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ABSTRACT 

Genetic and functional complexity of bulk tumor has become evident through rapid advances in 

sequencing technologies. As a unique integrated approach to characterizing tumor heterogeneity, we 

demonstrate the multifaceted capabilities of a novel nanofluidic platform to enable single-cell phenotypic 

and genetic profiling of ovarian cancer patient-derived tumor cells. This approach has enabled increased 

resolution of tumor cell phenotypic and genetic heterogeneity, providing a better understanding of 

underlying biological drivers of the disease. A range of CA-125 expression levels is observed within cells 

from individuals, demonstrating clonal diversity consistent with other phenotypic data. Further, TP53 

mutation analysis demonstrates a sub-population of cells exhibiting high mutation frequency that likely 

drives downstream growth kinetics and protein expression. Finally, genomic data is orthogonally used to 

address clonal heterogeneity across ovarian tumors when compared to bulk sequencing, illustrating the 

potential for single-cell sequencing data integrated with cellular functional and growth data toward future 

therapeutic intervention.  
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INTRODUCTION 

Single cell sequencing analysis is a rapidly emerging field that has only recently been applied to identifying the 

diverse cellular landscape that constitutes living tissue and new, innovative technological advances have enabled 

progress in this field.1-3 This approach has great potential to reveal previously obscured complexity in a variety of 

heterogeneous biological systems, but presents technological challenges that are unique to the single cell vantage 

point. One hurdle that needs to be overcome in single cell sequencing is capturing single cells that are 1) of high 

enough quality to yield sequenceable material and 2) numerous enough to yield population-representative data.  

 

Historically, laser dissection and FACS have been used to isolate single cells for sequencing.4 Laser dissection 

provides user-directed specificity in target cell selection, but is highly limited in the number of cells (tens to 

hundreds) that can be isolated. FACS also offers marker-based specificity during selection and permits the isolation 

of hundreds or thousands of cells, but can be time consuming (often resulting in sample degradation) and requires 

labor-intensive downstream processing for sequencing.  Droplet-based single cell sequencing methods are the most 

recent innovative approaches that facilitate the isolation and sequencing of large numbers (thousands) of single cells 

in a highly efficient manner. These methods combine single cell isolation (via Poisson loading of single cells into 

fluid droplets) with cell lysis.  This approach is somewhat limited in scope as it does not permit real time selection 

of target cells and is destructive to cellular material.5, 6 Moreover, Poisson encapsulation is inherently inefficient and 

throughput-reducing, resulting in mostly empty droplets. Throughput of single cell approaches has been greatly 

improved by the addition of cell barcodes for multiplexing7 and microfluidics to improve capacity and handling 

efficiency. Platforms such as Chromium, ddSeq and C1 now combine microfluidic devices and cell barcoding to 

enable cDNA generation from hundreds to thousands of single cells at once.   

 

Finally, as single cell sequencing technologies develop, investigators can ask increasingly challenging research 

questions that require integration of complex cellular phenotype data with sequencing data. Approaches such as 

CITE-seq, where markers for cellular protein expression are combined with Drop-seq based cell isolation and 

processing, have begun to address these challenges, allowing sequencing information to be linked to characterized 

cells.8 However, the types of phenotypic data accessible by this method are currently limited to antibody-labeled 

surface protein expression and cannot include complex metrics such as growth kinetic or cellular function. 
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To our knowledge, this study demonstrates the first platform to support characterization linking phenotype to 

genotype at the single cell level across a culture system, which will enable a more thorough, integrated analysis of 

tumor heterogeneity, and could rapidly accelerate the development of precision oncology for many tumor types. For 

this study, we focus on high-grade serous ovarian cancer (HGSOC) as a model to demonstrate the key components 

of our approach in providing a potentially more sensitive means of characterizing tumor heterogeneity at single cell 

resolution.   

 

The poor survival rate of ovarian cancer, the most lethal female gynecologic malignancy which will be diagnosed in 

almost 200,000 women worldwide this year,9 remains relatively unchanged over the past four decades.10 HGSOC 

will account for nearly 80% of deaths from this disease. Though complete clinical response to surgical debulking 

and platinum-based chemotherapy is initially observed, three out of four women will experience tumor recurrence 

and succumb to platinum-resistant disease within five years of initial presentation.11 Recent progress in precision 

oncology suggests the ability to move beyond the currently stagnant universal treatment assumptions for HGSOC 

and towards a more personalized approach based on tumor genotyping to reveal optimal therapies.  Treatment 

options can include traditional cytotoxic chemotherapeutics and targeted agents aimed at providing the greatest 

antitumor response while also improving survival and, ideally, maintaining a higher quality of life.  One major 

limitation to delivering precision oncology in HGSOC, and other cancers, is the current inability to account for the 

degree of temporal and spatial heterogeneity present within tumors.12 For example, patients with chronic 

lymphocytic leukemia who have detectable subclonal driver mutations prior to initial treatment had earlier 

recurrences and shorter survival times.13 Similarly, quantitative assessments of intratumor heterogeneity in HGSOC 

may be predictive of survival following chemotherapy.14  

 

Drug treatment itself has also been shown to drive sub-clones into distinct tumor populations, as shown with acute 

myeloid leukemia15 and multiple myeloma.16 Continuing to analyze HGSOC tumors en masse or even from multiple 

slices is unlikely to identify adequately and describe driver mutations and actionable pathways with direct 

consequences on a tumor’s response to treatment.12, 17-19 For example, The Cancer Genome Atlas (TCGA) analysis 

of HGSOC has identified TP53 mutations as the predominant molecular feature of this disease, albeit with a 
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relatively “long tail” of rare but potentially actionable mutations.20 Other analyses of HGSOC tumors have also 

documented a high degree of intratumoral and spatial heterogeneity.14, 21-24 Unfortunately, currently available 

HGSOC functional assays from patient-derived materials may not appropriately model this clonal complexity.25  

 

This work presents proof-of-concept data that demonstrates the capabilities of a new nanofluidic cell analysis system 

to facilitate single cell manipulation, culture, assay and analysis, and test its application across multiple modalities. 

We have chosen several representative cell types (including those derived from immunological and cancer lineages) 

in addition to cells derived from HGSOC patient tumor biopsies to illustrate the flexibility of this approach. Relying 

on light-induced dielectrophoresis technology, we interrogate tumor heterogeneity using single tumor cell sorting 

with subsequent analysis of growth kinetics and protein expression, followed by single cell genetic profiling of 

HGSOC patient-derived tumor cell lines.  

 

RESULTS 

Single Cell Handling Technology Overview 

All data were collected using a novel, flexible nanofluidic platform, (Berkeley Lights, Inc. (BLI)), for single cell and 

batched multicellular selection and manipulation using light-induced dielectrophoresis. This system (BeaconTM 

prototype platform) is overviewed in Figure 1A. The platform integrates mechanical, fluidic, electrical and optical 

modules, enabling single cell manipulation, culture and imaging with a micrometer level of precision. The primary 

strength of the system is the disposable nanofluidic device with 1350-3500 individual chambers (pens) depending on 

chip design, each capable of holding sub-nanoliter volume. The fluidics subsystem delivers media to the chip for cell 

culture or reagent delivery and an actuated needle automates import and export of cells from incubated well plates. 

A 3-axis robotic stage enables imaging of the entire chip area at 4x or 10x magnification in both brightfield and 

fluorescent modes for orthogonal characterization of morphologic, functional, and biochemical events. White light 

combined with a digital micromirror device (DMD) array is used to structure desired patterns for light-actuated 

dielectrophoresis or fluorescent illumination. 

 

The silicon base of the nanofluidic chip is composed of approximately 1 million light-actuated switches that activate 

a dielectrophoretic force and repel particles resulting in light “cages” that trap and move desired particles, including 
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cells and beads, at 5-20 µm/s.  This light-induced force enables OptoElectroPositioning (OEP) where cells and beads 

can be positioned into the sub-nanoliter volume chambers on demand. Patterned chip surface chemistry and overall 

hydrophilicity can be modified such that the surface either promotes or prevents adhesion. The experimental 

platform is unique amongst other single cell technologies as it only uses OEP force for cell selection and employs 

fluidics for cell transport resulting in little-to-no damage to cell viability, which is critical to enable multiple 

downstream applications, including genomic analysis as well as on- and off-chip functional characterization of 

selected cells. 

 

 

Figure 1. (A) 
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Figure 1 (B) 

Figure 1. Overview of automated nanofluidic cell sorting, analysis platform and workflows. (A) Cell samples in a 
96 well plate are placed in an environmentally-controlled well plate incubator within the BLI BeaconTM prototype 
platform. A needle on an automated Z stage dips into the well containing cells and a syringe pump connected to the 
OptoSelectTM chip and tubing aspirates a sample from the plate. An integrated fluorescent microscope creates light 
patterns using a digital micromirror device (DMD) array while a background light-emitting diode (LED) light 
source illuminates the field of view for a camera to image live processes. Assay reagents are loaded via the 96 well 
plate with accompanying well plate incubator and a larger media bottle is used to facilitate perfusion-based cell 
culture over multiple days. (Left inset) Composite image of the central 9 fields of view on the nanofluidic chip 
showing representation of annotation and isolation of single cells using BLI’s OEP technology. Using machine 
vision and automated path planning, single OVCAR3 cells are selected and isolated into individual 50-µm wide 
pens. After flushing unpenned OVCAR3 cells from the chip, Jurkat cells are imported into the chip and a single 
Jurkat cell (white arrow) is placed into each pen containing a single OVCAR3 cell (orange arrow). (Right inset) A 
single Jurkat cell is unpenned using OEP prior to export into a 96-well plate for storage or additional molecular 
and functional analysis. Images of single cells after unpenning are taken before the syringe pump pushes media 
through the chip to flush the cell into the well plate (B) Overview of the workflows employed for analysis of primary 
patient-derived tumor tissue.  
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Cell import, penning and export  

Using this platform, we are able to load, position, culture and export cells in a defined and trackable manner. Target 

cells are specifically placed into numbered pens, where their growth is characterized and the cells are phenotyped, 

prior to export from the platform into a tracked position of a well plate for further processing and sequencing.  As an 

overview, cells are imported from an incubated well plate onto the nanofluidic chip and guided into pens using light-

induced OEP force. Cells can be placed into pens (as single or defined groups of cells) in a highly parallel fashion. 

One key advantage of the nanofluidic chip design that enables simultaneous and independent interrogation of many 

different cells is the sequestration of pens from each other. Following cell import, the main channel is flushed to 

eliminate any unwanted cells in the fluidic path; cells in the pens are fluidically isolated from the channel but remain 

accessible to soluble factors from the bulk media by diffusion.  

 

An example of a complex penning strategy is shown in Fig. 1A, in which a single OVCAR3 cell is positioned in a 

pen, followed by a single Jurkat cell (Fig. 1A left inset). In this case, 31 images were acquired to cover the entire 

chip area and a sampling of 9 stitched images centrally located on this chip design is shown. A machine vision 

algorithm is used to identify cells based on their size and morphology, and desired cells were shepherded by OEP 

into target pens on the chip (Fig. 1A left inset - time lapse). Cells can be distinguished based on circularity, diameter 

or fluorescent intensity (in DAPI, FITC, Texas Red or Cy5). Following culture and characterization, these same 

cells can be exported off of the nanofluidic chip for sequencing or further processing. The export process is the 

reverse of the cell placement process (shown for a Jurkat cell in Fig 1A right inset), where cells from individual or 

groups of pens are exported using OEP and then gently flushed into individual, tracked wells of an external 96- or 

384-well plate in separate 2 µL volumes. A frame-by-frame history of cells, unpenned and ready for export, is 

automatically archived for additional analysis.  

 

Fig. 1B illustrates the utility of this platform in context of a complete tumor heterogeneity study, intended to link 

cellular phenotype with genotype. The workflow begins with patient biopsy collection, disaggregation of tissue, 

followed by cell sorting, monitored in situ cell growth, protein expression analysis and genomic analysis. 
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Rare cell detection and automated cell annotation  

This approach can be easily adapted to facilitate universal or discriminate selection of cells based on morphology 

and fluorescence across a broad range of inputs, minimizing dependence on sample input criteria and can be 

especially useful where cells of the desired phenotype are rare relative to the total number of cells in a complex 

sample. Specifically, we have developed penning strategies that permit inputting cell suspensions as dense as 2x107 

cells/mL, which translates to 50,000 cells loaded into the chip at once. By performing sequential importing, penning, 

and flushing cycles, we can robustly sample hundreds of thousands of cells. Further improvements to the instrument 

have enabled automation that increases this sampling capacity. The ability to locate and track cells precisely is 

critical for dynamic experimentation examining both cell growth and functional biology, and iterative processing 

could further enable applications such as identifying small numbers of circulating tumor cells in patient blood 

samples. As a case study, we demonstrated the ability to select as few as 1 bead in 100,000 cells for penning by 

fluorescence (Fig. 2). We spiked known numbers of green fluorescent microspheres into a background of unstained 

Jurkat cells, loaded onto a nanofluidic chip and imaged by both brightfield and fluorescence (Fig. 2A). Using 

segmentation and intensity threshold image processing algorithms embedded in the system software, we were able 

to identify the number and X,Y-coordinates of cells and beads in each field of view (Fig. 2B) and used this 

information to calculate bead concentration. Correlation analysis revealed a χ2=0.99 between the measured spiking 

ratio and the observed bead concentration (Fig. 2C).  

 

Figure 2. Rare cell detection demonstration (A) Identification of rare cells is performed with fluorescent imaging. 
Fluorescent green beads are spiked into a suspension of Jurkat cells at various frequencies and are identified by 
fluorescent imaging (inset). (B) XY coordinates of each cell captured by the machine vision algorithm and the rare 
fluorescent bead (red) can be identified in the non-fluorescent cell background (blue) (C) Using the known 
nanofluidic chip volume and number of cells or beads identified by imaging, we are able to plot the designed 
frequency vs the recovered frequency in each experiment. The range of designed frequency was a bead to cells ratio 
of 1:100 (10-1) down to 1:100,000 (10-5). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/457010doi: bioRxiv preprint 

https://doi.org/10.1101/457010


 9 

 

Figure 3. Automated annotation of co-localized cancer and PBMCs. (A) Brightfield and fluorescent images of 4 
representative pens that each contain a single cancer cell and PBMC as positioned via OEP. Each image is labeled 
with the channel(s) used for visualization as well as the fluorophore depicted (if applicable). The exposure time was 
50 ms for brightfield, 60 ms for DAPI, 400 ms for FITC, and 750 ms for Texas Red. (B-C) Histograms showing the 
area-based diameters and average intensities of all cells on the chip as measured under brightfield and each 
fluorescent channel. These parameters were obtained via segmentation- and threshold-based image processing 
algorithms embedded in the system software. (D) A histogram showing the integrated intensity of all cells on the 
chip as measured under DAPI (corresponding to the Hoechst stain). (E) A scatter plot depicting the average 
intensity of all cells on the chip as measured under FITC and Texas Red (corresponding to the MitoTracker Green 
and Anti-CD8, PE-CF594 stains, respectively). Several distinct clusters or populations of cells are identified. 
 

In order to track functional characteristics of individual cell populations over time, the experimental platform has 

integrated four fluorescent imaging channels and automated cell annotation pipelines to monitor stained cells 

throughout the course of an experiment. Fluorescent signals can be used to inform penning of cells or as a means to 

track phenotype.  This capability is demonstrated in Fig 3A, in which we co-penned two different cell types, A2780 

human ovarian cancer cells and peripheral blood mononuclear cells (PBMCs). We stained both cell types with 

DAPI, MitoTracker Green, and Anti-CD8, PE-CF594. Use of Anti-CD8 allowed discrimination of PBMC 
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subpopulations, such as T cells, based on CD8 surface expression. Penned cells were imaged across the entire chip 

to extract size and fluorescent intensity measurements using the system software and demonstrate the existence of 

several distinct clusters of cells based on marker expression (Figs. 3B, C, D, E). 

 

Characterization of cell growth 

In addition to penning target cells and characterizing cellular phenotypes, cells can be cultured on-chip over the 

course of several days, which enables the isolation and expansion of cells of interest from polyclonal populations. 

Here, murine OKT3 cells were penned using OEP and cultured for 4 days. Images were acquired every 120 min for 

48 h and machine vision algorithms were used to generate cell counts at each time point that were plotted to 

characterize growth patterns in MatLab (MathWorks, Inc.).  

 

Figure 4. Growth of OKT3 suspension cells cultured on chip. (A) Growth curves for 5 selected pens over 48 h (B) 
Time lapse of clone with fastest growth rate (top) and example of identified apoptotic pen (bottom). (C) Histogram 
of cell count at t=48 h. Total number of pens that had two or more cells is 620; 370 single cells failed to divide. 
Mean growth after 48 h: 8.8 cells. (D) Map of multiple OKT3 clones which are independently loaded on the 
nanofluidic chip and tracked – each sample is represented by a different colored circle and the size of the circle 
represents the number of cells present for each clone after 48 h. (E) Map of inset from panel (D).  
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The mean observed doubling time was 16 h over 48 h of growth with no detectable loss of cell viability – this is 

comparable to the observed 11-14 h doubling time of this cell line off-chip under standard culturing conditions. A 

range of growth rates are observed when individual single-cell derived clonal growth curves are plotted over time 

from the OKT3 cell line (Fig. 4A). Individual pens and cell growth characteristics are shown in Figures 4B and 4C. 

These data strongly suggested that manipulation by OEP does not impact the viability of cells, and that nutrient 

transport from the channels to the pens can support expected levels of cell growth over time.  

 

The cell penning and tracking strategies described here can also be used to enable investigations with multiple cell 

populations - many different cell types (or clones) can be penned, grown and characterized on the same chip. Fig. 

4D and E show the penning and functional tracking of multiple cellular clones on the same chip, where 4D shows an 

overview of clone location for the entire chip and 4E shows an example region of interest from this chip, where 

there is a large growth difference among clones. These data demonstrate both the ability to identify the diversity of 

cells on the chip, as well as monitor their growth heuristics in real-time, which are automatically tracked by the 

platform's integrated computer system.  

 

Phenotypic analysis of ovarian cancer cells 

A REMARK diagram summarizing the patient-derived cell lines used in this study is shown in Fig. 5. 

 

Figure 5. REMARK diagram summarizing patient derived cell lines used in growth, protein expression, DNA and 
RNA sequencing experiments. 
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Growth characteristics 

In order to facilitate phenotypic comparison, multiple independent cell populations can be cultured on a single 

nanofluidic chip, as shown in Fig. 6, where four ovarian cancer patient-derived tumor cell lines (PT217, PT290, 

PT317, and PT261) and immortalized OVCAR3 cells were grown in parallel (Fig. 6A shows the penning map for 

these cells, in addition to a brightfield image of cells after loading in one sample region). Cells were penned using 

OEP, cultured on-chip for six days with image acquisition every two hours, and counted using the platform’s 

automated cell tracking and counting features (Fig. 6B). From experimental iterations (n=9), we determined that a 

minimum of 6-10 cancer cells generally need to be penned together on day 1 for survival and growth, possibly due 

to the presence of cell-secreted factors in the local pen microenvironment. Interestingly, it appears that the cells 

begin to aggregate at days 2 and 3, eventually forming a multicellular spheroid that could be used for downstream 

diagnostic and/or prognostic experimentation (Fig. 6C and inset).  

 

Notably, given consistent culture conditions across the chip, each independent cell population has a unique set of 

growth kinetics. Tumor cells derived from PT217, who had stage IV cancer and succumbed to her disease 9 months 

after initial surgery, demonstrated the most aggressive growth rate, while those derived from PT290, who is 

currently the longest survivor in this cohort and presented with stage III disease, showed the slowest growth kinetics 

(patients were ranked by growth rate in decreasing order as follows: PT217, PT261, PT317 and PT290). By 

adjusting pen geometry, media conditioning, or starting cell number, the microenvironment can be optimized to 

provide robust growth conditions for the target cells. In particular, these data highlight several unique features of our 

approach which are the ability to simultaneously: 1) culture and characterize single or groups of patient-derived 

cells, 2) culture multiple cell types or mixtures, and 3) track and compare growth kinetics of individual cells within 

these populations.   

 

Single cell protein expression assays 

The BLI platform also performs real-time monitoring of protein expression from independent cell populations over 

time with single cell resolution. In the context of ovarian cancer, the measurement of Cancer Antigen 125 (CA-125) 

levels is approved by the FDA as a proxy for monitoring ovarian cancer response to treatment and correlates with 

tumor burden.26 As such, it was of interest to investigate the ability to detect and measure CA-125 secretion at the 
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single cell or subclone population level. Cell surface CA-125 expression was clearly detected and compared by 

fluorescent labeling from the four primary cell cultures and the immortalized cell line which had been multiplexed 

and cultured for 6 days on a single chip (Fig. 6D). A range of CA-125 expression levels was observed between 

patients and even among individual cells derived from a single patient, demonstrating the ability to monitor unique 

cell expression signatures over time. Co-localization analysis of multiple markers over time can be performed to 

assess biological function, as seen in Fig. 6D, which shows a high degree of overlap between Syto24 (a cell viability 

stain) and Anti-CA-125. 

 

One significant advantage of this approach is that fluorescent signals are readily tracked and intensity values can be 

extracted on a per cell basis, organized by each unique pen. These differential expression results are encompassed in 

the violin plots in Fig. 6E, where the fluorescence of cells from the same population has been plotted, and each cell 

is represented individually. Statistical analysis of these data using the Kruskal-Wallis test shows that the CA-125 

expression profiles are significantly distinct from one another (p < 0.0001). CA-125 fluorescence data was also 

plotted as a heat map to demonstrate the average CA-125 expression over all cells within one pen (Fig. 6F) and 

highlighted that expression levels varied by as much as 250 percent in both inter- and intra-cloned cell populations.  

 

While the approach described here targets cellular CA-125 expression rather than CA-125 serum levels, it is 

interesting to highlight the concordance of these two metrics in PT217, who was a chemoresistant, stage IV HGSOC 

patient. This patient showed a unique CA-125 single-cell expression profile (Fig. 6E), which is distributed 

bimodally; these data suggest two distinct cellular subpopulations, including one with a high CA-125 expression 

level that is approximately double the other mean CA-125 values. Notably, PT217 also had, by over 3-fold, the 

highest CA-125 serum levels of all patients in this study (1578 U/mL versus 49 U/mL for PT261, 478 U/mL for 

PT290 and 187 U/mL for PT317).  

 

In many cases, multiple phenotypic measures are needed to assess populations in cell culture, beyond just detection 

of a single protein marker. The heat map in Fig. 6F illustrates the integration of both growth and CA-125 expression. 

Integration of the two biologic characteristics demonstrates the appreciated fact that CA-125 expression levels do 

not correlate with growth rates across all cell lines, with the one exception that PT217 (whose disease was the most 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/457010doi: bioRxiv preprint 

https://doi.org/10.1101/457010


 14 

progressed and who had the highest CA-125 serum levels as discussed above) had a subpopulation of cells with the 

highest CA-125 expression levels as well as the highest growth rate.  

 

Figure 6. Phenotypic analysis of multiple ovarian cancer cell lines in a single chip. (A) Map showing penning 
location of 5 different ovarian cancer cell types, where each cell line is represented by a different color and 
brightfield image of cells in the selected region immediately after penning. (B) Cell growth of OVCAR3 and 4 
patient-derived primary cancer cell lines overlaid on a map of the chip. Circle color indicates cell line, circle size 
correlates to cell growth factor in a pen (larger circles=larger growth factor after 6 days). (C) OVCAR3 ovarian 
cancer cells cultured on chip for 6 days, with spheroid formation. (D) Representative examples of brightfield and 
fluorescence images showing co-localization of Syto24 nuclei stain and CA-125 specific antibody. (E) Violin plots 
showing the distribution of single cell CA-125 expression for each cell line. (F) Heat maps showing average cellular 
CA-125 expression by pen (left panel) and average CA-125 multiplexed with cell growth by pen (right panel), 
demonstrating the ability of this approach to enable multiparameter phenotypic analysis.  
 
Single cell and bulk DNA sequencing from patient samples  

As a demonstration of the downstream sequencing capabilities of this approach, we performed somatic variant 

screening on single cells derived from resected ovarian tumor tissue from a single patient, PT498, who had stage 

IIIC disease involving both ovaries and fallopian tubes. Furthermore, we compared the sequencing results to those 

from bulk tissue derived from the paired identical tumor using the BLI platform to isolate single cells as well as 

groups of cells for analysis. Single cell DNA was amplified using molecular displacement amplification (MDA), and 
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the amplified material was sequenced using the Ion Torrent S5XL instrument to obtain high coverage data from the 

AmpliSeq HotSpot V2 panel, which was utilized for sensitive characterization of genomic variants across 50 

oncogenic and tumor suppressor genes in each grouping of cells (single, 10, 100, 1000 or bulk, with the 10, 100 and 

1000 groupings serving as controls). The batching function of the platform’s OEP technology facilitated the 

granularity to choose single cells or batches of cells for export off-chip for downstream molecular methods, 

sequencing, and analysis. This demonstrates the ability to select the appropriate sensitivity for the desired assay, as 

required by the heterogeneity of the biological question under investigation. To demonstrate this, 70 single- and 22 

multi-cell samples were collected and comparative analysis of the detection of variants in those populations from the 

same tumor sample was performed. Fig. 7A is a dendrogram of the 73 cellular subsets passing filtering criteria 

((n=51) single cell, (4) 10 cell, (8) 100 cell, (8) 1,000 cell and (2) bulk), showing independently sequenced single 

cell (or indicated cell grouping) variant profiles demonstrating the ability to identify genetic subclonality of this 

patient sample while conserving the remainder of the sample for orthogonal processes either on- or off-chip – 

filtering criteria are described in detail in Methods. Using these variant profiles, 5 major subclones/subclades with 

significant variance were identified across 9 oncogenes from the tumor of this patient as shown in Fig. 7 and Table 

3. These data demonstrate the ability to use single cell genomics in tandem with the BeaconTM prototype platform to 

detect low-frequency clonal variation that would otherwise be masked by major variants from the bulk tissue (i.e., 

yellow and green clade), recapitulating that no major DNA damage affecting targeted sequencing has occurred in 

cells selected using OEP. When the single cell variant profiles are compared to those derived from the 10-, 100- and 

1000-cell sub-batches, the increased sensitivity provided by single cell sequencing is apparent.  
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B 

 

Figure 7. Allelle frequency estimates and cladding relationship from single and bulk cell genomic analysis (A) Heat 
map showing color-coded mutant allele frequencies. Frequencies on a total of 9 variants depicted by the Genes (on 
X axis) they containing these mutations, were used from 73 samples, composed of 2 bulk samples, 8 hundred-cell 
samples, 51 single-cell samples, 4 ten-cell samples and 8 thousand-cell samples. The samples themselves (on Y-axis) 
are color-coded by the groups they define by the clades depicted by the dendrogram. (B) Correlation matrix ordered 
using the hclust method. The figure depicts positive correlations in blue and negative correlations in red. The color 
scale indicates estimated Pearson's correlation coefficient values. Statistical significance in each correlation is 
proportional to the size of the circle. Groups of highly correlated samples, grouped by hclust method, are depicted 
using color-coded boxes. 
 
 
Fig. 7B shows the single cell similarity plot comparing each individual cell or batched sample to reconstruct the 

subpopulations from the dendrogram as well as the concordance and discordance of all detected variants within the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/457010doi: bioRxiv preprint 

https://doi.org/10.1101/457010


 18 

selected nine genes between all samples. This plot displays the associations between individual cells defining the 

subclades, but also highlights outlier cells (shown in red) within the subclade.  

 

The ability to perform high-resolution DNA sequencing from these cells clearly demonstrates the applicability and 

robustness of this platform, which selected for single cells or cell pools and resulted in successful genetic variant 

profiling of a primary cancer tissue biopsy. The sequencing QC metrics validate the successful library construction 

and sequencing metrics from single cells based on mean read depth, on-target read percentage, and uniformity, 

relative to the bulk metrics, which are 1263X, 97.5% and 75%, respectively. The functional implications of the 

variants detected in these cell groups could be addressed in a continuation of this study using a larger oncogenic 

cohort and single cells isolated by the experimental platform for genomic profiling.   

 

DISCUSSION  

In this publication, we demonstrate the multilayered and cross-functional phenotypic and genomic analysis of single 

cells made possible by the BLI BeaconTM prototype platform. Using HGSOC as our primary model, we aimed to 

identify the potential of this platform for use in developing novel experimental pipelines to facilitate precision 

medicine in many fields, including oncology. This novel cell analysis system provides a powerful new approach to 

unraveling the signaling networks controlling the evolution of HGSOC disease, and potentially those of many other 

tumor types and disease states. Together, this study has demonstrated the ability of the experimental platform to 

select single cells with high accuracy and position them precisely for subsequent analysis. Applications include 

single- or multi-cell isolation, investigation of cell-cell interactions, microenvironmental studies for single cells, 

groups of cells or spheroids, quantitation of cell growth, single-cell temporal phenotypic analysis and export for 

genomic interrogation. As the system continues to be developed, the addition of additional analysis pipelines is 

anticipated.  

 

Using HGSOC as a relevant pathologic system, single cell isolation also allowed for precise genomic analysis and a 

more accurate estimation of subpopulation frequency and status (e.g., homozygous normal, heterozygous, 

homozygous variant) in the cells and tissues examined here. Given that TP53 mutations are consistently present in 

ovarian tumor samples, it is not surprising that TP53 mutations are present in the two bulk samples from PT498. 
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Notable is that the allele frequencies measured in these bulk samples are 37.1% and 29.2%. Nonetheless, these allele 

frequencies are concordant with other studies utilizing standard sequencing approaches.21, 27, 28 It is of direct interest 

therefore to our approach of characterizing single cells and not just tumor in bulk. Examining 51 single cells yields 

more complex data; while 19 (37%) single cells had TP53 mutation frequencies consistent with bulk samples (25-

75% frequency), 16 (31%) single cells had a much higher (>75%) TP53 mutation frequency and 16 (31%) single 

cells had a much lower (<25%) TP53 mutation frequency. These observations define the existence of subpopulations 

of TP53 mutated cells within the bulk tumor sample. Moreover, this approach enabled the detection of low 

frequency subclones that would otherwise be completely masked by major variants within bulk tissue variants (e.g., 

yellow and green clades in Fig. 7A). Strikingly, the TP53 mutation identified is the well-studied, relatively common 

SNP (rs1042522) resulting in either arginine or proline at position 72 (R72P).  While a large number of 

epidemiologic studies have demonstrated mostly conflicting results on the association of this germline SNP with 

susceptibility for developing various cancers and survival, functional studies have identified numerous biochemical 

and biologic differences between the encoded proteins.29, 30  To our knowledge, this is the first study identifying an 

active change in SNP frequency between tumor subclones within an individual, which strongly demonstrates the 

utility of the BLI platform and single cell analysis in general.  The biologic relevancy of this change and its effect on 

subclonal populations of tumor cells will require future studies using an expanded sample cohort.  An example of a 

low-frequency variant identified in this study, SMARCB1 c.1119-41G>A, is also identified as a mutation in 

COSMIC (cancer.sanger.ac.uk), which demonstrates the ability to detect known mutations at lower frequencies 

using single cell sequencing approaches afforded by this technology; in this study, 26 of the 51 single cells 

expressed the SMARCB1 c.1119-41G>A variant. A comparison of the bulk population total variant profile to the 

100-cell sub-batch profile, the 10-cell sub-batch profiles and the single cell profiles demonstrated the increased 

sensitivity provided by single cell sequencing. In future studies it is possible that this type of genetic information, 

combined with drug susceptibility data, may enable more precise genotype to phenotype correlations.31   

 

This method also allowed for the establishment of precise and diverse cell phenotypic assays at very high resolution 

(i.e. single cell) and scale, which would increase the analytic power of experiments using limited or precious cell 

samples. It is especially notable that tumor cells derived from PT217 who was a chemoresistant, stage IV HGSOC 

patient had, by over 3-fold, the highest CA-125 serum levels of all patients in this study (1578 U/mL versus 49 
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U/mL for PT261, 478 U/mL for PT290 and 187 U/mL for PT317) and showed both a high CA-125 expression peak 

on the single-cell violin plots (Fig. 6E) and aggressive growth kinetics (Fig. 6B). It is clear from the CA-125 

expression trends in Fig. 6E and 6F that only a subset of the cellular population exhibited this specific phenotype, 

which highlights the importance of a single-cell approach. The platform has the capacity to run thousands of 

precisely controlled experiments in parallel and measure the results rapidly, all on a single chip, providing a 

technical foundation upon which additional methods can be developed in order to analyze cellular heterogeneity. We 

envision that this type of approach could ultimately enable phenotypic screening of isolated tumor cells before the 

selection of the optimal patient therapy, replacing or enhancing other functional models.32-34 Testing a tumor at the 

single cell level would provide insight into whether a specific targeted agent will kill all cells in the sample, and just 

as importantly, rule out that a prospective treatment may allow a small subset of resistant cells to survive and 

develop into new tumors. We believe the only way to enable such a study is to use a platform with full workflow 

automation such that this type of screening and analyses could be performed on thousands of cells in parallel to 

ensure rare populations are not missed. 

 

Increased scale and single cell resolution of tumor cell analyses has the potential to enable more accurate assessment 

of phenotypic and genetic heterogeneity in HGSOC.33, 35 Greater accuracy will also enable a better understanding of 

the underlying biological drivers of the disease state and hopefully enable more precise diagnosis and treatment. 

This study focuses primarily on the technology and methods that demonstrate the utility of the BLI platform to 

interrogate intratumor heterogeneity, which supports characterization of linked single-cell phenotypic and genetic 

information across a culture system. Associating multifaceted phenotypic and genomic analyses will facilitate a 

more thorough analysis of tumor heterogeneity and could rapidly drive precision oncology development for other 

tumor types. Building on the conclusions from this work, future studies will focus on more detailed analyses, 

including cell replication with and without known chemotherapies or cellular therapies in HGSOC.  
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METHODS 

Patient enrollment and sample collection 

All blood and tumor samples were collected in accordance with the Institutional Review Board (IRB) of the Icahn 

School of Medicine at Mount Sinai at the time of the patient's surgery (GCO# 10-1166). Patient-derived cell lines 

were also generated under an IRB-approved protocol. Written informed consent was obtained from each enrolled 

patient prior to their debulking surgery. Samples used in this study were collected from patients over a three-year 

period, from 2013 to 2016. Patient PT498 was selected for our proof of concept genomics study.  Standard histology 

and molecular analyses were carried out to determine presence of cancer, histological subtype, stage, and grade. An 

IRB-approved protocol was followed to review the electronic medical record for clinical information regarding CA-

125 levels in sera. 

 

Dissociation of samples and preparation for single-cell applications 

Tissue containing macroscopic disease, as verified by a clinical pathologist, was obtained and placed in a 50 mL 

conical tube containing DMEM (Thermo Fisher Scientific, Waltham, MA #11965) supplemented with 10% FBS 

(ATCC, Mannassas, VA #30-2020) and 1% penicillin/streptomycin (Thermo Fisher Scientific #15140122). 

Representative pieces of tissue, with grossly non-tumor containing portions excluded, ranged in size from 0.5-3.0 

cm and were separated using a tissue scalpel for mechanical and enzymatic digestion. Tissue samples were 

processed using the GentleMACS system (Milteny Biotec, Germany #130-096-427) using the “37C_h_TDK_1” 

protocol for soft human tumors as per manufacturer’s recommendation. Following GentleMACS disruption, the 

samples were passed through 40-µm cell strainers and subjected to 15 minutes of RBC lysis using BD Lysis Buffer 

(BD Biosciences, Franklin Lakes, NJ #555899) diluted to a 1X concentration in sterile deionized water. Next, cells 

were re-suspended in cell culture medium, stained using trypan blue for dead cell exclusion and counted using the 

Cellometer Mini Cell Viability Counter (Nexcelom, Lawrence, MA). The cell suspension was then diluted as needed 

to provide for single cell pipeline processing and downstream sequencing at >50x103 cells in >20 µL and a target 

concentration of 20x106 cells/mL. Remaining cells were plated on a bed of irradiated mouse feeder cells to start the 

generation of patient-derived cell lines and, if there were sufficient cells available, cryopreserved in FBS containing 

15% DMSO and 5 uM ROCK inhibitor (SelleckChem, Houston, TX #S1049). BLI Priming Buffer was prepared by 

diluting 100X Nautilus suspension reagent (Berkeley Lights Inc., Emeryville CA #520-00002) in DMEM containing 
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10% FBS and 1% penicillin/streptomycin. Cells for BLI analysis were spun down and washed twice in BLI Priming 

Buffer and finally re-suspended in BLI Priming Buffer to a final volume of 50 µL and at a concentration of 20x106 

cell/mL, when possible. 

 

Culture of control and PDCL cell lines 

Non-adherent OKT3 hybridoma cells (ATCC #CRL-8001) were grown in Iscove’s Modified Dulbecco’s Media 

(IMDM; ATCC #30-2005) supplemented with 20% fetal bovine serum (FBS) (ATCC, #30-2020) according to 

manufacturer recommended cell culture conditions. A2780, an ovarian cancer cell line, (Sigma Aldrich, St. Louis 

MO #93112519) were grown according manufacturer’s recommended cell culture conditions. Jurkat cells (E6.1, 

Sigma Aldrich #88042803) were grown in RPMI 1640 media, supplemented with 2 mM Glutamine and 10% FBS, 

according to manufacturer recommended cell culture conditions. 

 

Culture of human ovarian cancer cell lines 

Ovarian cancer (OvCa) patient-derived cell lines (PDCLs) were developed using a ROCK inhibitor and fibroblast 

feeder cell system and cultured in Corning 75 cm2 tissue culture-treated flasks.36 OvCa PDCLs were cultured in 

medium containing, per 1.0 L: 665 mL DMEM (Corning Life Sciences, Teterboro, NJ #10-013-CV), 75 mL FBS 

(Corning Life Sciences #35-011-CV), 10 mL penicillin/streptomycin (Corning Life Sciences #30-002-CI), 250 mL 

Ham's F-12 Nutrient Mix (Thermo Fisher Scientific #11765070), 5 mg insulin (Sigma-Aldrich #I9278), 50 µg 

hydrocortisone (Sigma-Aldrich #H0888), 10.0 µg EGF recombinant human protein (Life Technologies, 

#10605HNAE), 250 µg amphotericin B (Thermo Fisher Scientific #BP264550), 8.4 µg cholera toxin (Sigma-Aldrich 

#C8052), and 5.0 µmol of ROCK inhibitor (SelleckChem #S1049). NIH:OVCAR-3 cells (ATCC #HTB-161) were 

cultured in Corning 75 cm2 tissue culture-treated flasks in DMEM medium supplemented with 10% fetal bovine 

serum and 5% penicillin/streptomycin. The feeder cells used were Swiss 3T3-J2 mouse fibroblasts, irradiated at 30 

Gy (3000 rad) using a cesium source irradiator prior to plating in co-culture at a ratio of 10:1. Cell lines grown using 

the feeder cell system were passaged once or twice in these conditions until a tumor majority was observed, at which 

time a portion were transferred from the feeder cell system and into feeder-cell conditioned medium. Feeder cell-

conditioned medium was prepared in bulk when cell line development was considered complete, at which point cell 

lines were independent of the feeder system, free of stromal cells and determined to maintain known patient tumor 
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mutations. 

 

Preparation of cell suspensions for penning 

Conditioned medium was prepared as described.36, 37 Irradiated feeder cells (1.0 × 107 to 1.5 × 107) were plated in 

175-cm2 tissue culture flasks in 30 mL of F medium. The medium was collected 3 days later and centrifuged at 1000 

× g for 5 min at 4°C. The resulting supernatant was passed through a 0.22-µm pore-size Millex-GP filter unit (EMD 

Millipore, Billerica, MA #SLGP033RS). Conditioned F medium was frozen and stored at -80°C. Three volumes of 

conditioned F medium were mixed with one volume of fresh F medium; this mixture was supplemented with 5 

µmol/L ROCK inhibitor before use. 

 

Isolation of mononuclear cells from whole blood 

Human peripheral blood mononuclear cells (PBMCs) were isolated from 10 mL of whole blood using Histopaque 

(Sigma-Aldrich #10771) according to the manufacturer’s protocol. Briefly, whole blood is layered on room 

temperature Histopaque in a 15-mL conical tube and spun at 400 g for 25 min without brake. Following the spin, the 

mononuclear cell layer is removed and washed 3 times with PBS. 

 

Culture and staining conditions for automated cell penning 

A2780 ovarian cancer cells were incubated with RPMI-1640 media (Thermo Fisher Scientific #11-875-119) 

supplemented with 2 mM Glutamine (Thermo Fisher Scientific #35050061) and 10% FBS (Seridigm, Radnor, PA,  

#97068-101) containing Hoechst (BD Pharmingen, San Jose, CA #561908; 1:1000 Dilution of 1 mg/mL stock) and 

MitoView Green (Biotium, Fremont, CA, #70054; 1:1,000 Dilution of 200 µM stock) for 60 min at 37°C. A 

peripheral blood mononuclear cell (PBMC) sample was stained with MitoTracker and Anti-CD8, PE-(BD 

Biosciences #562282 1:1,000 Dilution) for 60 min at 37°C. Both cell types were washed 3 times with cell culture 

media and re-suspended in 1 mL at a concentration of 1 x 106 cells/mL in RPMI-1640, supplemented with 2 mM 

Glutamine, and 10% FBS media, according to the BLI manufacturer’s protocol, and placed into a 96-well plate in 

wells A1 and A2. Cells were imported into the chip pens using single (A2780 cell line) or multiple (PBMC) rounds 

of OEP, and images were collected automatically in 4 fields with various exposure times (see Results).  
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Immunofluorescent staining to detect protein expression 

Immunofluorescent staining was performed on mononuclear cells derived from whole blood or OvCa cell lines 

dissociated by trypsinization (0.25% for 5 minutes at 37˚C) into single cell suspensions. Antibodies for EpCAM 

(VU1D9 Mouse mAb Alexa Fluor® 594 Conjugate #7319), CD45 (Abcam [F10-89-4] Alexa Fluor® 488 

#ab197730), CK7 (Abcam [EPR1619Y] - Cytoskeleton Marker Alexa Fluor® 488 #ab185048), and CA-125 (Clone 

M11 Thermo Fisher Scientific  #MA5-12425) were diluted 1:50 in cell culture medium and cells were resuspended 

at 2x106 cells/mL in 300 µL total volume. After 1 h of staining at 4˚C, cells were spun down and resuspended in 30 

µL to a final concentration of 20x106 cells/mL and loaded onto the chip. 

 

Machine vision algorithms for automated cell characterization 

Images were acquired in the desired channels every 2 hours and a BLI-proprietary algorithm was used to 

automatically detect and count cells by pen. Moreover, this algorithm was also used to measure cell size, X,Y-

coordinates and fluorescence intensity by pen. 

 

Characterization of cell growth and protein expression 

For all cell culture, BLI chips were primed using fresh or conditioned media pre-buffered with 5% CO2 for 1 hour.  

Cells from a non-adherent hybridoma cell line (OKT3) were seeded at 2x106/mL in 200 µL in a 96-well plate and 

OEP-loaded into pens as single cells. CO2-buffered media was perfused through the chip at 0.01 µL/sec. Images 

were taken to track growth at distinct time points.  

 

For primary cell growth assessment and automated counting, cells were pre-stained with the Syto24 (Thermo Fisher 

Scientific #S7559), a live cell nuclear stain, prior to loading in order to enable accurate cell counting of adherent 

cells. For pre-staining, cells were incubated for 15 min at room temperature in conditioned media containing a 

1:30,000 dilution of Syto24 (to minimize viability impact) and 1:100 priming additive (Berkeley Lights Inc. #520-

00002). Cells were re-suspended at 5-10x106 cells/mL in 30 µL of conditioned media. Cells were loaded onto the 

BLI chip at 25°C and bulk-penned using a waveform generator peak-to-peak (WFG PTP) voltage of 2.1 V at 5 µm/s, 

targeting 6-10 cells per pen. Each cell line was loaded into the pens of a specific region of the chip followed by 

image capture in brightfield (50 ms) and FITC channels (200 ms). Cross-contamination between cell lines was 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/457010doi: bioRxiv preprint 

https://doi.org/10.1101/457010


 25 

estimated to be non-existent by visual inspection. Cells were then cultured at 37oC in 5% CO2-buffered conditioned 

media containing 1:100 bovine fibronectin (Sigma-Aldrich #F1141), which was perfused at 0.01 µL/s. After 24 

hours, the perfusion media was switched to 5% CO2-buffered conditioned media without fibronectin and the bulk 

media was replaced every 48 hrs. Cells were cultured on the chip for a total of 6 days with image acquisition every 2 

hours (exposure time of 50 ms).  

 

To assess expression of CA-125, surface expression levels were measured by importing a dilution of 1:5 CA-125 

primary antibody (Clone M11, Thermo Fisher Scientific  #MA5-12425) in conditioned cell culture media, followed 

by incubation of 60 minutes to allow diffusion of the antibody into the pens. The unbound primary was flushed out 

of the chip with 250 µL of media at 1 µL/sec. Next, goat anti-mouse secondary antibody conjugated with TxRed dye 

at 1:100 dilution in cell culture media was imported, followed by a 60 min incubation to allow diffusion of the 

secondary antibody into the pens. Finally, additional Syto24 dye, diluted 1:100, was loaded and incubated for 30 

min to enable staining of cell nuclei. Brightfield and fluorescent images (FITC 200 ms; TxRED 7500 ms) were 

captured and analyzed to obtain protein expression levels for each pen and cell. 

 

Microscopy image processing and analysis:  

Aligned images stacks of Brightfield, FITC (Syto24) and Texas Red (CA-125) channels over all fields of view were 

generated. Within each pen, the ImageJ multipoint selection tool was used to select each cell identified by Syto24 

staining in the FITC channel. The grey value for these selections was also measured on the associated Texas Red 

image in the stack, yielding CA-125 fluorescence values for each cell, organized by pen. This data was then plotted 

in Matlab to generate the heat maps and violin plots shown.  

 

Single cell Whole Genome Amplification (WGA)     

Plate set-up and storage 

Cell sorting was performed using the Single Cell Analysis and Genomic (SCAG) tool and samples were exported 

onto a 96-well plate and stored at -20°C for long term DNA processing. Cells were grouped on the plate according 

to cell number; i.e. 70 wells contained a single cell exported from the BLI tool into 2 µL of BLI Nautilus buffer 

suspended in 20 µL of mineral oil, 4 wells contained 10 cells each, 8 wells contained 100 cells each and 8 wells 
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contained 1000 cells each. 2 wells of bulk tumor cells were also included, each of which contained approximately 

one million cells.  

Upon thawing, the entire plate was simultaneously processed in order to avoid multiple freeze-thaw cycles and to 

prevent any DNA damage. Half of the bulk sample was processed for DNA extraction, using the PureLink Genomic 

DNA Mini Kit (Thermo Fisher Scientific #K182001) and subsequently purified with 1X Ampure XP beads to 

concentrate the sample.  Whole genome amplification (WGA) was performed using molecular displacement 

amplification (MDA) on the remaining samples as described below.  

Single Cell WGA 

WGA was performed using the QIAgen REPLI-g Single Cell Kit (QIAgen, Germantown, MD #150345) MDA 

method, according to the manufacturer’s instructions. Briefly, Buffer DLB was reconstituted with 500 µl nuclease 

free H2O and mixed well; and Lysis buffer D2 was prepared for 12 reactions using 3 µL (1M) DTT and 33 µL 

Reconstituted Buffer DLB. Lysis buffer D2 preparation was scaled according to the number of reactions needed. To 

bring samples up to the appropriate volume, 2 µL of phospho-buffered saline (PBS) was added to each sample, for a 

total volume of 4 µL. Next, 3 µL of Lysis Buffer D2 was added to each sample and the contents were mixed by 

pipetting and briefly centrifuged. This lysis step was incubated on a thermocycler set at 65° for 10 minutes, and then 

3 µL of stop solution was added to each sample, mixed, centrifuged briefly, and placed on ice. Immediately 

following this, 40 µL of WGA Master Mix, which included 9 µL nuclease-free water, 29 µL REPLI-g reaction 

buffer, and 2 µL REPLI-g sc DNA polymerase per reaction, was added to each sample and mixed by pipetting. The 

WGA reactions were incubated at 30°C for 8 hours. The REPLI-g DNA Polymerase was then heat inactivated at 

65°C for 3 minutes.  

WGA product purification 

After WGA chemistry was completed and polymerase inactivated, a 1X AMPure bead-based purification was 

performed on the amplification products. Briefly, 50 µL of beads were added to each WGA reaction and incubated 

at room temperature while shaking on a vortex mixer at 2000 rpm for 10 min. The reactions were then placed on a 

magnetic separation device for 5 minutes or until solution was clear, at which point the supernatant was removed 

and discarded. While the tubes remained on the magnetic separation device, the beads were washed twice with 100 

µl 80% ethanol. Without disturbing the beads, this wash solution was carefully removed and discarded. Following 
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the wash the beads were briefly centrifuged to collect any residual ethanol from the tube walls, which was then 

removed and discarded. The reactions were removed from the magnet and the beads air-dried for 2 minutes. 55 µL 

of Elution Buffer (EB) was added to each reaction and mixed thoroughly to re-suspend the beads. The reactions 

were vortexed at 2000 rpm at room temperature for 2 min. Following mixing, each tube was spun down and placed 

on the magnetic separation device for 1 min or until the solution was completely clear. The eluate was removed and 

stored in a clean tube. The quantity and the quality of each WGA reaction product was determined using the DNA 

Broad Range Qubit Assay (Thermo Fisher Scientific #Q32853) and the 2100 Bioanalyzer, using the DNA 12000 kit 

(Agilent, Santa Clara, CA #5067-1508), respectively. Expected yield for each reaction was between 400-900 ng/µL.  

Samples were diluted to 10 ng/µL in EB and submitted for sequencing on the Ion Torrent platform.  Multiple WGA 

technologies were assessed for false positive and negative rate, relative to the Qiagen Repli-g kit and deemed less 

efficient and more error prone, relative to Repli-g (data not shown). 

 

Ion Torrent library preparation and sequencing   

Library Preparation 

The Ion AmpliSeq Cancer Hotspot Panel v2 (Thermo Fisher Scientific #4475346) is a pool of multiplexed primers 

that amplify 208 “hot spot” areas of frequent mutation in 50 oncogenes and tumor suppressor genes. This panel was 

selected to amplify the DNA for library preps because it covers a broad range of genomic areas associated with 

cancer while allowing cost-effective multiplexing and is integrated into the Ion Torrent sequencing platform. Post-

WGA, sample DNA was diluted to 10ng/µL and libraries were prepared with the Ion AmpliSeq Library Kit 2.0 

(Thermo Fisher Scientific #4475345) using Ion Xpress Barcode Adapters 1-96 Kit (Thermo Fisher Scientific 

#4474517) to barcode each single cell, group of pooled cells or bulk tumor, following standard manufacturer’s 

instructions.  Briefly, 30 ng of each sample were amplified using the Ion Torrent Cancer Hotspot panel and specified 

Ampliseq cycling conditions for the 208 amplicon pool. Following PCR amplification, the primers were partially 

digested with the proprietary FuPa enzyme and each sample was barcoded with a unique IonExpress barcode (1-96). 

Finally, a 1.5X bead purification was performed with Agencourt AMPure XP Reagent (Beckman Coulter, Brea, CA, 

#A63880) following the instructions in the Ion Ampliseq Library Prep protocol to clean up the sample and remove 

adapter dimers. All samples were quantified with the Ion Library TaqMan Quantitation Kit (Thermo Fisher 
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Scientific #4468802) using a 1:100 dilution of each library in a 10 µL reaction volume, with 2 technical replicates 

per sample.  

Priming the Ion Torrent sequencing chip 

Following quantification, all samples were individually normalized to 100 pMol and 2 µl of each normalized library 

were combined to form a pool of 96 uniquely barcoded samples at a final concentration of 100 pMol. 25 µl of this 

pool was used for priming the sequencing chip.  Ion Torrent chip priming and sequencing were carried out using the 

Ion Torrent S5XL system and the Ion Chef instrument with reagents from the Ion 540 Kit-Chef (Thermo Fisher 

Scientific #A27759). Briefly, the Chef was used to bind each library DNA fragment to Ion Sphere Particles (ISPs) 

and clonally amplify each fragment by emulsion PCR. Amplified DNA fragments were then bound to streptavidin-

coated beads and template negative ISPs were washed away. Template-bound ISPs were then prepared for 

sequencing by loading onto one Ion Torrent S5 540 chip for sequencing on the Ion S5XL sequencing system.  

Sequencing on the Ion Torrent Platform 

The primed 540 chip was sequenced on the Ion Torrent S5TM XL System with library read length set at 200 bp and 

520 flows per chip, with all other instrument settings set to the manufacturer’s default for the Ion 540 Kit. Analyses 

of sequencing raw data were performed with Ion Torrent Suite (version 5.0.2) using the “coverageanalysis” and 

“variantcaller” plugins (with somatic/low stringency settings for the “variantcaller”), with all other settings for the 

run report set to the manufacturer’s default.  

Single cell genetics data analysis  

Filtering of sequencing data 

Raw reads were aligned to the hg19 reference human genome using tmap on Torrent Suite (TS). Only samples with 

≥300X coverage, an on target value ≥90% and a uniformity ≥60% were further analyzed. Using these very stringent 

criteria, 51 of 70 single cell samples, 4 of 8 10-cell samples, 7 of 8 100-cell samples and 8 of 8 1000-cell samples 

were used for our analyses from PT498. In addition to the various cell pools, DNA extracted from bulk cells 

exported from the BLI instrument acted as a positive control.  

Variant calling and filtering for bulk sample control analysis 
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Variants were called using the variant caller plug-in from the Torrent Suite™ (Thermo Fisher Scientific) version 

5.0.4 using default settings. In addition to standard homozygous and heterozygous variant calls, Torrent Suite also 

reported “Absent” and “No call” results for variants of interest from the targeted Hotspot panel. Variants present in 

≥ 50% of each of the 10-, 100-, 1000-cell pools were used to create Virtual Bulk (VB) variants for each of the pools. 

VB variants of each pool were compared to the variants identified in the single cells. If a VB variant was also found 

in the single cell group at a frequency < 10%, this variant was filtered out, as it was more likely to have been 

introduced during WGA. In one instance, a FBXW7 variant (in red) was found in three pools was filtered out, as it 

was only observed at a frequency of <5% in the single cell samples. For the single cell group, variants present at ≥ 

20/51 samples were categorized as VB variants.  

Clustering of variants and cells with intra-single cell comparison  

Variant frequencies for all samples, used in the analyses, for 9 genes were supplied to the heatmap.2 function in R (v 

3.3.1) to generate the heatmap. Distance matrix was computed using dist() function in R ( v 3.3.1). Variant 

frequencies for all samples, used in the analyses, for 9 genes were supplied to the corrplot() function in R (v 3.3.1). 

Variants and cells were distributed and clustered using a complete-linkage clustering algorithm, which was 

implemented as a standard function (hclust) in R.  

 

Data availability 

All data that support the findings of this study are available from the corresponding author upon reasonable request. 
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