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Single cell RNA-seq data provide high-dimensional transcriptome features of each cell and enables the 

systematic study of cell types and cell states based on molecular characteristics, which are usually regarded as 

clusters in the high-dimensional space. Usually not all genes are equally informative for the studied biological 

question and the clusters are embedded in some lower dimensional subspaces.  

 

There are several popular dimensionality reduction and visualization methods for scRNA-seq data such as 

PCA and t-SNE1. Different methods may utilize different kinds of distance metrics. Some methods take distance 

metric as a hyper-parameter for users to choose. Different metrics can result in different data distribution in the 

low dimensional space2 and therefore result in different final results. But there is no way to know which metric 

is “the correct one” for the particular biological study at hand. A typical practice is to use the default metric 

provided by the software and wait to see whether results look compatible with existing knowledge or users’ 

expectation. Gene selection steps are usually adapted before applying the metric to filter those genes that are 

less likely to be relevant to the study, and/or use supervised information (e.g., the classification of cell types 

based on known markers) to select genes. Such strong supervised information may cause the results to be overly 

dependent on the existing knowledge, which may then reduce the possibility of new discoveries. 

 

In studies that aim to profile the composition of cell types and cell states of a complicated physiological or 

pathological system, there could be multifaceted underlying relations among the cells according to different 

angles of study. For example, cells can be clustered by their development stages and also by their lineages in 

developmental studies3. A fixed metric for dimensionality reduction and other downstream analyses does not 

provide the flexibility of exploring the data from multiple angles.  
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We proposed a machine learning method to allow users to only provide weak supervision and let the machine 

to learn a proper metric to be used on the genes, based on the idea of metric learning4,5. The weak supervision 

can be as simple as a few example pairs of similar cells and of dissimilar cells. In this way, users only use a 

small portion of confident examples to train the method, without introducing pre-assumptions on most of the 

cells. We developed the package scMetric (Fig. 1) to apply metric learning on gene expression data. The package 

let users to assign a few pairs of cells that are similar with each other and another few of dissimilar cells. With 

this weak training, scMetric learns the metric A to best preserve the similarity and dissimilarity reflected in the 

training pairs. It then employs t-SNE to visualize the data using this metric. The package outputs the t-SNE 

maps using the learned metric and using the conventional Euclidean distance metric. The learned metric A as 

well as the key genes that compose most weights in the metric can also be output to other analysis methods that 

need a distance or similarity metric. 

 

 

 

Fig. 1 Single cell RNA-seq data metric learning workflow. Inputs are a gene expression matrix as well as the weak 

supervision information. The t-SNE maps shows examples of the visualization results after metric learning and without 

using the learned metric.  

 

 

We did simulation and real-data experiments to show advantage of the method. In the simulation, we seeded 

two orthogonal schemes of classification: Cells are categorized to classes A or B with some genes. With another 

set of genes, the cells are classified to classes C or D. Each cell has two class labels and they are not correlated. 
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Noisy genes are added so that either the distinction between A and B or the that between C and D are dominate 

in the data, and the direct visualization of t-SNE based on the Euclidean metric cannot reveal either classes. 

Using scMetric, if the training pairs are chosen according to the grouping of A and B, the t-SNE map with the 

learned metric separates classes A and B well. On the other hand, if we choose training pairs according to the 

distinction of C and D, then these two clusters become clear in the t-SNE map. We applied the method on a real 

dataset of 6 clusters and two experiment batches. Results show that it can effectively capture different aspects 

of the major information based on different weak supervision.  

 

Details of the experiments as well as the method are described in the Supplementary File. The R code of 

scMetric is available on GitHub at https://github.com/XuegongLab/scMetric. The package can also be used for 

other types of data that have similar tasks. 
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Methods 

ITML (Information-Theoretic Metric Learning, Davis, et al. 2007) is a classic metric learning method based 

on Mahalanobis distance. It solves a Bregman optimization problem that minimizes the differential relative 

entropy between two multivariate Gaussians under distance constraints. The goal is to learn the positive 

definite A in distance function 

( , ) ( ) ( )T

A i j i j i jd x x x x A x x   .  

Usually, parameter matrix A is regularized to be as close as possible to a known matrix A0 like identity matrix 

or Mahalanobis matrix. If we assume data obeys Gaussian distribution, it may be better to choose 

Mahalanobis matrix. In other cases, identity matrix may have better performance according to experiments.  

 

From Matric distance to Kullback–Leibler divergence 

Then the next problem is that how to measure similarity between two matrices A and A0 so that we can ensure 

A is closer to A0 step by step during the learning. From statistic knowledge we know that there exists a 

bijection between the set of equal mean multivariate Gaussian distribution and the set of Mahalanobis 

distance. Therefore, we can minimize distance between two multivariate Gaussian distribution to represent 

distance between two matrices. The corresponding multivariate Gaussian for matrix A is 

1 1
( ; ) exp( ( , ))

2
Ap x A d x

M
  , 

where is the mean, and M is a normalization factor. KL divergence is widely used to measure distance 

between two distributions. The distance between two multivariate Gaussian for matrix A and A0 is  

0
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From Kullback–Leibler divergence to LogDet Optimization 

The LogDet divergence for n n  matrices A and A0 is a Bregman matrix divergence that equals to 

1 1

0 0 0( , ) ( ) log det( )ldD A A tr AA AA n    . 

Davis and Dhillon (2006) showed that KL divergence of two distributions can be expressed as the convex 

combination of a Mahalanobis distance between their mean vectors and the LogDet divergence between their 

covariance matrics. Assuming that two Gaussians have the same mean, KL divergence can be expressed as 

),(
2

1
),(

2

1
));();(( 0

11

00 AADAADAxpAxpKL ldld    

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456814doi: bioRxiv preprint 

https://doi.org/10.1101/456814
http://creativecommons.org/licenses/by-nc/4.0/


Constraints 

Suppose we have a dataset that consists of n samples {x1, x2, …, xn} and two sets of sample pairs of S and D. If 

a pair of samples are similar according to prior information, we put it in S. Otherwise we put it in D.  

 ( , ) :i j i jS x x x and x are similar      

 ( , ) :i j i jD x x x and x are dissimilar      

Given S and D, two values u  and l should be decided. u  is a relatively small value that represents upper 

distance bound of pairs in S. l is a relatively large value that represents lower distance bound of pairs in D. To 

estimate a proper choice of 𝑢 and 𝑙, we can calculate the distances between all possible and non-repeating 

cell pairs. Usually, half of them, n*(n-1)/2 pairs, are selected randomly in consideration of speed. In case of 

n*(n-1)/2 is still too large, we set an upper bound of 10,000. Then we calculate distance of these selected pairs 

and assign 5% and 95% of the largest distance to u  and l , respectively.  

 

The constraints are set as the following: 

( , ) ( , )A i j i jd x x u x x S ，  

( , ) ( , )A i j i jd x x l x x D ，  

 

The final optimization problem is: 

),(min 0AADld
A

 

..ts uxxxxAtr T

jiji )),)(,((  Sxx ji ),(  

lxxxxAtr T

jiji )),)(,((  Dxx ji ),(  

 

Finding key genes from learned new metric A 

New metrics can be seen as transformations of space that assign weights on genes differently. Since A is a 

nonnegative positive definite matrix, it can be decomposed as  
TA L L . 

Then new distance is  

2 ( , ) ( ) ( )T T

A i j i j i jd x x x x L L x x    

Let  

1 2( , ,..., )d i je e e x x   

Assume that only the k-th gene expression changes while others remain the same 

1, 0,0 ,k ie e i d i k        

This results in change of distance 
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. 

We compare 
2 ( , )A i jd x x  for different genes. The larger it is, the more weights new metric assigns on 

genes. We use this measurement as the importance score to order the relative importance of genes in the 

learned metric.  

 

Simulation Experiments 

We first applied our method to a group of simulated data. Figure S1 is an illustration of the main idea of the 

simulation experiment. Assume that there exist two kinds of grouping criteria in the simulated data. We can 

separate cells into group A and group B according to criteria 1 while criteria 1 will not be able to separate 

group C and group D. On the other hand, criteria 2 separates group C and D without considering group A and 

B. 

 

 

Fig. S1 Illustration of the simulation data design. 

 

We used splatter (Zappia et al, 2017) to simulate single cell data. We simulated 1000 cells with 1000 genes 

selected. Among them, 100 genes have 30% probability to differentially expressed between group A and B, 

and another 100 genes have 30% probability to differentially expressed in group C and D. The rest 800 genes 

are randomly simulated as noisy genes. Figure S2 shows t-SNE maps of simulated cells with different genes. 

 

Figure S3(a) shows t-SNE maps of 1000 cells with all 1000 genes. We can see that since the DE genes 

between any of the two groups are only a small portion of all genes, the signals are weak and the direct 

visualization of t-SNE cannot reveal any classes. Then we choose 50 training pairs (25 similar pairs and 25 

dissimilar pairs) for each grouping scheme and apply metric learning on original data. Figure S3(b) shows t-

SNE maps scMetric outputs based on learned metric rather than conventional Euclidean distance metric. We 

can see that the t-SNE maps can well separate the corresponding two groups of cells according to the weak 

supervision information, without involving any gene selection procedure.   
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Fig. S2. t-SNE maps of 1000 simulated cells with different gene sets. The two t-SNE maps of each row are the 

same but the cells are colored by groups A and B in the left panel and groups C and D in the right panel. (a) t-

SNE maps with 100 genes that contain DE genes between groups A and B. (b) t-SNE maps with 100 genes 

that contain DE genes between groups C and D. (c) t-SNE maps with 800 noisy genes. 
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Fig. S3. t-SNE maps shows the visualization with and without using the learned metric by scMetric. (a) t-SNE 

maps with Euclidean metric. (b) t-SNE maps with the learned metric using weak supervision for groups A and 

B (left) and with learned metric using weak supervision for groups C and D (right).  

 

 

 

 

Real Data Experiments 

 

Single-cell RNA-seq data of dendritic cells (DCs) 

 

We applied scMetric on a single-cell RNA-seq dataset of dendritic cells (DCs) to study its effectiveness on 

real data. In Villani et al. (2017), the authors identified 6 subtypes of dendritic cells and 4 monocyte 

populations through single cell RNA-seq data. We did the experiment on the 742 dendritic cells in their 

dataset. After gene filtering following the preprocessing procedures in the original paper, we obtained a gene 

expression matrix of 563 genes in 742 dendritic cells. According to the meta data provided by the original 

paper, we chose the dendritic cell types as one study target and the two batches of their experiment as another 

study target. Figure S4(a) is a t-SNE map of original data using Euclidean distance metric. We can see that the 

original 6 clusters identified in the original paper were well re-discovered. But from the right panel of Figure 

S4(a), cells from the two batches in each cluster are also separated. This implies that the clustering of the 6 

cell types in the original data are the dominate signal in the data, but the batch effect is also obvious. The 

original paper adopted a step to remove the batch effect. We use the data before removing batch effect to study 

whether these two orthogonal grouping relations can be revealed when we look at the data from different 

angles. 
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Cell batch as similarity criterion 

In this dataset, the two batches have almost the same amount of cells, 368 from batch 1 and 374 from batch 2. We 

select cells randomly to make up training pairs. We select 100 similar training pairs from the same batch and 100 

dissimilar pairs across different batches to train new metric. To show how this similarity criterion work on distance 

metric, we visualize cells via t-SNE respectively based on the Euclidean metric and the learned metric. Fig. 

S4(b) shows the t-SNE maps under metric learned with the weak supervision of batch signals. We can see that 

6 clusters are mixed, but cells of the two batches tend to be distributed in separated regions of the map. The 

signal of the batches is not as strong as that of the cell types so the batches are not forming isolated clusters 

even after metric learning. 

 

Cell subtype as similarity criterion 

We then experimented on using the cell type information as weak supervision for scMetric. The numbers of 

cells in each subtype are very unbalanced as shown in Table S1.  

 

Table S1. Numbers of cells in each cell subtype of Dendritic cell dataset 

All 742 

DC1(CLEC9A+) 166 

DC2(CD1C+_A) 105 

DC3(CD1C+_B) 95 

DC4(CD1C-CD141-) 175 

DC5(New pop.) 30 

DC6(pDC) 171 

 

Since we don’t have specific domain knowledge on each specific cells, we automatically extracted the weak 

supervision information in the following manner: We first set a probably of being extracted for each cell so 

that the total number of representatives in each subtype is roughly the same. This is to guarantee the rare 

subtypes can also be well represented in the metric learning. With this probably set, we randomly sample cell 

pairs from all cells. If the two sampled cells are of the same subtype, we put them into the set of similar pairs, 

and otherwise into the dissimilar pairs. In this way, we collect 6 similar pairs for each cell subtype (36 pairs in 

total for the 6 subtypes), and 6 dissimilar pairs for each pair of subtypes (180 pairs in total for the 6x5 possible 

subtype pairs). We arbitrarily pick up 200 pairs of samples from them as the weak supervision data to train 

scMetric. Figure S4(c) shows the t-SNE map with the learned metric from this weak supervision information. 

We can see that the clusters become even tighter than those obtained with Euclidean metric, and the batch 

effect is well removed. 
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Fig. S4 t-SNE maps of dendritic cells under different metrics. (a) t-SNE maps of dendritic cells under 

Euclidean distance metric. (b) t-SNE maps of dendritic cells under metric learned from batch number label 

training pairs. (c) t-SNE maps of dendritic cells under metric learned from cell subtype label training pairs. 

 

 

We then checked the top 30 genes that contribute the most in the learned metric. Table S2 shows the list. 

Among the 242 marker genes for the 6 DC clusters identified in the original paper by requiring AUC>0.85 for 

discriminating each subtype with the other 5 subtypes, 97 were included in the 563 genes we worked on in 

this experiment. We found 20 of them were ranked among the top 30 by their importance in the learned 

metric. The full list of the 563 genes and their importance scores are provided in the supplementary excel file.  

 

Table S2. Top 100 genes in the learned metric on the DC data 

Rank Importance score in 

the learned metric  

Gene As marker for DC subtypes in 

the original paper 

1 17.09055814 ALOX5AP marker for DC6 

2 15.18025561 IL3RA marker for DC6 

3 14.75138346 PLAC8 marker for DC6 

4 14.42497464 CYBASC3 marker for DC6 

5 13.91119788 LILRA4 marker for DC6 
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6 13.81383903 CLIC3 marker for DC6 

7 13.66820992 C12ORF75 marker for DC6 

8 11.91832618 PCGF5  

9 11.90537172 MS4A6A marker for DC6 

10 10.91606086 IL1RN  

11 10.78876154 LGALS2  

12 10.66955684 MS4A7 marker for DC4 

13 10.41333938 LILRA5 marker for DC4 

14 10.28449392 NCF1C marker for DC6 

15 10.11170581 AXL marker for DC5 

16 9.909020989 IGSF6  

17 9.83054456 C12ORF32  

18 9.82542516 CKS1B  

19 9.557555535 GHRL  

20 9.479938202 TMEM154  

21 9.433213818 SELS marker for DC6 

22 9.263630985 IGJ marker for DC6 

23 9.104303309 ZFAT marker for DC6 

24 8.984955703 SIGLEC6 marker for DC5 

25 8.975333977 TSPAN13 marker for DC6 

26 8.968550346 IFITM1  

27 8.890599294 AK128525 marker for DC6 

28 8.862904285 LILRB4 marker for DC6 

29 8.7833007 LILRA2 marker for DC4 

30 8.668536114 HMGN2P46  
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