-stringtie
kallisto download-sra, pfastq-dump, kallisto-quant https://github.com/pitagora-galaxy/cwl/tree/master/workflows/kallisto
salmon download-sra, pfastq-dump, salmon-quant https://github.com/pitagora-galaxy/cwl/tree/master/workflows/salmon
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Table 2: The read characteristics of processed RNA-Seq data

SRA Run ID Read length Number of reads per strand BioSample ID Sample description Sequencing instrument
SRR4250750 50 1,000,425.00 SAMN05779985 cultured embryonic stem cells Illumina HiSeq 2500
SRR5185518 50 5,008,398.00 SAMN06239034 cultured embryonic stem cells Illumina HiSeq 2500
SRR2932901 50 10,017,495.00 SAMN04211783 fetal lung fibroblasts Illumina HiSeq 2500
SRR4428678 75 1,043,870.00 SAMN05913930 embryonic stem cell derived macrophage Illumina HiSeq 4000
SRR4241930 75 5,004,985.00 SAMN05770731 PGC-like cells (PGCLCs) Illumina HiSeq 2000
ERR204893 75 10,234,883.00 SAMEA1573291 lymphoblastoid cell line Illumina HiSeq 2000
SRR5168756 100 1,006,868.00 SAMN06218220 subcutaneous metastasis Illumina HiSeq 2500
SRR5023408 100 5,004,554.00 SAMN06017954 primary breast cancer Illumina HiSeq 2500
SRR2567462 100 10,007,044.00 SAMN04147557 prostate cancer cells LNCaP Illumina HiSeq 2500
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Table 3: The machine specs of AWS EC2 instance types used in the metrics collection

Instance type Category vCPU ECU Memory (GiB) Linux/UNIX Usage (per Hour)
m5.2xlarge General Purpose 8 31 32 $0.384
m5.4xlarge General Purpose 16 60 64 $0.768
c5.2xlarge Compute Optimized 8 34 16 $0.34
c5.4xlarge Compute Optimized 16 68 32 $0.68
r5.2xlarge Memory Optimized 8 31 64 $0.504
r5.4xlarge Memory Optimized 16 60 128 $1.008
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Table 4: The runtime metrics comparison of TopHat2 and HISAT2

Workflow name Instance type Workflow duration Max CPU usage Total amount of memory Total amount of memory cache Total amount of BlockIO Cost per run
HISAT2-Cufflinks c5.2xlarge 1014.5 796.8330796 10033995776 5183479808 4748816384 0.0958
HISAT2-Cufflinks c5.4xlarge 778 1595.031529 9163902976 4314202112 1204879360 0.147
HISAT2-Cufflinks m5.2xlarge 1013 799.0908131 11254398976 6396575744 1204858880 0.1081
HISAT2-Cufflinks m5.4xlarge 846 1538.403444 11802640384 6938824704 331776 0.1805
HISAT2-Cufflinks r5.2xlarge 1015 798.2115564 10912165888 6065545216 3608539136 0.1421
HISAT2-Cufflinks r5.4xlarge 834 1588.403182 9973350400 5116166144 0 0.2335
TopHat2-Cufflinks c5.2xlarge 5139 797.8534259 12310124544 8869050368 12343222272 0.4854
TopHat2-Cufflinks c5.4xlarge 3695 1587.471528 15879102464 7833452544 1204891648 0.6979
TopHat2-Cufflinks m5.2xlarge 5579 799.5529991 15149662208 9395200000 51970048 0.5951
TopHat2-Cufflinks m5.4xlarge 3981 1595.226713 15875092480 7913992192 49848320 0.8493
TopHat2-Cufflinks r5.2xlarge 5487 798.6095883 15152807936 9492783104 49848320 0.7682
TopHat2-Cufflinks r5.4xlarge 4001 1291.353527 15877746688 7930822656 49848320 1.1203
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