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Abstract 1 

Background 2 

Recent studies indicate increased autistic traits in musicians with absolute pitch and a higher 3 

incidence of absolute pitch in people with autism. Theoretical accounts connect both of these with 4 

shared neural principles of local hyper- and global hypoconnectivity, enhanced perceptual 5 

functioning and a detail-focused cognitive style. This is the first study to investigate absolute pitch 6 

proficiency, autistic traits and brain correlates in the same study. 7 

Sample and Methods 8 

Graph theoretical analysis was conducted on resting state (eyes closed and eyes open) EEG 9 

connectivity (wPLI, weighted Phase Lag Index) matrices obtained from 31 absolute pitch (AP) and 10 

33 relative pitch (RP) professional musicians. Small Worldness, Global Clustering Coefficient and 11 

Average Path length were related to autistic traits, passive (tone identification) and active (pitch 12 

adjustment) absolute pitch proficiency and onset of musical training using Welch-two-sample-tests, 13 

correlations and general linear models.  14 

Results 15 

Analyses revealed increased Path length (delta 2-4 Hz), reduced Clustering (beta 13-18 Hz), 16 

reduced Small-Worldness (gamma 30-60 Hz) and increased autistic traits for AP compared to RP. 17 

Only Clustering values (beta 13-18 Hz) were predicted by both AP proficiency and autistic traits. 18 

Post-hoc single connection permutation tests among raw wPLI matrices in the beta band (13-18 Hz) 19 

revealed widely reduced interhemispheric connectivity between bilateral auditory related electrode 20 

positions along with higher connectivity between F7-F8 and F8-P9 for AP. Pitch naming ability and 21 

Pitch adjustment ability were predicted by Path length, Clustering, autistic traits and onset of 22 

musical training (for pitch adjustment) explaining 44% respectively 38% of variance. 23 

Conclusions 24 

Results show both shared and distinct neural features between AP and autistic traits. Differences in 25 

the beta range were associated with higher autistic traits in the same population. In general, AP 26 
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musicians exhibit a widely underconnected brain with reduced functional integration and reduced 27 

small-world-property during resting state. This might be partly related to autism-specific brain 28 

connectivity, while differences in Path length and Small-Worldness reflect other ability-specific 29 

influences. This is further evidence for different pathways in the acquisition and development of 30 

absolute pitch, likely influenced by both genetic and environmental factors and their interaction. 31 

 32 

Keywords: 33 

absolute pitch, autistic traits, brain networks, graph theory, musicians, electroencephalography 34 

 35 

Background 36 

 37 

Autism spectrum disorders or conditions (henceforth ‘autism’) are more common in people with 38 

mathematical [1], visuo-spatial [2], musical [3] or ‘savant’ abilities [4], e.g. rapid mental 39 

mathematical calculation [5, 6], calendar calculation [7], or extreme memory [8, 9]. Autism, a set of 40 

neurodevelopmental condition, are characterized by social and communication difficulties, 41 

alongside unsually repetitive behaviors and unusually narrow interests [10], sensory 42 

hypersensitivity, and difficulties in adjusting to unexpected change (DSM-5, APA 2013). 43 

 44 

Absolute pitch (AP), the ability to name or produce a musical tone without the use of a reference 45 

tone [11] is a common special ability in professional musicians with an incidence of up to 7-25% 46 

[12–14] but less than 1% [15] in the general population. AP is an excellent model for the 47 

investigation of a joint influence of genetic and environmental factors on the brain and on human 48 

cognitive abilities [16]. An influence of age of onset of musical training [17–19], ethnicity [12, 14, 49 

19], and type of musical education (label to fixed pitch vs. label to interval, unfixed to pitch) 50 

techniques [12]) suggest environmental aspects in the acquisition of AP. In contrast, AP often 51 

clusters in families, genetically overlaps with other familial aggregated abilities (e.g. synesthesia 52 

[20]) and has a higher incidence in autistic people [3, 7, 21–25] and in Williams-syndrome [26], 53 
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both strongly genetic conditions [27–34]. Finally, a sensitive or critical period before the age of 54 

seven is considered due to the importance of early onset of musical training [14, 16, 17, 35–38] 55 

Recently, two studies have given evidence for heightened autistic traits in musicians with AP [39, 56 

40]. Both AP and autism are associated with similarly altered brain connectivity in terms of the 57 

relation between hyper- and hypo-connectivity [36, 41–50]. The theory of veridical mapping [7] 58 

tries to explain absolute pitch, synesthesia and other abilities like hyperlexia, frequently seen in 59 

autistic people or in savant syndrome, with the neurocognitive mechanism of associating 60 

homologues structures of two perceptual or cognitive structures (veridical mapping). According to 61 

this framework, enhanced low level perception [51, 52] and an increased ability to detect patterns 62 

(‘systemizing’ [53]) is associated with regional hyper- as well as global hypo-connectivity in 63 

absolute pitch  [41, 43, 54–59] and autism [42, 44, 46, 60]. It is also noteworthy that autism and 64 

abilities like absolute pitch share excellent attention to detail [35, 61] and a shift in the direction of 65 

higher segregation with reduced integration in the brain [61]. Investigating disconnection 66 

syndromes or integration deficit disorders, as well as phenomena with similar brain network 67 

characteristics, may therefore provide insights into the variability of brain network structure and 68 

function and its relation to perception, cognition and behaviour.  69 

 70 

The present study tests if and to what extent AP and autistic traits share the same 71 

neurophysiological network connectivity. To our knowledge, this study is the first to investigate (1) 72 

the relation of pitch adjustment ability (active absolute pitch; in contrast to (passive) pitch 73 

identification) and brain as well as behavioral correlates, (2) the relation of AP ability, autistic traits 74 

and functional brain connectivity within one study, and (3) graph theoretical network parameters in 75 

AP during resting state electroencephalography. We use graph theoretical analysis [62, 63] of 76 

resting state EEG data to estimate differences in global network structure of the brain. We analyzed 77 

three graph theoretical network parameters reflecting segregation (Average Clustering Coefficient) 78 

and integration (Average Shortest Path Length) and so called Small-Worldness (a combination of 79 
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Clustering and Path length) [62, 63]. To our knowledge this is also the first study investigating 80 

global i.e. average connectivity parameters over the whole brain between AP and RP (relative pitch) 81 

musicians, while prior studies [41, 43] have focused on parameters for single regions (e.g. degree, 82 

single node clustering, and single node characteristic path length). We expected higher autistic 83 

traits, higher Path length (reduced integration) and lower Clustering (underconnectivity) for AP and 84 

an interrelation among those variables. Further, we expected these differences to specifically occur 85 

in low (delta, theta) vs. high frequency (beta) ranges for integration vs. segregation, respectively. 86 

 87 

Methods 88 

Participants 89 

Thirty-one AP musicians (16 female) and 33 RP musicians (15 female) participated in the study. 90 

One male RP participants had to be excluded from EEG analysis because of missing EEG-data. 91 

Participants were recruited via an online survey using UNIPARK software 92 

(https://www.unipark.com/) and primarily were students or professional musicians at the University 93 

for Music, Drama and Media, Hanover. Four AP and two RP were amateur musicians. An online 94 

pitch identification screening (PIS) consisting of 36 categorical, equal-tempered sine waves in the 95 

range of three octaves between C4 (261.63 Hz) and B6 (1975.5 Hz) was used to allocate the 96 

participants to the groups (AP: >12/36 tones named correctly, else RP). Four AP were non-native 97 

German speakers and had the choice between a German and an English version of the experiments. 98 

One AP reported taking Mirtazapine. None of the participants reported any history of severe 99 

psychiatric or neurological conditions. The AP group consisted of 15 pianists, 9 string players, 3 100 

woodwind instruments, two singers and 2 brass players; the RP group consisted of 13 pianists, 4 101 

string players, 6 woodwind instruments, 3 bassists/guitarists/accordionists, 3 singers, one drummer 102 

and 3 brass players. Handedness was assessed by Edinburgh Handedness Inventory [64]; one AP 103 

was left handed, all other AP were consistently right handed, three RP were left-handed, two RP 104 
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were ambidextrous. This study was approved by the local Ethics Committee at the Medical 105 

University Hannover. All participants gave written consent. 106 

 107 

Setting 108 

The study was divided into three parts: the online survey and two appointments in the lab at the 109 

Institute for Music Physiology and Musicians Medicine of the University for Music, Drama and 110 

Media, Hannover. While the online survey was used for the pitch identification screening and 111 

diagnostic as well as demographic questionnaires (see below), general intelligence, musical ability, 112 

pitch adjustment ability and resting state EEG were assessed in the lab (see Table 1). Four further 113 

experiments were conducted within the same two sessions at the lab and are reported elsewhere. 114 

Raven’s Standard Progressive Matrices [65] and “Zahlenverbindungstest“ (ZVT, [66]) were used to 115 

assess general nonverbal intelligence and information processing speed, respectively. Musical 116 

ability and musical experience were controlled for with the use of AMMA (Advanced Measures of 117 

Music Audiation, [67]), Musical-Sophistication Index (GOLD-MSI, [68]) and estimated total hours 118 

of musical training within life span (house intern online questionnaire).  119 

 120 

Table 1 Participants’ characteristics 

 AP (n=31)  RP (n=33) t-test 

 Mean SD Range  Mean SD Range 

age 25.13 9.2 17-58  24.0 7.02 17-57 t(56.1)= -0.549; 

p = 0.585 

SPM-IQ 110.4 16.4 73-132.25  114.41 13.14 86.5-134.5 t(57.5)= 1.073; 

p = 0.288 

ZVT-IQ 120.76 13.14 101.5-145  120.61 13.69 97-143.5 t(61.9)= -0.045; 

p = 0.964 

hours main 

instrument 

11961.4 9212 1642.5-39785  13735.61 17125.89 1606-77617.25 t(49.7)= 0.520; 

p = 0.605 

AMMA 64.74 6.26 53-78  63.244 7.03 46-76 t(61.8)= -0.90; 

p = 0.370 

MSI 208.65 17.59 161-234  210.79 15.12 185-246 t(59.3)= 0.521; 

p = 0.604 

PIS 28.5 6.03 15-36  5.30 4.33 0-21* t(52.2)= -17.37; 

p < 2.2e-16 

Age, nonverbal IQ (SPM), information processing capacity (ZVT), musical training (total hours during life span on main instrument), musicality (AMMA; MSI) and 

online pitch identification screening (PIS) for each group; * two RP reported not having absolute pitch but reached a screening score of 13 respectively 21. Because of 

this and their weak performance in the pitch adjustment test, the subjects were assigned to the RP group; Significant group differences highlighted in bold. 

 121 

 122 
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Experiments and material 123 

Pitch Adjustment Test (PAT) 124 

Absolute pitch ability was measured by using two different absolute pitch tests: The pitch 125 

identification screening (PIS) during the online survey mentioned above, and a pitch adjustment test 126 

(PAT) based on Dohn et al. [69]. Participants were given a maximum of 15 seconds to adjust the 127 

frequency of a sine wave with random start frequency (220 -880 Hz, 1Hz steps) and told to try to hit 128 

the target note (letter presented central on PC screen, e.g. “F# / Gb”) as precisely as possible 129 

without the use of any kind of reference. Online pitch modulation was programmed according to 130 

Dohn et al. [69] and provided by turning a USB-Controller (Griffin PowerMate NA16029, Griffin 131 

Technology, 6001 Oak Canyon, Irvine, CA, USA). Resolution of the Power Mate was set to 10 132 

cents vs. 1 cent (if pressed during turn of the wheel) for individual choice between rough and fine 133 

tuning. To confirm their answer, participants were instructed to press a button on a Cedrus 134 

Response Pad (Response Pad RB-844, Cedrus Corporation, San Pedro, CA 90734, USA) to 135 

automatically proceed with the next trial. If no button was hit, the final frequency after 15 seconds 136 

was taken. In both cases, the Inter Trial Interval (ITI) was set to 3000 ms. The total test consisted of 137 

108 target notes, presented in semi-random order in 3 Blocks of 36 notes each (3*12 different notes 138 

per block) with individual breaks between the blocks. The final or chosen frequencies of each 139 

participant were compared to the nearest target tone (< 6 semitones/600cent), as participants were 140 

allowed to choose their octave of preference. EEG was measured during the PAT but will be 141 

reported elsewhere. For each participant, mean absolute derivation (MAD (1),[69]) from target tone 142 

 143 

(1) 𝑀𝐴𝐷 =  
∑ |𝐶𝑖|

𝑁𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡
𝑖=1

𝑁𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡
 144 

 145 

is calculated as the mean of the average absolute deviations ci (2) of the final frequencies to the 146 

target tone (referenced to a 440 Hz equal tempered tuning). 147 

 148 
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MAD reflects the pitch adjustment accuracy of the participants. The consistency of the pitch 149 

adjustments, possibly reflecting the tuning of the pitch template[69], is then estimated by taking the 150 

standard deviation of the absolute deviations (2). 151 

(2) 𝑆𝐷𝑓𝑜𝑀 =  √
∑ |𝐶𝑖|

𝑁𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡
𝑖=1

𝑁𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡−1
  152 

For regression analyses (see below), we performed a z-standardization of the MAD (Z_MAD,(3)) 153 

and SDfoM (Z_SDfoM, (4)) values relative to the mean and sd of the non-AP-group, as originally 154 

proposed by Dohn et al. [69]. 155 

 156 

(3) 𝑍_𝑀𝐴𝐷𝑖 =  
𝑀𝐴𝐷𝑖−𝜇(𝑀𝐴𝐷)𝑁𝑜𝑛−𝐴𝑃

𝜎(𝑀𝐴𝐷)𝑁𝑜𝑛−𝐴𝑃
  157 

 158 

(4) 𝑍_𝑆𝐷𝑓𝑜𝑀𝑖 =  
𝑆𝐷𝑓𝑜𝑀𝑖−𝜇(𝑆𝐷𝑓𝑜𝑀)𝑁𝑜𝑛−𝐴𝑃

𝜎(𝑆𝐷𝑓𝑜𝑀)𝑁𝑜𝑛−𝐴𝑃
 159 

 160 

Autistic Traits 161 

Autism traits were assessed during the online survey using a standardized Adult Autism Spectrum 162 

Quotient (AQ, [70]; German version by C.M. Freiburg, available online: 163 

https://www.autismresearchcentre.com/arc_tests). It consists of 50 items within five subscales 164 

(attention to detail, attention switching, imagination, social skills and communication). One point is 165 

given for each item with a mildly or strongly agreement with the autistic-like symptoms (half the 166 

items were negatively poled. The maximum AQ-Score therefore is 50).  167 

 168 

EEG Resting State  169 

EEG resting state data was acquired immediately before the PAT at the beginning of the 170 

experimental session using 28 scalp electrodes (sintered silver/silver chloride; Fp1, Fp2, F3, F4, 171 

FC3, FC4, C3, C4, CP3, CP4, P3, P4, F7, F8, FT7, FT8, T7, T8, TP7, TP8, P7, P8, O1, O2, Oz, Fz, 172 

Cz, Pz) placed according to the international extended 10-20 System with an electrode cap by 173 
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EASYCAP (EASYCAP GmbH, Herrsching, Germany; http://www.easycap.de). A 32-channel 174 

SynAmps amplifier (Compumedics Neuroscan, Inc., Charlotte, NC, USA) and the software Scan 175 

4.3 (Compumedics Neuroscan) were used to record the data. The remaining 2 bipolar channels were 176 

used for vertical and horizontal electro-oculogram with electrodes placed above and below the right 177 

eye and approximately 1cm outside of the outer canthus of each eye, respectively. Two further 178 

electrodes were placed on the left and right mastoids as a linked reference. The ground electrode 179 

was placed between the eyebrows directly above the nasion on the forehead. Abralyth 2000 180 

abrasive chloride-free electrolyte gel (EASYCAP GmbH, Herrsching, Germany; 181 

http://www.easycap.de) was used to keep impedances below 5kΩ. Participants were seated in a 182 

comfortable chair in front of a PC screen and were instructed to let their mind wander around while 183 

looking at a fixation cross (eyes open resting state, EO) or keeping their eyes closed (eyes closed 184 

resting state, EC) for 5 minutes each. Start (button press) and end of the resting state period where 185 

programmed within PsychoPy [71] by sending triggers via a parallel port to the EEG-system. A 186 

sampling rate of 1000 Hz was used combined with an online-bandpass filter between 0.5-100Hz 187 

and a Notch-filter at 50 Hz. EEG was recorded in AC (alternating current)-mode and with a gain of 188 

1000.  189 

 190 

EEG Preprocessing and Analysis 191 

Preprocessing 192 

All preprocessing steps were conducted using MATLAB (MATLAB Release 2014a, MathWorks, 193 

Inc., Natick, Massachusetts, United States) using the toolboxes eeglab [72] and fieldtrip [73]. EEG 194 

raw data was first re-sampled to 512 Hz sampling rate and bandpass filtered to 1-100 Hz. Artefact 195 

removal was administered using both, raw data inspection of continuous data and independent 196 

component analysis (ICA, algorithm: binica) within eeglab for each participant’s data individually. 197 

ICA-components containing vertical or horizontal eye movements, blinking, heartbeat, muscular 198 

activity or other artefacts were removed from the data by inverse ICA. After that, segments still 199 

containing the above mentioned artefacts were removed manually. Defective or highly noisy 200 
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electrodes were interpolated using spherical interpolation [74] implemented in eeglab (5 201 

participants, 1-2 electrodes each). All statistical analyses were repeated under exclusion of 202 

participants with interpolated electrodes as well as non-native German speakers and the participant 203 

which reported to take Mirtazapine. Direction and significance of effects was not affected by the 204 

exclusions, therefore all participants were included into the final analyses. Afterwards, the artefact 205 

clean data was exported to fieldtrip for connectivity and network analysis (next steps). 206 

 207 

Connectivity – weighted Phase Lag Index (wPLI) 208 

Calculation of functional connectivity was done using MATLAB scripts (see: 209 

https://github.com/rb643/fieldtrip_restingState/blob/master/rb_EEG_Conn.m). First, 4s-epochs 210 

(non-overlapping) were extracted from the artefact-clean data. Second, multi-taper Morlet fast 211 

Fourier transformation was used to extract frequency bands (delta: 2-4 Hz, theta: 4-7 Hz, alpha: 7-212 

13 Hz, beta: 13-30 Hz, gamma: 30-60 Hz). For delta and theta single-taper (Hanning window) was 213 

used. Contrary, for alpha, beta and gamma multiple tapers (discrete prolate spheroidal sequences, 214 

DPSS) were taken. During multi-tapering of alpha, beta and gamma spectral smoothing was applied 215 

(+-1,2,4 Hz, respectively).  Finally, pairwise connectivity values for each electrode site were 216 

calculated per participant and stored in a connectivity matrix for each frequency band separately. 217 

Weighted phase lag index [75] was chosen as connectivity measure, as phase based connectivity 218 

measures compared to coherence and phase synchronization measures are less sensitive to volume 219 

conduction in the brain [76, 77] cited by [78]), i .e. spurious connectivity between two regions of 220 

interest caused by a common source of activity or a common reference [79] and usually leads to 221 

connectivity values with phase lags of zero or pi (if the two sites are on opposite sides of the dipole) 222 

[80]. PLI (5) 223 

 224 

(5) 𝑃𝐿𝐼𝑥𝑦 = |𝑛−1 ∑ 𝑠𝑔𝑛 (𝑖𝑚𝑎𝑔(𝑆𝑥𝑦𝑡)) |𝑛
𝑡=1  225 

 226 
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is an index that quantifies the asymmetry of the distribution of instantaneous phase-differences ∆Φ 227 

between the signals x and y, by averaging the sign (sgn) of the imaginary components (imag) of the 228 

cross-spectrum (Sxyt) at timepoint t[80].The distribution is centered around 0 mod pi, therefore an 229 

asymmetric distribution shows non-zero phase lag. Stam et al. [79] argue, that a non-zero phase lag 230 

cannot be caused by volume conduction or a common reference, as the latter work instantaneously. 231 

PLI takes values between 0 and 1, where 0 indicates no phase coupling (or a coupling with a 0 mod 232 

pi phase difference) and 1 indicates a perfect coupling at the phase lag of ∆Φ. Because of the 233 

absolute values taken in equation (1) PLI does not give information about which signal is leading 234 

[79]. PLI has been shown to be superior in detecting true synchronization and in being less 235 

influenced by common source activity and electrode montage systems than phase coherence (PC, 236 

[81]), both in computer simulations and on real EEG and MEG data [79]. Furthermore, PLI exhibits 237 

a similar amount of long to short distance connections in an investigation of beta-band coupling in 238 

Alzheimer data [79, 82] which was shifted towards short-range connections implying volume 239 

conduction when using PC [79]. As the aim of this paper is to compare graph theory based network 240 

measures that especially quantify segregation versus integration in the brain (see section Network 241 

analysis – Graph Theory) the use of PLI is to be preferred to prevent the distortion of the network 242 

parameters by volume conduction [65, 66]. The extension of PLI, weighted PLI (wPLI, (6) [75]),  243 

 244 

(6) 𝑤𝑃𝐿𝐼𝑥𝑦 =  
𝑛−1 ∑ |𝑖𝑚𝑎𝑔(𝑆𝑥𝑦𝑡)|𝑠𝑔𝑛(𝑖𝑚𝑎𝑔(𝑆𝑥𝑦𝑡))𝑛

𝑡=1

𝑛−1 ∑ |𝑖𝑚𝑎𝑔(𝑆𝑥𝑦𝑡)|𝑛
𝑡=1

 245 

 246 

weights the obtained phase leads or lags by the magnitude of the imaginary component (imag) of 247 

the cross-spectrum (Sxyt). This reduces the influence of additional noise sources [75, 80]. Weighted 248 

phase-lag-index [75] therefore is an advancement of phase lag index (PLI, [79]) and a suitable 249 

measure to detect true connectivity between regions of interest [79], as it ignores zero- and pi-250 

phase-lag. 251 

Network analysis - Graph Theory 252 
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Graph network analyses were conducted using Brain Connectivity Toolbox (BCT,[85]) in Matlab. 253 

Graph theory is a branch of mathematics that deals with the abstract representation of networks as 254 

graphs, i.e. a system of n nodes and k edges (connections) between the nodes. Increasingly, network 255 

science is being applied to a range of neuroanatomical and -physiological data (e.g. [41, 43, 86–91]) 256 

and at different scales of interest (e.g. neurons/populations of neurons, cortical areas, electrode 257 

sites; see [62, 85, 92–94] for an overview). In the present study, the pairwise connectivity measures 258 

for each frequency band and participant were stored in a 28x28 (channel by channel)-matrix. 259 

Therefore, electrode sites are defined as nodes and the wPLI indexes of the electrode pairs within 260 

the matrix as edges. This was done in two steps: First, to construct adjacency matrices for graph 261 

analyses, minimal spanning tree (MST: van Wijk et al., 2010) was used as the threshold starting 262 

point for building binary networks at various densities. The density of a network relates to the 263 

fraction of edges present in the network compared to the maximum possible number of edges. MST 264 

was chosen to ensure that across participant we were comparing network with similar numbers of 265 

nodes (e.g. differential thresholding without MST can lead to unconnected nodes and as a result 266 

networks of different sizes). Afterwards, we investigated network properties over a range of 267 

densities (0.036, 0.079, 0.106, 0.132, 0.159, 0.212, 0.238, 0.265, 0.291; percent of all possible 268 

connections, i.e. ten thresholding levels) by stepwise adding the highest remaining edges. This lead 269 

to ten adjacency matrices, for each frequency band and participant.  270 

 271 

To estimate the differences in global network structure of the brain, we analyzed two graph 272 

theoretical network parameters reflecting segregation (Average Clustering Coefficient) and 273 

integration (Average Shortest Path Length) of the brain [62, 63, 95, 96]. It has been shown in a 274 

variety of simulations and network analyses of imaging data, that the human brain, among other 275 

biological systems and animal brains [93, 97], exhibits a small world architecture [93], which leads 276 

to an advantage of efficient information transfer while keeping the anatomical costs low [98, 99]. 277 

Compared to the two studies by Jäncke et al. [41] and Loui et al. [43] the present investigation did 278 
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use network measures averaged over the whole brain and compared to those of a random network, 279 

instead of individual values per region. This is advantageous, as the vast variability of individual 280 

coherence within a network is reduced to one value per parameter and participant that reflects the 281 

small-worldness or efficiency of a brain network relative to a random or chaotic network [62, 82, 282 

85, 92–94]. By definition [62, 97, 98] Small-Worldness  (7) is characterized by a C, which is 283 

much higher than that of a random network ( = C real /C random >>1), but has a comparable short 284 

path length ( = L real/L random  1).  285 

 286 

(7)  =



=

𝐶𝑟𝑒𝑎𝑙
𝑤 𝐶𝑟𝑎𝑛𝑑𝑜𝑚

𝑤⁄

𝐿𝑟𝑒𝑎𝑙
𝑤 𝐿𝑟𝑎𝑛𝑑𝑜𝑚

𝑤⁄
 . 287 

 288 

Here the (8) Clustering Coefficient 𝐶𝑖 of a node i is defined as the weighted average amount of (9) 289 

triangles 𝑡𝑖
𝑤 around it, i.e. the sum of connections between the neighbours of a node i, divided by 290 

the total amount of possible connections among its neighbors: 291 

 292 

(8) 𝐶𝑖 =
1

𝑛
∑

2𝑡𝑖
𝑤

𝑘𝑖(𝑘𝑖−1)𝑖∈𝑁    293 

(9) 𝑡𝑖
𝑤 =

1

2
∑ (𝑤𝑖𝑗𝑤𝑖ℎ𝑤𝑗ℎ)

1

3
𝑗,ℎ∈𝑁  . 294 

 295 

The (10) Global Clustering Coefficient of a weighted association matrix C
w 

denotes the average 296 

clustering coefficient summed over all nodes 𝑖 ∈ 𝑁  in a network 297 

 298 

(10) 𝐶𝑤 =
1

𝑛
∑ 𝐶𝑖𝑖∈𝑁   299 

and is interpreted as a measure of segregation of the network.  300 

On the other hand the (11) Characteristic Path Length 𝐿𝑖 of a node i is defined as the (12) average 301 

pairwise distance 𝑑𝑖𝑗
𝑤 between the node i and any other node j in the weighted (w) network 302 

 303 
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(11) 𝐿𝑖 =
1

𝑛
∑

∑ 𝑑𝑖𝑗
𝑤

𝑗∈𝑁,𝑗≠𝑖

𝑛−1𝑖∈𝑁  304 

(12) 𝑑𝑖𝑗
𝑤 = ∑ 𝑓(𝑤𝑢𝑣)𝑎𝑢𝑣∈𝑔𝑖↔𝑗

𝑤  . 305 

 306 

The (13) Global Average Path Length is then calculated by taking the average of the Characteristic 307 

Path Length of all nodes 𝑖 ∈ 𝑁  in the network 308 

 309 

(13) 𝐿𝑤 =
1

𝑛
∑ 𝐿𝑖𝑖∈𝑁  310 

 311 

and is interpreted as a measure of integration of the network. As both, andreflect the underlying 312 

brain network structure relative to a random network  of the same density (and degree distribution) 313 

and influence the calculation of small-worldness, we chose to look at these parameters separately. 314 

That is, because we were specifically interested in the potentially differential relation of segregation 315 

and integration in the brain. Various authors have shown, that long-range-connections (integration) 316 

are more associated with synchronization in low frequency bands, whereas short-range-connectivity 317 

is mainly processed within beta-band (e.g. [100]).  318 

 319 

Statistical Analysis 320 

All statistical analyses were done using the open-source statistical software package R (Version 321 

3.5¸https://www.r-project.org/). 322 

We expected group differences between AP and RP regarding AQ-Scores, MAD (PAT), PIS (sum 323 

of correctly identified tones) and network parameters  and (in beta, delta and theta band). 324 

Additional unexpected results obtained in other frequency bands and network parameters are also 325 

reported. In order to correct for multiple comparisons across frequency bands, ten thresholds each 326 

and various network parameters, only significant results within at least two successive thresholds 327 

were considered significant. Results were obtained using t-tests and non-parametric equivalents 328 
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when applicable. Inter-correlations between the variables were investigated to further explore the 329 

interrelation of autistic traits, absolute pitch performance and network structure using regression 330 

and bivariate correlations. Finally, the network parameters  and , AQ-Score and the age of 331 

beginning to play a musical instrument (as a covariate) were used to predict PIS and PAT 332 

performance within the sample using multiple regressions and AQ and AP performance to predict 333 

network parameters.  334 

 335 

Results 336 

Behavioral performance and autism traits 337 

Welch two-sample t-tests revealed significant lower absolute deviations from target tone (MAD; 338 

t(43.7)= 15.614; p < 2.2e-16) and lower deviations from individual mean deviation, i.e. interpreted 339 

as pitch template (SDfoM; t(40.9)= 12.145; p = 3.788e-15) for absolute pitch compared to relative 340 

pitch possessors (Table 2). Having AP was further associated with more autistic traits (AQ; t(60.3) 341 

= -2.501; p < 0.015) and (marginally) an early start of musical training (starting age;  t (55.4) = 342 

1.751; p < 0.086). For AQ, only the subscale “imagination” reached significance (t(57.4)=-4.287, p 343 

< 6.997e-05) with higher values for AP, while “communication” (t(55.3)=-1.977, p = 0.053)  and 344 

“attention to detail” (t(61.6)=-1.776, p = 0.081) were marginally and “social skills” ( t(60.9)=-345 

1.145, p = 0.257)  and “attention switching”  (t(62.0)=1.012, p = 0.316) not significant.  346 

 347 

Table 2 Group differences 

 AP (n=31)  RP (n=33) t-test* 

 Mean SD Range  Mean SD Range  

AQ 20.48 6.05 10-36  16.88 5.44 6-27 t(60.3)= -2.501; 

p = 0.015 

MAD 41.37 36.49 9.8 -

200.57 

 296.84 86.12 91.04 -

467.52 

t(43.7)= 15.614; 

p < 2.2e-16 

SDfoM 52.31 44.96 7.41-

235.69 

 329.77 122.77 134.37 -

811.73 

t(40.9)= 12.145; 

p = 3.788e-15 

starting age 5.97 2.97 2-17  7.12 2.22 3-12 t(55.4)= 1.751; 

p = 0.086 

Age, nonverbal IQ (SPM), information processing capacity (ZVT), musical training (total hours during life 

span on main instrument), musicality (AMMA; MSI) and online pitch identification screening (PIS) for each 

group; * one RP has reported himself not having absolute pitch but reached a screening score of 13. Because 

of this and the weak performance in the pitch adjustment test, the subject was assigned to the RP group. 

Significant group differences highlighted in bold. * Welch-two sample t-test 

 348 
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Network analysis 349 

Welch two sample t-tests (p<0.05, uncorrected) reveiled higher average Path length for AP 350 

compared to RP within the delta band (2-4 Hz) for both, eyes open (EO) and eyes closed (EC), 351 

resting state conditions and at least two thresholds each. Lower path length values for AP were 352 

found in alpha (7-13 Hz) and beta (13-18 Hz) eyes open condition for one threshold each but did 353 

not reach significance (p<0.10; see figure 1). Analysis of Clustering Coefficient  yielded lower 354 

Clustering for AP in EO delta (p<0.05) for one threshold and EO beta (p<0.10) for two neighboring 355 

thresholds. RP exhibited higher Clustering for a single threshold in EO theta (p<0.10). Small 356 

Worldness  was widely reduced in AP within EC gamma, EC alpha and EO alpha with significant 357 

(p<0.05) or marginal significant (p<0.10) group differences across one or two thresholds each 358 

(figure 1). No significant higher thresholds were found for AP. 359 

 360 

In general, significant and marginally significant results were spread widely across different 361 

thresholds (see figure 1). Only significant results appearing on at least two thresholds in the same 362 

frequency band were included in further analyses (multiple regression). Of those, the threshold (T) 363 

with the highest effect size of neighbouring significant results was taken: Clustering  EO beta 364 

(T= 0.2910), Small Worldness  EC gamma (T=0.1322) and Path length  EC delta 365 

(T=0.2116). Path length EO delta (T=0.0357) was not taken into account because of correlation 366 

with Path length EC delta (T=0.2116). 367 

 368 

(Figure 1) 369 

 370 

Figure 1: Multiple comparisons (Welch two sample t-tests) across frequency bands, 371 

thresholds, eyes-closed vs. eyes-open RS between AP and RP. Matrix cells contain p-values 372 

(uncorrected) and are colored according to Cohen´ d values. Blue cells indicate higher SW (Small 373 

World), Lrand (Path length compared to random network) and Crand (Clustering compared to 374 
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random network) for AP compared to RP; red cells show higher parameters for RP. Significant 375 

results (p<0.05, *; p<0.01,**; p<0.001,***) and tendencies (p<0.10, “.”) are marked.  376 

 377 

Prediction of absolute pitch performance 378 

Multiple regression analysis was used to predict AP performance in pitch naming (PIS) and pitch 379 

adjustment (PAT). A multiple regression predicting PIS performance by autistic traits (AQ; beta = 380 

0.892, p<0.0001), Clustering (C_EO_b10; beta = -66.074, p<0.0002), Path length (L_ECd10; beta = 381 

76.909, p<0.008) and Small Worldness (ECg4; beta= -6.612,p<0.0325) explained 44% of the 382 

variance (R² = 0.44, R²adjusted=0.401; F(4,57) = 11.22, p <9.92e-17). PAT performance was 383 

predicted by the same predictors plus the age of begin of musical training (starting age) and 384 

explained 38% of the variance (R² = 0.380, R²adjusted=0.326; F(5,57) = 6.991, p <3.736e-05). Here, 385 

AQ (beta = -0.089, p<0.004), Clustering (beta = 6.775, p<0.004) and Small Worldness (beta= 386 

0.946, p<0.023)) significantly contributed to the prediction, while age of begin of musical training 387 

(beta= 0.130, p<0.053)) and Path length (beta= -7.006, p<0.070)) remained marginal significant. 388 

Bivariate pearson correlations among the variables are listed in table 3.  389 

 390 

 391 
Table 3 Bivariate correlations between variables of interest   
 Correlation coefficient (Pearson)   

p-value 
 

PIS 0.38** -0.91*** -0.85*** -0.23 . 0.35** -0.30* -0.28* 

0.002** AQ -0.28* -0.25* 0.025 0.13 0.20 0.022 

<0.001*** 0.024* MADa 0.93*** 0.30* -0.27* 0.28* 0.31* 

<0.001*** 0.045* p<0.001*** SDfoMa 0.25 . -0.21 . 0.25 . 0.21 . 

0.074 . 0.844 0.017* 0.053 . start age 0.018 0.22 . 0.10 

0.005** 0.315 0.033* 0.094 . 0.887 λ ECdelta 0.08 

0.017* 0.109 . 0.026* 0.051 . 0.079 . 0.534 γ EObeta 

0.028* 0.866 . 0.013* 0.100 . 0.431   σ ECgamma 
Pearson correlations between variables of interest (network parameters: selected bands and thresholds); significant correlation coefficients are 

highlighted with stars. a variables were z-standardized to the mean and sd of the non-AP population 

 392 

Prediction of network parameters 393 

To further investigate the interrelation between AP, autistic traits and network connectivity, we 394 

calculated general linear models to predict network connectivity (L, C, SW) differences obtained 395 

before by a combination of AP performance and AQ. Different models were compared using R², 396 

R²adjusted and information criteria (AIC). Separate models are shown for active (PAT) and passive 397 
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(PIS) AP performance as for their high collinearity. Only Clustering obtained a better prediction by 398 

a joint model of AQ and AP performance (active and passive on separate models because of 399 

intercorrelation) with AQ as a significant predictor. While inclusion of AQ-Scores did not improve 400 

the prediction of path length and small worldness (see table 4), it was predictive for Clustering 401 

Coefficients in the beta range in each, a joint model with either MAD (F(2,60)=6.011, p<0.004; 402 

R²=0.167,R²adjusted=0.139; βAQ=4.06e-3, p<0.014; βMAD=2.07e-4, p<0.004) or PIS-performance 403 

(F(2,59)=6.889, p<0.002; R²=0.189,R²adjusted=0.162; βAQ=4.44e-3, p<0.009; βMAD=-2.62e-3, 404 

p<0.0041). Both models were superior compared to a prediction of network connectivity by AP 405 

performance alone, even though the bivariate correlation between AQ and Clustering did not reach 406 

significance (see previous section) 407 

 408 

Table 4 Comparison of models predicting network parameters by AP and AQ 

  Predictors (β)   comparison of models 
γ EObeta intercept MAD PIS AQ F(df) p-value R² R²adjusted AIC 
Model 1 3.54e-1 *** 2.07e-4 ** - 4.06e-3 * 6.011 (2,60) <0.004 ** 0.167 0.139 -145.45 

Model 2 4.383-1 *** 1.58e-4* - - 5.232 (1,60) <0.026* 0.078 0.064 -141.13 

Model 3 4.25e-1 *** - -2.62e-3** 4.44e-3** 6.889 (2, 59) <0.002** 0.189 0.162 -146.01 

Model 4 4.96e-1 *** - -1.83e-3* - 6.009  (1,60) <0.017* 0.091 0.076 -140.91 

σ ECgamma intercept MAD PIS AQ F-value p-value R² R²adjusted AIC 

Model 1 5.4e-1 * 1.02e-3* - 5.25e-3 3.378 (2,60) <0.041* 0.101 0.071 74.09 

Model 2 6.49e-1 *** 9.57e-4 * - - 6.504 <0.013* 0.096 0.081 72.43 

Model 3 8.08e-1 *** - -1.11e-2* 9.30e-3 2.981 (2,59) <0.058 0.092 0.061 73.53 

Model 4 9.56e-1 *** - -9.41e-3* - 5.06 (1,60) <0.028* 0.078 0.062 72.48 

λ ECdelta intercept MAD PIS AQ F-value p-value R² R²adjusted AIC 

Model 1 1.82 ***  -8.34e-5 - 4.40e-04 2.433 (2,60) 0.096 0.075 0.044 -205.34 

Model 2 1.83 *** -8.88e-5* - - 4.736 (1,61) <0.033* 0.072 0.057 -207.14 

Model 3 1.79 *** - 1.30e-3 ** -1.29e-5 4.228 (2,59) <0.019* 0.125 0.096 -204.45 

Model 4 1.79 *** - 1.29e-3 ** - 8.6 (1,60) <0.005** 0.125 0.111 -206.45 

Parameters, significance (F-statistics) and comparison of different models. Models are compared using R², R²adjusted
 and AIC (Akaike information criterion). Smaller AIC and 

higher R² indicate superior models. Significance: p<0.05 *, p<0.01 **, p<0.01 *** (uncorrected). 

 409 

 410 

Post-hoc analysis: single connection statistics 411 

To assess single connection differences in the beta frequency band, permutation statistics 412 

(npermutations=10000) across groups were evaluated post-hoc. To obtain these, raw matrices in the 413 

relevant frequency bands (significant results) were z-standardized individually and permutation 414 

group statistics (FDR corrected) performed across groups using custom MATLAB scripts. An 415 

unstandardized comparison was provided as well. While the former reflects the relative importance 416 

of the connections within the participants´ networks between the groups, the latter shows group 417 
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differences in the absolute wPLI. Results revealed overall increased wPLI values for AP in a 418 

network comprising mainly left frontal and parietal regions (especially nodes: F7, F3, F4, P3; see 419 

table 5 for anatomical correlations) combined with lower connectivity within and between bilateral 420 

temporal regions (FT7-T8, FT7-T7, FT8-T8; unstandardized results). Relative to their own 421 

networks (z-standardized participants matrices), AP´s exhibited reduced connectivity compared to 422 

RP between left FT7 and various sites along frontal-temporal-occipital electrodes 423 

(F8 ,T8,TP8,P8,P3) in the right hemisphere, especially again within and between bilateral temporal 424 

regions (FT7-T8, FT7-T7, FT8-T8). The only significant higher connections relative to their own 425 

network for AP were found between F7, F8 and P7. Figure 2 (brain nets created using the Matlab 426 

Toolbox BrainNet Viewer [101]) shows Cohen´s d effect size values for all pairs of electrodes 427 

between groups in separate matrices for z-standardized vs. unstandardized raw connectivity 428 

matrices. The most pronounced differences that were found in both, standardized and 429 

unstandardized (relative) comparisons, comprise reduced interconnection between bilateral auditory 430 

cortices (FT7-T8, FT7-T7, FT8-T8) as well as higher frontal-parietal connectivity (F7- F8, F8-P7) 431 

for AP. These connections therefore not only exhibit a group difference on absolute wPLI values, 432 

but also play a different role relative to the other connections in the participants networks. 433 

(Figure 2) 434 

 435 

Figure 2 Visualization of single connection differences in the beta range. left: Cohen´s d effect 436 

size values for all pairs of electrodes between groups in separate matrices for unstandardized (top) 437 

vs. z-standardized (bottom) raw connectivity matrices (permutation testing). Significant connections 438 

(FDR corrected) are highlighted in light blue. right: significant differences plotted in EEG-cap order 439 

(extended 10-20 system, view from above). Colors indicate direction of effect (blue: AP>RP, 440 

yellow: RP<AP) and size of the line the corresponding effect size (Cohen’s d).  441 

 442 
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Rough anatomical associations of electrode positions, taken from Koessler et al. [102], are 443 

summarized in table 5. However, it must be clearly said, that graph theoretical accounts and single 444 

connection permutation tests are completely different techniques and cannot be compared directly. 445 

This is, because in the course of graph theoretical analysis, thresholds have to be applied on the 446 

participants´ raw matrices, leading to a reduced number of total connections. Thus the connections 447 

fed into graph analysis also highly depend on the participant specific order of connection weights 448 

and can have a high regional variability despite producing similarly high or low network 449 

parameters. 450 

 451 

Table 5 Cranio-Cerebral Correlations for electrode  positions (10-10 system, modified after [110]) 

 Talairach coordinates (mm) anatomical region 

Electrode label x y z lobe gyri BA 

FP1 −21.2±4.7 66.9±3.8 12.1±6.6 L FL Superior frontal G 10 (100%) 

FP2 24.3±3.2 66.3±3.5 12.5±6.1 R FL Superior frontal G 10 (100%) 
F3 −39.7±5.0 25.3±7.5 44.7±7.9 L FL Middle frontal G (75%), 6 (19%), 46 (6%) 

F4 41.9±4.8 27.5±7.3 43.9±7.6 R FL Middle frontal G 8 (69%), 6 (6%), 9 (25%) 
FC3 −45.5±5.5 2.4±8.3 51.3±6.2 L FL Middle frontal G 6 (75%), 4 (12,5%), 8 (12,5%) 

FC4 47.5±4.4 4.6±7.6 49.7±6.7 R FL Middle frontal G 8 (69%), 6 (6%), 9 (25%) 

C3 −49.1±5.5 −20.7±9.1 53.2±6.1 L PL Postcentral G 21 (62,5%), 22 (25%), 20 (6,5), 42 (6%) 

C4 50.3±4.6 −18.8±8.3 53.0±6.4 R PL Postcentral G 123 (81,5%), 6 (12,5), 40 (6%) 

CP3 −46.9±5.8 −47.7±9.3 49.7±7.7 L PL Inferior parietal G 40 (82%), 123 (6%), 5 (6%), 39 (6%) 

CP4 49.5±5.9 −45.5±7.9 50.7±7.1 R PL Inferior parietal G 40 (77,5%), 123 (12,5%) 

P3 −41.4±5.7 −67.8±8.4 42.4±9.5 L PL Precuneus 39 (37,5%), 7 (25%), 19 (25%), 40 (12,5%) 

P4 44.2±6.5 −65.8±8.1 42.7±8.5 R PL Inferior parietal L 39 (31%), 7 (25%), 40 (25%), 19 (19%) 

F7 −52.1±3.0 28.6±6.4 3.8±5.6 L FL Inferior frontal G 45 (56%), 47 (38%), 46 (6%) 

F8 53.2±2.8 28.4±6.3 3.1±6.9 R FL Inferior frontal G 45 (37,5%), 47 (37,5%), 46 (25%) 
FT7 −59.2±3.1 3.4±5.6 −2.1±7.5 L TL Superior temporal G 22 (75,5%), 21 (12,5%), 38 (6%), 44 (6%) 

FT8 60.2±2.5 4.7±5.1 −2.8±6.3 R TL Superior temporal G 22 (75%), 21 (13%), 38 (6%), 44 (6%) 

T7 −65.8±3.3 −17.8±6.8 −2.9±6.1 L TL Middle temporal G 21 (81,5%), 22 (12,5%), 43 (6%) 

T8 67.4±2.3 −18.5±6.9 −3.4±7.0 R TL Middle temporal G 4 (50%), 123 (25%), 6 (25%) 

TP7 −63.6±4.5 −44.7±7.2 −4.0±6.6 L TL Middle temporal G 21 (50%), 37 (25%), 22 (19%), 20 (6%) 

TP8 64.6±3.3 −45.4±6.6 −3.7±7.3 R TL Middle temporal G 21 (62,5%), 22 (12,5%), 20 (12,5%), 37 (12,5%) 

P7 −55.9±4.5 −64.8±5.3 0.0±9.3 L TL Inferior temporal G 37 (44%), 19 (38%), 39 (18%) 

P8 56.4±3.7 −64.4±5.6 0.1±8.5 R TL Inferior temporal G 19 (56%), 37 (19%), 20 (12,5), 39 (12,5%) 

O1 −25.8±6.3 −93.3±4.6 7.7±12.3 L OL Middle occipital G 18 (81%), 19 (19%) 

O2 25.0±5.7 −95.2±5.8 6.2±11.4 R OL Middle occipital G 18 18 (81%), 19 (19%) 

Oz 0.3±5.9 −97.1±5.2 8.7±11.6 M OL Cuneus 18 (62,5), 17 (31%), 19 (6,5%) 

Fz 0.0±6.4 26.8±7.9 60.6±6.5 M FL Bilateral medial 6 (81,5%), 8 (12,5%), 9 (6%) 
Cz 0.8±4.9 −21.9±9.4 77.4±6.7 M FL Precentral G 4 (62,5%), 6 (37,5%) 

Pz 0.7±6.3 −69.3±8.4 56.9±9.9 M PL Superior parietal L 7 (88%), 5 (6%), 19 (6%) 

Estimated projection of electrode positions to cortical areas (Talairach space) and variability of associated BA (Brodman areas), investigated by [110] using EEG-MRI sensors.  
L=left, R=right, FL= frontal lobe, PL=parietal lobe, TL=temporal lobe, OL=occipital lobe; L=lobe, G=Gyrus. 

 452 

Discussion453 

The results of the present study underline a possible interrelation between autistic traits, brain 454 

connectivity and absolute pitch ability. We investigated EEG resting state connectivity using a 455 

graph theory approach in professional musicians with and without absolute pitch, the Autism 456 

Spectrum Quotient [70] and each a test of pitch naming and pitch adjustment ability. Analyses 457 

revealed higher autistic traits, higher average Path length (delta 2-4 Hz)), lower average Clustering 458 

(beta 13-20 Hz), lower Small-Worldness (gamma 30-60 Hz) and a tendency for an earlier start of 459 
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musical training in absolute pitch musicians. Furthermore, pitch naming was well predicted by 460 

autistic traits, Path length and Clustering values, explaining a total of 44% of the variance. Pitch 461 

adjustment (i.e. active absolute pitch) was explained by the same predictors plus the age of begin of 462 

musical training summing up to an R² = 0.38. However, in the latter case, the starting age of 463 

musical training and Path length remained marginally significant.  464 

It is noteworthy that the start of playing a musical instrument in our models did not significantly 465 

improve the prediction of AP performance but only in pitch adjustment. Furthermore, the total 466 

amount of musical training during life was neither predictive of any AP performance in the general 467 

linear model, nor did show a group difference. The typical human brain exhibits a small-world like 468 

structure with a much higher Clustering compared to a random network, while maintaining an 469 

efficient information transfer and low wiring cost through an equally low path length [62, 93, 97].  470 

In this context, the results of the present study indicate a less efficient, less small-world structured 471 

functional network in AP compared to RP, in line with the structural results of Jäncke et al. [41] and 472 

results from the autism research [44, 45, 48, 90, 103] but extends the results to EEG functional 473 

connectivity networks.  474 

 475 

It is further interesting that both correlations and regressions between autistic traits and the two AP 476 

test show higher correlations and better prediction of pitch naming than pitch adjustment by AQ. 477 

This can be explained by the aforementioned theory of veridical mapping [7, 61]. This framework 478 

explains savant abilities and other unusual abilities in autism by their common characteristic of one-479 

to-one mappings between elements of two conceptual or perceptual structures (e.g. letters-musical 480 

tones, letters-colors). According to this theory all of these abilities share further commonalities 481 

including hyper-systemizing [53], enhanced perceptual functioning [51, 52], depend on exposure to 482 

material and - if they occur as autistic savant ability - the related elements can also be recalled 483 

without a strategy [7, 61]). This explicit recall in absolute pitch, i.e. the naming of the pitch, 484 

therefore might be a more savant-like ability, leading to a higher correlation with autistic traits. 485 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/456913doi: bioRxiv preprint 

https://doi.org/10.1101/456913


22 

 

Furthermore, we observed reduced connectivity for AP compared to RP in interhemispheric 486 

connections when compared to the participants own distribution of connectivities (z-standardized 487 

calculation) – especially between left auditory located electrodes and various right temporal, 488 

parietal and frontal electrodes. 489 

 490 

While higher Path length in low frequency bands (delta, therefore reduced integration) and lower 491 

Clustering in higher frequencies (beta, reduced segregation on sensor level) are in line with our 492 

apriori hypotheses, we did not expect reduced Small-Worldness within gamma-band for AP 493 

compared to RP (found during eyes closed). Nevertheless this result can be explained by previous 494 

research findings: Cantero et al. [104] reported increased gamma band measured by intracranial 495 

electrodes between hippocampal areas and neocortex in humans during wakefulness but not during 496 

sleep, pointing to a relation of gamma-band couplings and awareness states in humans. This also 497 

suggests, that gamma band activity, probably useful for the storage and retrieval of memory [105–498 

107] and binding of perceptual features [106, 107] might even play a role during resting (awake 499 

more than asleep) states. AP ability, similarly, is often described as the ability to associate tones and 500 

verbal labels in a stable, hyper memorized way, pointing to the importance of long-term memory 501 

processes [108–112]. Furthermore, Bhattacharya et al. [113, 114] found increased long-range 502 

gamma synchronization between distributed cortical areas during music listening in musicians 503 

compared to non-musicians, which might reflect musical memory and binding of musical features. 504 

In contrast, Sun et al. [115] found reductions in gamma band phase locking and power in 505 

participants with autism associated with perceptual organization tasks (visual), while Brown et al. 506 

[116] found higher gamma peaks in response to illusory figures in autism. Generally, abnormal 507 

gamma activity is found in a range of neuropsychiatric disorders, with reduced gamma in negative 508 

schizophrenic symptoms, Alzheimer’s disease and task specific gamma decrease in autism, but an 509 

increase in gamma in ADHD, positive schizophrenic symptoms and epilepsy (for a review see [117, 510 

118]). Thus, the results of reduced Small-Worldness in AP are in line with an integration-deficit 511 
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hypothesis of AP, both in perceptual organization and binding of musical stimuli and in brain 512 

connectivity, which is again similar to autism (see [42, 44, 119–122]. However, the findings in 513 

gamma band did not show correlations with autistic symptoms. 514 

Our results replicate the results of Dohn et al. [39] showing higher autistic traits, which reached 515 

significant in the subscales “imagination” (similar to [39]),“attention to detail” (marginally) and 516 

“social skills” (marginally). Furthermore, autistic traits were also not only correlated to pitch 517 

naming as already shown by Dohn et al. [39], but also to pitch adjustment accuracy (MAD, mean 518 

absolute deviation to target tone in cent ; 100 cent= 1 semitone) and adjustment consistency 519 

(SDfoM, pitch template tuning). However, similar to [39], group mean autistic traits did not reach 520 

the cutoff for diagnostic relevance, indicating a high variability regarding autistic traits even in the 521 

AP group (with 7 AP compared to 1 RP scoring above cutoff or borderline). This fits with analyses 522 

of the broader autism phenotype [123] and might implicate joint as well as divergent phenotypic 523 

and endotypic characteristics of AP and autism.  524 

 525 

In contrast to our study, various previous studies have shown an influence of the start of musical 526 

training in AP, making the onset of training before the age of 7 necessary, but not sufficient to 527 

acquire absolute pitch [12, 16–19, 36]. For example, Loui et. al [36] recently found, that early onset 528 

of musical training was associated with an enlarged tract between pSTG and pMTG in the left 529 

hemisphere, but the degree of AP proficiency still correlated with the size of the tract after 530 

partialling out age of onset. Gregersen et al. [12] further analyzed familiar aggregation of AP in 531 

different samples of musicians and non-musicians with early and late onset of musical training 532 

comparing different types of musical education and found no general differences of AP between 533 

early or late starting siblings of AP. Their results further indicated a higher influence of genetic 534 

disposition and the type of education used, which both had a more pronounced influence than age of 535 

onset per se [12].  536 

 537 
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Higher average Path length (delta 2-4 Hz)), lower average Clustering (beta 13-20 Hz) and lower 538 

Small-Worldness (gamma 30-60 Hz) for AP compared to RP are also in line with previous studies 539 

showing structural local hyper-vs. global hypoconnectivity in AP [41] and reduced Clustering and 540 

higher Path length in participants with autism [103, 134]. In contrast, Loui et al. [43] reported 541 

overall increased degrees, clustering and local efficiency coefficients of functional networks in AP 542 

using fMRI during music listening and rest. The authors further speculate that there might be a 543 

“dichotomy between structural and functional hyperconnectivity in AP, where structure is locally 544 

hyperconnected but function is globally hyperconnected [43]. The present study, however, provided 545 

more evidence for an also functionally underconnected brain in AP musicians compared to relative 546 

pitch musicians. Diverging results compared to Loui et al. [43] might be due to differences in 547 

methods (EEG vs. fMRI) or different definition of nodes (electrode positions vs. brain regions) and 548 

edges (wPLI vs. functional correlations). 549 

 550 

Differences seen in single connection analysis might reflect the connections that lead to differences 551 

in Clustering values described above. Similarly to the prediction of Clustering by AP and autistic 552 

traits, single connection differences in the beta range are in line with findings from the autism 553 

literature: First, various others have reported reduced interhemispheric connectivity in autism [48, 554 

102, 103, 135, 136]. Second, hypoconnectivity between left FT7 (BA: 22) and right frontal-555 

temporal-occipital electrodes (F8, T8, TP8, P8, P4; BA: 45/47, 4, 21/22/20/37, 19/37, 39/7/40/19; 556 

see table 4 for anatomical interpretation of electrode positions) might reflect a specific 557 

underconnectivity between left STG and right IFOF, of which alterations have already been 558 

described in both AP [137] and Autism [138]. Especially reduced interhemispheric connectivity 559 

between left auditory related cortex and right IFOF might reflect autism-like personality traits and 560 

perception of (some) absolute pitch possessors. The IFOF, especially the right IFOF, has been 561 

shown to play an important role in music perception and the integration of musical features, as it 562 

connects various brain regions from frontal over temporal to posterior parts of the brain [139]. A 563 
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reduced white matter integrity of IFOF was found in amusics [139, 140], whereas people with 564 

synaesthesia and absolute pitch where shown to have a higher IFOF integrity [59, 137]. More 565 

importantly, however, increased interhemispheric connectivity in musicians was found by several 566 

studies [141–145] showing the importance of interhemispheric integration in music perception. A 567 

reduced interhemispheric functional connectivity, especially between bilateral auditory regions as 568 

found in the present study, perhaps might result in less perceptual integration of musical features 569 

(i.e. auditory weak central coherence) and hence a more detail oriented processing of music and 570 

musical pitches (i.e. absolute vs. relative) in those participants. An exaggeration of those features 571 

might also lead to symptoms of amusia, which has also been associated with alterations in left and 572 

right STG and right IFOF [139, 140, 146] and with autism [147]. However, it must be clearly said, 573 

that we cannot explicitly conclude anatomical differences from connectivity differences on the 574 

sensor levels. Further structural or functional studies using methods with high anatomical precision 575 

have to be conducted to evaluate this hypothesis.  576 

 577 

Some caveats of the present approach are warranted. First, we did not use a source-based approach 578 

of functional connectivity, making conclusions with respect to anatomical associations of the 579 

obtained differences very speculative. Second, various different configurations of local and global 580 

hyper- vs. hypoconnectivity can be assumed to result into the same averaged network measures, 581 

therefore no conclusions can be made about the exact relative structure within the brain and among 582 

different regions. Nevertheless, higher Path length (EC, delta 2-4 Hz) can be interpreted as weaker 583 

integration in the network and higher Clustering (EO,13-20 Hz) as higher local segregation of 584 

functions [85] and therefore might again reflect a local hyper- over global (integrative) 585 

hypoconnectivity in the brain of AP musicians. This interpretation is further encouraged by studies 586 

showing, that long-range connectivity (integration) is more reflected in low frequency bands, 587 

whereas short range connectivity is more high frequency bands [100, 148]. This again fits to the 588 

results of our study, as higher Clustering, indicative for local segregation, was found in the beta 589 
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range and Path length - indicative for global integration in the network and therefore long-range-590 

associations - in the delta range.  591 

In addition, significant group differences were highly selective for certain frequency bands, states 592 

(EO vs. EC) and thresholds. Nevertheless, we can rule out the possibility, that we obtained those 593 

differences by chance. First, there were significant differences for at least one threshold in a 594 

frequency band, effect sizes of the other thresholds in the same frequency band never (exclusive: 595 

Crand EO alpha) indicated reverse effects (see color code in figure 1). Second, we did only consider 596 

differences relevant, if at least two neighbouring thresholds exhibited a significant group difference. 597 

Third, the three network parameters selected via group differences always could also predict AP 598 

performance with a reasonable high R² and/or showed bivariate correlations with AP performance 599 

in both tests of AP.  600 

 601 

For the first time we included a pitch adjustment test of active absolute pitch [69] into a study on 602 

brain connectivity in AP, so we are not only referring to pitch naming as were previous studies [36, 603 

39, 41, 43]. Also, whereas Jäncke et al. [41] were using structural cortical thickness covariations 604 

and Loui et al. [43] functional correlations of fMRI activity (during rest and music listening) as 605 

weights for connections in graph analysis, we for the first time applied graph theory on resting state 606 

EEG connectivity of AP musicians, both in eyes closed and eyes open conditions. This is similar to 607 

methods used in analyzing brain connectivity in autism [49, 103]. Finally, while e.g. Elmer et al. 608 

[108] used phase synchronization as an estimate for functional EEG connectivity, we used wPLI 609 

(weighted phase lag index, [75]), which is less contaminated by volume conduction [75–78, 81] 610 

thus contributing to a higher validity and reliability with respect to true brain connectivity and graph 611 

theoretical parameters [79, 83, 84].  612 

 613 

In summary, differences in network and connectivity analysis in the beta band seem to be 614 

specifically associated with the relation of autistic traits and absolute pitch, whereas Path length in 615 
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delta range and Small-Worldness in gamma range might reflect other influences on the acquisition 616 

of the ability (e.g. environmental factors, genetic factors not attributable to autistic traits, musical 617 

education method, instrument, learning, sensitive periods). To our knowledge this is the first study 618 

to combine measures on autistic traits and brain networks on musicians with and without absolute 619 

pitch. We conclude that this is further evidence showing, that AP and Autism both have shared and 620 

distinct neuronal and phenotypic characteristics. This might also be reflected in subgroups of AP 621 

with different genesis, providing new arguments for the discussion about a dichotomous or 622 

continuous view on AP. However, the causal relationship between AP, autistic traits and brain 623 

connectivity remains to be evaluated.  624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 
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 638 

 639 

 640 

 641 
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Figures 642 

Figure 1 643 

 644 
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Figure 2 645 

 646 

 647 

List of abbreviations 648 

EEG       electroencephalography 649 

(w)PLI       (weighted) Phase Lag Index 650 

AP       absolute pitch 651 
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RP       relative pitch 652 

ASD       Autism Spectrum Disorder or Condition 653 

PIS       Pitch identification Screening 654 

SPM       Standard Progressive Matrices 655 

ZVT       “Zahlenverbindungstest” (~Trail Making Test) 656 

AMMA      Advanced Measures of Music Audiation 657 

(GOLD-)MSI      Musical-Sophistication Index 658 

PAT       Pitch adjustment test 659 

MAD       Mean absolute derivation from target tone 660 

SDfoM      Standard deviation from own mean 661 

AQ       Autism-Quotient 662 

EO       eyes open resting state 663 

EC       eyes closed resting state 664 

ICA       independent component analysis 665 

PC       phase coherence 666 

sgn       sign 667 

imag       imaginary component 668 

Sxyt       cross-spectrum 669 

MST       minimum spanning tree 670 

       Small-Worldness 671 

C       Clustering Coefficient 672 

  Clustering relative to random network of same 673 

cost and density distribution 674 

L       Path length 675 

  Path length relative to random network of same 676 

cost and density distribution 677 
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