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Abstract

Noise is a major challenge for the analysis of fMRI data in general and for connectivity
analyses in particular. As researchers develop increasingly sophisticated tools to model statis-
tical dependence between the fMRI signal in different brain regions, there is a risk that these
models may increasingly capture artifactual relationships between regions, that are the result
of noise. Thus, choosing optimal denoising methods is a crucial step to maximize the accuracy
and reproducibility of connectivity models. Most comparisons between denoising methods re-
quire knowledge of the ground truth: of what is the ‘real signal’. For this reason, they are
usually based on simulated fMRI data. However, simulated data may not match the statistical
properties of real data, limiting the generalizability of the conclusions. In this article, we pro-
pose an approach to evaluate denoising methods using real (non-simulated) fMRI data. First,
we introduce an intersubject version of multivariate pattern dependence (iMVPD) that com-
putes the statistical dependence between a brain region in one participant, and another brain
region in a different participant. iMVPD has the following advantages: 1) it is multivariate,
2) it trains and tests models on independent folds of the real fMRI data, and 3) it generates
predictions that are both between subjects and between regions. Since whole-brain sources of
noise are more strongly correlated within subject than between subjects, we can use the dif-
ference between standard MVPD and iMVPD as a ‘discrepancy metric’ to evaluate denoising
techniques (where more effective techniques should yield smaller differences). As predicted, the
difference is the greatest in the absence of denoising methods. Furthermore, a combination of
removal of the global signal and CompCorr optimizes denoising (among the set of denoising
options tested).
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1 Introduction

Cognitive tasks elicit the activation of multiple brain regions (Ishai, 2008; Anzellotti and Caramazza,
2015). To understand how these regions function jointly to implement cognition, we need to inves-
tigate their connectivity. Connectivity measures based on structural data (i.e. Assaf and Pasternak
(2008)) and connectivity measures based on functional data (i.e. Biswal et al. (1995)) have distinct
advantages: the former enable inferences about whether regions are directly connected, the latter
have the potential to investigate task-specific changes in the interactions between regions. Perhaps
the most popular method to study interactions using functional data is ‘functional connectivity’, an
analysis technique based on computing Pearson’s correlation between the average responses in two
brain regions over time (Biswal et al., 1995). Functional connectivity has been used extensively to
map brain networks (Thomas Yeo et al., 2011) and search for biomarkers for patient populations
(Drysdale et al., 2017).

Functional connectivity has served as the backbone of a vast literature, but the development
of new methods for the study of neural responses and the emergence of new questions called for
a new approach to study functional interactions between brain regions. Functional connectivity is
univariate in nature: it is based on correlations between spatially-averaged responses. By contrast,
it is now known that multivariate patterns of response encode rich information that is lost by
averaging (Haxby et al., 2001; Haynes and Rees, 2006). Furthermore, functional connectivity does
not lead to a predictive model that can be tested in independent data. Training a model with part
of the data and testing its accuracy in independent data has become the norm for some types of
analyses (i.e. MultiVoxel Pattern Analysis - MVPA, Norman et al. (2006)), but it is not done in
functional connectivity, and this makes it more susceptible to noise. A technique was needed to
capture interactions between brain regions preserving multivariate information, and to implement
training and testing in independent data. To satisfy these requirements, we have recently developed
MultiVariate Pattern Dependence (MVPD, Anzellotti et al. (2017)), and we have found that it is
more sensitive than univariate connectivity techniques (Anzellotti et al., 2017).

MVPD fits a model with a set of training data and tests it in independent data, therefore it
is more robust to noise than methods lacking an independent ‘generalization’ test. However, some
sources of noise may still affect MVPD results. For this reason, it is critical to use effective denoising
techniques. Estimating the effectiveness of different denoising techniques for connectivity analysis
has been typically challenging. Studies comparing different denoising approaches usually rely on
simulations (i.e. Power et al. (2015)), because in simulations the ground truth is known. The
simulation model determines what part of the overall response is the signal and what part is the
noise, and the failure or success of the denoising methods can be determined unambiguously.

Unfortunately, applying conclusions obtained with simulation models to real fMRI data is non-
trivial. Despite efforts to generate simulations that preserve many of the statistical properties of
Blood-Oxygen Level Dependent (BOLD) signal, it is very difficult to generate simulations that
perfectly match the statistical properties of real BOLD timecourses. This difficulty poses a major
obstacle towards developing increasingly sophisticated connectivity techniques: more complex con-
nectivity models might capture complex relationships between the noise in different regions, and
thus require increasingly effective denoising. The differences between simulations and real data
could thus have an even greater impact on the evaluation of denoising techniques.

In this article, we developed an approach to evaluate different denoising techniques using real
fMRI data (as opposed to simulations). Our approach relies on computing interactions between
brain regions between participants, following an ‘intersubject’ approach. Intersubject versions of
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univariate connectivity measures have been used in the previous literature to study individual
differences in the responses to the same stimuli (intersubject correlations, Hasson et al. (2004,
2008); Wilson et al. (2007)). We introduce here an intersubject version of MVPD (iMVPD), which
predicts responses between brain regions in different participants (source code available at https:
//github.com/yl3506/iMVPD_denoise). Three key properties define iMVPD: 1) it is multivariate,
2) it trains and tests models on independent folds of the data, and 3) it generates predictions that
are both between subjects and between regions.

We took advantage of the unique properties of iMVPD to test the effectiveness of different
denoising techniques on real fMRI data in the context of multivariate connectivity analyses. Con-
sidering a set of functionally-defined regions of interest, we computed connectivity matrices showing
MVPD strength across each pair of regions both within subject and between subjects. Since differ-
ent participants are likely to exhibit variation in their head movements and patterns of breathing
or respiration, iMVPD should be less affected by these sources of noise. As a consequence, effective
denoising techniques should yield a reduced difference between the within-subject and intersubject
connectivity matrices. This gave us an index that we could use to compare different denoising
approaches.

2 Methods

2.1 Data

All analyses in this project use the 3 tesla (3T) audio-visual fMRI dataset from the StudyForrest
project (http://studyforrest.org), which encompasses over 2 hours of scans for each of 15 partici-
pants (all right handed, mean age 29.4 years, range 21–39, 6 females). T2*-weighted echo-planar
images (TR=2s, TE=30m, 90 deg flip angle, parallel acquisition with sensitivity encoding (SENSE)
reduction factor 2) were acquired using a whole-body Philips Achieva dStream MRI scanner with a
32 channel head coil. Each volume consists of 35 axial slices with a 10% inter-slice gap. Each slice
comprises 80 × 80 voxels, with voxel resolution = 3 × 3 × 3mm, covering a Field of view (FoV) of
240mm (see (Hanke et al., 2016) for additional details).

The dataset includes localizer sessions with stimuli from multiple categories, and the viewing of
the entire movie Forrest Gump, subdivided into 8 sections presented to participants in 8 separate
functional runs. This dataset was chosen for this study as it provides complex sensory input that
follows the same timecourse between participants (Labs et al., 2015). During the localizer session
for this experiment, participants were shown 24 unique grayscale images from each of six stimulus
categories: human faces, human bodies without heads, small objects, houses and outdoor scenes
comprising of nature and street scenes, and phase scrambled images (Sengupta et al., 2016). During
the movie session for this experiment, participants were shown two-hour audio-visual stimuli (the
movie Forrest Gump) (Joshi et al., 2018).

2.2 Preprocessing

The format and folder structure of the dataset was modified to match the BIDS standard (Gor-
golewski et al., 2016), and the data were preprocessed using fMRIPrep (https://fmriprep.readthedocs.
io/en/latest/index.html): a preprocessing tool that takes advantage of nipype (https://nipype.
readthedocs.io/en/latest/) to combine efficient algorithms for fMRI preprocessing from differ-
ent software packages, minimizing experimenter degrees of freedom and offering a controlled envi-
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ronment that favors reproducibility (Esteban et al., 2018). Specifically, FSL MCFLIRT (https:
//fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT) was used to estimate head motion, and each in-
dividual’s functional data were coregistered to her/his anatomical scan. Segmentation and normal-
ization were performed with ANTs (http://stnava.github.io/ANTs/).

2.3 Regions of Interest (ROIs) Definition

In order to make the results easily replicable, we analyzed two networks of category-selective brain
regions that are highly reliable between participants and widely studied in the literature (Figure
1): the face-selective network (including the occipital face area - rOFA, fusiform face area - rFFA,
anterior temporal lobe - rATL, and superior temporal sulcus - rSTS) and the scene-selective network
(including transverse occipital sulcus - rTOS, parahippocampal place area - rPPA, and posterior
cingulate - rPC).

Given the similarity in the responses in these regions across hemispheres, we restricted our
analysis to the right hemisphere. First-level general linear models (GLM) were estimated in each
participant with FSL FEAT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT) using the inde-
pendent localizer data. Face-selective regions were identified in individual participants using the
contrast faces > scenes in an independent functional localizer. Anatomical parcels generated from
a large number of independent subjects were used as a search space to identify contrast peaks
for each of the regions. We then defined a 9mm sphere centered in the peak and selected the 80
voxels showing strongest face-selectivity within the sphere, as assessed with the contrast t-map.
An analogous procedure was adopted for the scene regions, with the exception that the search
space mask was defined by visually determining the group-level peaks for the contrast scenes >
faces. Regions of interest were visualized on the cortical surface with Connectome Workbench
(https://www.humanconnectome.org/software/connectome-workbench, Figure 1).

2.4 Denoising Methods

We compared the effectiveness of four different denoising approaches for fMRI data: regression of
slow trends (Diedrichsen and Shadmehr, 2005), commonly adopted to remove ‘scanner drift’: low
frequency fluctuations attributed to physiological noise and subject motion (Smith et al., 1999);
regression of the six motion parameters generated during motion correction (Friston et al., 1996),
which attempts to remove noise that is linearly related to translations and rotations of the head;
removal of the global signal (Macey et al., 2004), which dicards the variability in a voxel’s responses
that is shared with the fluctuation of the average signal in the entire brain; and CompCorr (Be-
hzadi et al., 2007), which extracts principal components from the signal in the white matter and
cerebrospinal fluid and regresses them out from each voxel. All denoising methods were imple-
mented by first generating one (i.e. in the case of global signal) or more (i.e. in the case of motion
parameters) predictors. The predictors were then regressing out of each voxel’s responses, and the
residuals of the regression were used as the ‘denoised’ signal. Translation and rotation predictors
and predictors for the removal of slow trends were obtained from the fMRIPrep outputs. Predictors
for CompCorr were computed by generating an eroded mask of the white matter and cerebrospinal
fluid using the segmented anatomical data from individual participants, and extracting 5 principal
components. The predictor for the global signal was computed averaging the responses in all voxels
in a subject-specific gray matter mask generated by fMRIPrep during segmentation In addition
to testing the effectiveness of denoising methods taken individually, we assessed combinations of
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Figure 1: Regions of interest for one example participant shown on an inflated cortical surface.
Face-selective regions are shown in red-yellow (occipital face area - OFA, fusiform face area -
FFA, superior temporal sulcus - STS, anterior temporal lobe - ATL), scene-selective regions are
shown in blue (temporo-occipital sulcus -TOS, parahippocampal place area - PPA, posterior cin-
gulate/retrosplenial cortex - PC).

multiple denoising methods to identify optimal noise removal approaches. In total, we compared
11 different denoising pipelines.

2.5 iMVPD: Modeling Representational Spaces

For both within subject MVPD, and between subject iMVPD, the data were divided into a 8 folds;
each analysis used 7 folds for training and one for testing, iteratively. Using only the training
data, dimensionality reduction was applied to the multivariate responses in each region using PCA.
Second, a linear function was estimated to predict the responses along the PCs in the target region
from the responses in the predictor region (still using only the training data). Finally, the testing
data were projected on the PC dimensions estimated with the training data, and the function f
estimated with the training data was applied to the testing data in the predictor region to generate
a prediction for the testing data in the target region. The proportion of variance explained by this
prediction in the observed testing data in the target region was computed and used as a measure
of multivariate statistical dependence between the two regions. The key difference between MVPD
and between subjects iMVPD was that in iMVPD the target regions’ data were drawn from a
different participant.

More specifically, let’s consider two participants A, B and two brain regions (a ‘predictor’
region in participant A, and a ‘target’ region in participant B). For participant A, we extracted
multivariate timecourses of response XA

1 , · · · , XA
n in the predictor region, and for participant B we
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extracted multivariate timecourses Y B
1 , · · · , Y B

n in the target region (where n = 8 is the number of
runs).

The multivariate timecourse XA
i in the predictor region for participant A in run i was a matrix

of size Ti ×NA
X , where Ti was the number of time points of the ith run, and NA

X was the number
of voxels in the predictor region for participant A. Analogously, the multivariate timecourse Y B

i in
the target region for participant B in run i was a matrix of size Ti ×NB

Y , where Ti was the number
of time points of the ith run, and NB

Y was the number of voxels in the target ROI for participant
B.

Just as in standard MVPD (Anzellotti et al., 2017), for each choice of a testing run i, data in
the remaining runs were concatenated, obtaining the training predictor:

XA
train = (XA

1 , · · · , XA
i−1, · · · , XA

i+1, · · · , XA
n ) (1)

The training target will be obtained by the same procedure, applied to the data from the predictor
region from a different subject B:

Y B
train = (Y B

1 , · · · , Y B
i−1, · · · , Y B

i+1, · · · , Y B
n ) (2)

After the generation of the training set, principal component analysis (PCA) was applied to XA
train

and Y B
train:

XA
train = UX,trainSX,trainV

T
X,train (3)

Y B
train = UY,trainSY,trainV

T
Y,train (4)

Dimensionality reduction was implemented projecting XA
train and Y B

train on lower dimensional sub-
spaces spanned by the first kX and kY principal components respectively:

X̃A
train = XA

trainV
[1,··· ,kX ]
X,train (5)

Ỹ B
train = Y B

trainV
[1,··· ,kY ]
Y,train (6)

where V
[1,··· ,kX ]
X,train was the matrix formed by the first kX columns of VX,train, and V

[1,··· ,kY ]
Y,train was the

matrix formed by the first kY columns of VY,train. For each region, each dimension obtained with
PCA was a linear combination of the voxels in the region, whose weights defined a multivariate
pattern of response over voxels. Considering as an example the predictor region, the scores of a
dimension k were encoded in the kth column of X̃A

train, and represented the intensity with which the
multivariate pattern corresponding to dimension k was activated over time. In previous work, we
found that using 3 components outperformed using 1 or 2 components (Anzellotti et al., 2017). To
test this observation in this new dataset, we compared the MVPD results obtained from choosing
1, 2, and 3 components using a default denoising method – removal of slow trends + CompCorr
(will be explained in section 4). Consistently with prior findings (Anzellotti et al., 2017), the model
with 3 components explained the most independent variance (see section 2.7): averaging between
all region pairs we obtained the following values of ‘multivariate independent correlation index’
(square root of the independent variance explained): 0.2169, 0.2560, 0.2774 respectively for 1, 2 and
3 principal components. Therefore, we used 3 components for the rest of our analyses.
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2.6 iMVPD: Modeling Statistical Dependence and Predicting Multivari-
ate Timecourses

The mapping f from the dimensionality-reduced timecourses in the predictor region X̃A
train to the

dimensionality-reduced timecourses in the target region Ỹ B
train was modeled with multiple linear

regression:
Ỹ B
train = WtrainX̃

A
train + Etrain (7)

where the model parameters were estimated using ordinary least squares (OLS).
The extension of multivariate analysis methods to intersubject formulations can pose unique

challenges. For example, in MVPA, classification between participants is usually poor unless func-
tional alignment techniques are not first used to identify a common response space between par-
ticipants (Guntupalli and Haxby, 2010; Haxby et al., 2011). In the case of iMVPD, despite the
brain region used as predictor and the brain region that is the target of prediction are in different
participants, the learned prediction function is always applied to (independent subsets of) data
from the same subject during both training and testing. This ensures that the function learned
during training can be applied at the testing stage without the need of additional hyperalignment.

After the estimation of parameters Wtrain, predictions for the multivariate responses in the
left out run i were computed by 1) projecting the predictor region’s data in the test run i on the
principal components of the predictor region estimated with the other runs (the training runs),
and 2) multiplying the dimensionality-reduced testing data by the parameters estimated using data
from the other runs (the training runs). More formally, for each run i, we generated dimensionality
reduced responses in the predictor region:

X̃A
test = XA

testV
[1,··· ,kX ]
X,train . (8)

Then, we calculated the predicted responses in the seed region in run i:

Ŷ B
test = WtrainX̃

A
test (9)

using the parameters Wtrain independently estimated with the training runs.

2.7 Variance explained

To compute the proportion of variance explained in the test data we adopted the following proce-
dure: 1) we applied principal component analysis to the test data, 2) we projected the observed
and predicted responses on the principal components obtained from the test data, 3) we calculated
the proportion of variance explained by the prediction in each component, and 4) we weighted
these proportions by the proportion of variance each component explained in the overall observed
response.

More specifically, we calculated

Y B
test = UY,testSY,testV

T
Y,test (10)

(step 1 above) and we projected the predicted and observed responses on this common orthogonal
basis set (step 2):

Ŷproj = Ŷ B
testV

[1,··· ,kY ]T
Y,train VY,test (11)

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/456970doi: bioRxiv preprint 

https://doi.org/10.1101/456970
http://creativecommons.org/licenses/by/4.0/


(where Y B
testV

[1,··· ,kY ]T
Y,train projects the predicted responses from the PCA space computed with the

training data to voxel space, and the product by VY,test projects them on the PCA space computed
with the testing data) and

Yproj = Y B
testVY,test. (12)

The proportion of variance explained in each component i was computed as

varExpli = 1 −
var(Y i

proj − Ŷ i
proj)

var(Y i
proj)

(13)

where Y i
proj denotes the i-th column of matrix Yproj , which contains the timecourse along component

i of the PCA space computed with the testing data (step 3). Finally, the total variance explained
was calculated as a weighted sum of the variance explained along each dimension (step 4), where the
weights are given by the proportion of variance explained by that dimension in the overall response
(which can be calculated using the PCA eigenvalues):

varExpl =

NB
Y∑

i=1

λi∑NB
Y

j=1 λj
varExpli (14)

For all analyses involving comparisons between within-subject MVPD and iMVPD, we did not
compute predictions from a region to itself (i.e. values on the diagonal) because they are not
meaningful for the within-subject analyses, and thus cannot be compared across methods.

2.8 Comparing denoising methods

To compare denoising models, we noted that an individual participant’s observed multivariate
responses in a region Y (t) can be decomposed as

Y (t) = Yc(t) + Yi(t) + εc(t) + εi(t) + η(t) (15)

where the term Yc(t) is the part of the true response that is common across individuals, Yi(t) is
the part of the true response that is specific to the particular individual, εc is the whole-brain noise
that is shared across individuals and εi(t) is the whole-brain noise that is specific to that individual,
and η(t) is region-specific noise.

A model of connectivity within individual can aspire to explain an amount of variance given by

varExplwithin =
var(Yc(t) + Yi(t) + εc(t) + εi(t))

var(Yc(t) + Yi(t) + εc(t) + εi(t) + η(t))
(16)

by contrast, an intersubject model can aspire to explain an amount of variance given by

varExplwithin =
var(Yc(t) + εc(t))

var(Yc(t) + Yi(t) + εc(t) + εi(t) + η(t))
. (17)

If a denoising method is removing in equal proportions signal and noise, (i.e. by a multiplicative
factor 0 < λ < 1), we obtain new proportions of variance explained:

varExpl∗within =
var(λYc(t) + λYi(t) + λεc(t) + λεi(t))

var(λYc(t) + λYi(t) + λεc(t) + λεi(t) + λη(t))
(18)

=
λ2 var(Yc(t) + Yi(t) + εc(t) + εi(t))

λ2 var(Yc(t) + Yi(t) + εc(t) + εi(t) + η(t))
= varExplwithin (19)
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and similarly

varExpl∗between =
var(λYc(t) + λεc(t))

var(λYc(t) + λYi(t) + λεc(t) + λεi(t) + λη(t))
(20)

=
λ2 var(Yc(t) + εc(t))

λ2 var(Yc(t) + Yi(t) + εc(t) + εi(t) + η(t))
= varExplbetween . (21)

By contrast, if a denoising method disproportionately reduces within-subject whole brain noise, we
will have that the numerator of varExplwithin gets proportionally smaller than the numerator of
varExplbetween. This is because the term that is disproportionately reduced by denoising is εi(t),
which only appears in the numerator of varExplwithin. This effectively reduces the difference

∆ varExpl = varExpl∗within − varExpl∗between . (22)

Relying on this logic, we compared the alternative denoising methods using the index ∆ varExpl,
where values closer to zero indicate better denoising performance. We computed the index ∆ varExpl
for each pair of brain regions, obtaining ‘connectivity-matrix-like’ figures in which each cell depicts
the ∆ varExpl index for the corresponding connection.

The average ∆ varExpl index across all regions provides a measure of the efficacy of a denoising
method (lower is better). Furthermore, we compared the pattern of denoising between regions for
different denoising methods calculating the correlation between ∆ varExpl matrices, obtaining a
measure of similarity between denoising methods in terms of the set of connections on which they
are more or less effective.

3 Results

3.1 Validating Intersubject MVPD

In a first analysis, we tested whether intersubject MVPD is able to identify expected patterns of
statistical dependence between different brain regions. Specifically, we tested whether intersubject
MVPD, like within-subject MVPD, shows stronger interactions between regions that belong to the
same network (i.e. face-selective regions vs scene-selective regions). We found that interactions
among regions in the same network were indeed stronger also when using intersubject MVPD,
a comparison of connectivity matrices is shown in Figure 2 (see sections 2.4,2.5). To measure
the similarity between the patterns of interactions between regions across different region pairs
for within-subject and intersubject connectivity we computed the Pearson’s correlation between
the connectivity matrices generated with the two methods, obtaining an r value of 0.8596. In
both within-subject MVPD and iMVPD, strong statistical dependence was found across pairs of
region within a same network (defined based on response selectivity in an independent localizer):
on average, pairs of face-selective regions showed stronger statistical dependence with other face-
selective regions than with scene-selective regions, and viceversa (Figure 2). Relatively accurate
predictions were also observed when face-selective regions were used as predictors for some scene-
selective regions (in particular the rTOS), but not viceversa. This effect was observed with within-
subject and also with intersubject MVPD.
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Figure 2: Amount of raw variance explained (as defined in Section 2.7) for within-subject MVPD
(A) and between-subject MVPD (B). Each element in a matrix represents the average between
participants and cross-validation iterations of the proportion of the variance explained by predicting
the multivariate responses in the target region from the the multivariate responses in the predictor
region. The similarity between the two matrices was assessed with Pearson’s correlation, yielding
r = 0.8596.

3.2 Single Denoising Methods

After determining that iMVPD yielded similar patterns of statistical dependence across region pairs
as within-subject MVPD, we proceeded to assess the efficacy of different denoising approaches
(when considered individually) using the difference between the proportion of variance explained in
the within-subject analysis minus the proportion of variance explained in the intersubject analysis
(∆ varExpl, see Section 2.8).

As a sanity check, we calculated ∆ varExpl without applying any denoising method, and indeed
we observed a higher value of ∆ varExpl than the ones observed after applying any of the other
denoising methods (Figure 3A, F). Additionally, we observed differences in the ∆ varExpl index
across the denoising methods, with CompCorr achieving the best performance (as assessed by
∆ varExpl).

Different denoising methods varied not only in terms of the average value of ∆ varExpl, but
also in the pattern of ∆ varExpl across different region pairs. In order to perform a quantitative
evaluation of the similarity between denoising methods in terms of their pattern of ∆ varExpl
across region pairs (that is, in terms of whether they removed noise from similar or distinct sets
of connections), we calculated the Pearson’s correlation between the ∆ varExpl matrices obtained
for the different methods. This analysis revealed largely similar patterns for the removal of slow
trends and the regression of translation and rotation parameters. The pattern of noise removal for
CompCorr was also relatively similar, but the pattern for removal of global signal was markedly
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Figure 3: Matrices showing the difference between the variance explained for within-subject MVPD
minus the variance explained for iMVPD (∆ varExpl) of A) data without any denoising applied,
B) removal of global signal, C) removal of slow trends, D) regression of head translation and
rotation parameters (motion parameters), E) Compcorr. Figure F) shows the mean ∆ varExpl of
the previous five denoising methods in descending order.

distinct, affecting different pairs of brain regions (Figure 4).

3.3 Comparing Combinations of Denoising Methods

Multiple denoising methods can be used jointly to improve the efficacy of noise-removal. However,
using too many denoising predictors may lead to the risk of removing meaningful variability in the
signal. Therefore, we aimed to test different combinations of denoising methods to identify a mini-
mal and effective noise-removal procedure which reduces ∆ varExpl without including unnecessary
predictors.

To this end, we compared several combinations of denoising methods. Since the removal of
slow trends is widely used as a denoising method, we investigated the performance obtained by
combining it with the other methods we assessed in the previous analyses (Figure 5 A-C). First,
we observed that adding motion regressors (translation and rotation) did not improve denoising
appreciably (compare Figure 5A to Figure 3C). Note that this is not a trivial consequence of the
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Figure 4: Pearson’s correlation (r) of the ∆ varExpl across all region pairs of the single denoising
methods showed in Figure 3.

high correlation between the ∆ varExpl matrices for these two methods, because distinct denoising
methods might remove non-overlapping variance in similar amounts from the same set of brain
regions, thus yielding high correlations between ∆ varExpl matrices without redundancy in their
denoising contribution. For example, two different denoising methods might remove two noise
sources that are independent of each other in the timecourse of response within a region, but these
independent noise sources might nonetheless have a similar distribution in terms of the proportion
of noise they generate across region pairs.

Adding CompCorr to the removal of slow trends (Figure 5 B) performed better than using the
removal of slow trends in isolation (Figure 3 C), however, it did not improve appreciably over using
CompCorr alone (Figure 3 E), indicating that the noise eliminated by the removal of slow trends
is a subset of the noise captured by CompCorr.

A combination of removal of slow trends and removal of the global signal (Figure 5 A) improved
on both methods used in isolation, suggesting that they account for independent sources of noise.

Considering this pattern of results, we expected that using jointly CompCorr and the removal
of the global signal would yield optimal results, even as compared to models additionally including
removal of slow trends or removal of motion regressors. To test this we computed ∆ varExpl matrices
for the combination of CompCorr and removal of global signal and found that the combination of
these two methods performs better than either CompCorr alone (figure 3 E) or the removal of
global signal alone (figure 3 B). Furthermore, by comparing figure 5 (e) with (d) or (f), we found
that adding the removal of slow trends or the removal of motion regressors to CompCorr plus the
removal of global signal did not further improve ∆ varExpl. The combination of CompCorr and
removal of global signal achieved parsimonious and effective noise removal.

4 Discussion

In this article we have introduced iMVPD, and have shown that it produces similar patterns of
statistical dependence between brain regions as standard MVPD (Anzellotti et al., 2017). We have
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Figure 5: Matrices showing the difference between the variance explained for within-subject MVPD
minus the variance explained for iMVPD (∆ varExpl) of A) removal of slow trends followed by
removal of global signal, B) removal of slow trends followed by Compcorr, C) removal of slow
trends followed by regression of head translation and rotation parameters (motion parameters), D)
removal of slow trends followed by removal of global signal followed by Compcorr, E) removal of
global signal followed by Compcorr, F) removal of global signal followed by Compcorr followed by
regression of head translation and rotation paramaters (motion parmeters).

then introduced the difference between the proportion of variance explained within and between
participants (hereafter referred to as the ‘discrepancy metric’) and motivated its use as a measure
of the effectiveness of denoising methods.

Other methods for studying multivariate interactions exist (i.e. informational connectivity,
Coutanche and Thompson-Schill (2013); Crowe et al. (2013), see Anzellotti and Coutanche (2018)
for a review), and might have the potential to be extended to perform intersubject analyses. How-
ever, the unique combination of 1) attempting to capture most of the variance in each region’s
responses, and 2) testing models of connectivity in independent data made MVPD an ideal choice
for this study.

Multivariate variants of intersubject connectivity based on canonical correlation analysis have
been introduced in previous work (Kriegeskorte, 2015). iMVPD differs substantially from these
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approaches in that 1) it tests prediction accuracy in independent data, and 2) enables modeling of
statistical dependence not only between-subjects within-region, but also between-subjects between-
regions.

As predicted, we found that the discrepancy metric was greatest in the absence of denoising
(see Figure 3A, F). Different denoising methods varied both in terms of their overall effectiveness
(as measured by the average discrepancy metric across all pairs of connections), as well as in terms
of the pattern of noise removal across different region pairs. This suggests that different pairs of
regions may be differentially affected by distinct sources of noise, and that methods that are very
effective at reducing the noise in the interactions between a pair of brain regions may be less effective
at reducing noise for other pairs of regions.

Correlation between the discrepancy metric matrices (Figure 4) revealed that removal of the
global signal disproportionately affected a different set of connections as compared to removal of
slow trends, removal of motion regressor, and CompCorr. This finding suggests that removal of
the global signal might target different sources of noise in fMRI data. Specifically, as compared
to CompCorr, removal of the global signal disproportionately reduced the discrepancy metric for
pairs of regions within a same network (i.e. across pairs of face-selective regions or across pairs of
scene-selective regions).

Further studies could investigate the extent to which the different predictors generated by dif-
ferent denoising methods correlate with a variety of physiological measures (i.e. head movement,
heart rate, respiration, eye movements) and susceptibility measures to determine whether the noise
removed by the global signal has an independent origin.

One possible concern is that removal of the global signal might be subtracting meaningful
variation in the fMRI responses. While it is difficult to rule out this possibility entirely, this in itself
could not account for the reduction of the discrepancy metric within network: in fact, removal of
meaningful signal would reduce both the absolute variance explained within subject as well as the
total amount of variance within subject, leaving the proportion of variance explained unchanged
(see equation 21).

Testing different combinations of denoising methods revealed that the noise removed by the
regression of slow trends and by the regression of motion parameters was mostly a subset of the
noise removed by CompCorr. As a consequence, the use of regression of slow trends and regression of
motion parameters in addition to CompCorr was redundant. In addition, CompCorr outperformed
both of those methods. The effect of motion as measured by rotation and translation parameters
on the observed BOLD signal is likely dependent on the anatomical location of voxels, and it is
affected by complex phenomena like spin-history effects (in which a voxels move to some extent
between slices and spins are no longer excited at regular intervals), and movement across non-
uniform regions of the static magnetic field and of the radiofrequency (RF) fields (Liu, 2016).
These effects induce nonlinear relationships between motion parameters and the resulting noise,
and may be better captured by CompCorr. Across all combinations of denoising methods tested,
the discrepancy metric indicated that jointly removing the global signal and applying CompCorr
was the optimal denoising pipeline.

Prior studies using simulated data have found that motion artifact causes variable duration of
disruptions in signals (Power et al., 2015). Power et al. (2015) also found that proximal correlations
are increased by artifact motions more than distal correlations, and that motion regressors have
a limited effect in removing motion-related variance, even with voxel-specific regressors or when
including a large set of motion regressors. This finding is in line with our result in Figure 3 D that
motion parameters have limited efficacy in removing noise. Power et al. (2015) also found that mean

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/456970doi: bioRxiv preprint 

https://doi.org/10.1101/456970
http://creativecommons.org/licenses/by/4.0/


white matter or mean ventricle signals are of modest utility as regressors, while fractionation of these
signals via ANATICOR (Jo et al., 2010) or aCompCorr (Muschelli et al., 2014) or other methods may
provide additional benefit. With iMVPD and the discrepancy metric we find that aCompCorr using
multiple dimensions extracted from white matter and the cerebrospinal fluid (Figure 3 E) provides
considerable effectiveness in removing noise as compared with motion regressors only (Figure 3 D).
Power et al. (2015) pointed out that regressing the global signal is an effective processing step. In
our findings (Figure 3 B), removal of global signal is disproportionately effective in removing noise
within-network (among face-selective region pairs or among scene-selective region pairs), and less
effective in removing noise from between-network region pairs.

While these findings advance our understanding of denoising methods for fMRI, they are nonethe-
less affected by some limitations. First, optimal denoising methods are expected to minimize the
discrepancy metric, however, it is worth noting that even perfect denoising would not reduce the
discrepancy metric to zero. This is because individual differences between participants are expected
to reduce iMVPD as compared to standard within-subject MVPD: the discrepancy metric is a re-
sult of both noise and individual differences. The discrepancy metric is a useful tool to compare
the performance of different denoising methods in real fMRI data. However, it is important to
note that while it provides a relative measure that can be used to compare different denoising
methods, it is not an absolute measure of denoising. Therefore, the discrepancy metric cannot be
used to determine exactly how much noise is left in the data. Second, our study was necessarily
restricted to a subset of the vast set of denoising approaches that have been developed for fMRI.
For example, we did not consider interpolation (Power et al., 2014), ANATICOR (Jo et al., 2010),
group-level covariates and partial correlations. Future studies could use the discrepancy metric
to test additional denoising approaches that have not been included in the present investigation.
Another effective strategy we did not test in this study consists in censoring motion-contaminated
data. In the context of intersubject analysis, censoring would require removing all timepoints that
show excessive motion in either of two subjects, further reducing the available data. Despite we
did not test this approach in the present study, it can be applied in conjunction with the removal
of global signal plus CompCorr approach we recommend. Finally, it will be important to extend
the present results to other datasets employing different tasks and studying different brain regions
to test the generality of the present findings.

In this study, we have used iMVPD as an instrument to define a discrepancy metric for denoising
methods in order to assess their performance on ‘real’ (non-simulated) fMRI data. Among the
methods tested, a combination of CompCorr and removal of the global signal was the most effective.
Beyond the scope of this study, iMVPD could be used for a variety of applications. In ongoing
work, we are using iMVPD to study individual differences across participants. Another potential
area of application for iMVPD is the analysis of imaging modalities in which it is challenging to
acquire data simultaneously from multiple regions, such as electrocorticography (ECoG) or primate
electrophysiology. More generally, iMVPD can be applied as a conservative approach to study
multivariate interactions between brain regions.
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