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Abstract 9 

Molecular simulations are used to provide insight into protein structure and function, and have the 10 

potential to provide important context when predicting the impact of sequence variation on protein 11 

function. In addition to understanding molecular mechanisms and interactions on the atomic scale, 12 

translational applications of those approaches include drug screening, development of novel molecular 13 

therapies, and treatment planning when selecting targeted therapies. Supporting the continued 14 

development of these applications, we have developed the SNP2SIM workflow generates reproducible 15 

molecular dynamics and molecular docking simulations for downstream functional variant analysis. Three 16 

modules execute molecular dynamics simulations of solvated protein variant structures, analyze the 17 

resulting trajectories for unique structural conformations, and bind small molecule ligands to 18 

representative variant scaffolds. In addition to availability as a command line workflow, SNP2SIM 19 

modules are also available as individual apps on the Seven Bridges Cancer Genomics Cloud. 20 

 21 

Background 22 
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Molecular simulation is a powerful tool used by computational biologists to analyze the relationship 23 

between protein structure and its functional properties. Ranging from high throughput drug screening to 24 

focused characterization of protein conformational dynamics, the creative analysis has several 25 

translational applications. Large libraries of drug candidates can be evaluated to produce novel targeted 26 

therapeutics, and insight into specific molecular interactions between effective drugs and their protein 27 

targets aids the design novel molecules [1, 2]. An advantage of the computational simulations is the 28 

ability to probe how variation in the protein sequence alters those molecular interactions, and can be 29 

extended to the development of therapies targeted at specific sequence variants [3-6]. In addition to drug 30 

discovery and design, the insight can be further extended to inform treatment planning when selecting an 31 

optimal targeted therapeutic strategy [7].  32 

Due to an inherent tradeoff between resolution and computational requirements, molecular simulations 33 

can be divided between approaches which only simulate a fraction of the overall molecule and those 34 

which explicitly consider all atomic interactions occurring within the molecule. Coarse grained methods 35 

which do not explicitly consider the internal interactions occurring within the protein backbone used to 36 

address the enormous search space that must be interrogated when predicting how two molecules interact 37 

[8]. For example, predicting how well a small molecule ligand will bind to a target protein depends on the 38 

sum total of all the individual atomic interactions. Depending on the chemical nature of the ligand, the 39 

conformational diversity can be quite large due to rotation around individual bonds and limited steric 40 

constraints of a single ligand molecule. Furthermore, the protein surface represents a large area of 41 

potential interactions and exponentially increases the degrees of freedom which must be explored when 42 

identifying an optimally bound structure. In order to simplify the search for optimized protein:ligand 43 

conformations and to simulate high throughput binding of large libraries of low molecular weight ligands, 44 

coarse grained docking methods will typically only model the flexibility of the ligand and a small number 45 

of interacting protein residues within a defined area of a rigid protein structure [8]. 46 
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While the liberties taken by these types of simulations allow for a greater throughput, they fail to account 47 

for internal protein dynamics which may play a significant role in the interacting complex. All-atom 48 

molecular dynamics (MD) simulations explicitly account for atomic interactions occurring within a 49 

molecular system and provide a way to understand the overall conformational flexibility and structural 50 

dynamics [9]. However, even systems consisting of a small, solvated protein contain tens to hundreds of 51 

thousands of atoms and each simulation step requires a summation of all the forces acting on each. Even 52 

on high performance computational infrastructures, simulation runs can easily last weeks to generate 53 

usable results. The increased computing cost is offset by its unique insight and characterization of 54 

functionally relevant protein dynamics.  55 
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Both approaches find utility in specific applications, and their individual strengths are leveraged to 56 

understand the impact on protein sequence variation on small molecule binding. When a new amino acid 57 

is specified by a change to the genomic sequence, the change in the residue side chain has the potential to 58 

alter the functional interactions with a small molecule. If the change occurs within the defined search 59 

space of a coarse grained binding simulation, the new interactions can be simulated directly. Typically, 60 

the structures used for binding simulations are derived from x-ray crystallography, but simply swapping 61 

Figure 1. The SNP2SIM workflow contains 3 functional modes; varMDsim generates molecular 

dynamics trajectories using NAMD, varScaffold clusters the resulting trajectories into variant 

specific representations of the structural variation, and drugSearch binds a library of low molecular 

weight ligands to each variant scaffold. 
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out amino acid side chains in the intersecting residues may not fully account for the structural differences 62 

of the protein variant. Since the protein backbone is treated as a rigid scaffold, the resulting predicted 63 

binding characteristics do not account for those subtle changes in the backbone geometry and could have 64 

a large influence on the results. Furthermore, these methods have nothing to offer if the variation occurs 65 

outside of the defined search space, especially those amino acids which are buried within the folded 66 

protein structure. MD simulations can address this limitation by comprehensively sampling the 67 

conformational landscape of a protein variant to generate characteristic scaffolds for downstream small 68 

molecule docking.  69 

Since a protein variant can alter the functional interaction with therapeutic molecules, predicting how 70 

small molecules will bind to protein variants has a significant application in personalized medicine. Not 71 

only can simulation results be used in the development of targeted therapies, it could also be informative 72 

in the selection of second line of therapy once drug resistance has emerged. As the application of 73 

molecular profiling and sequence analysis continues to gain a foothold in clinical decision making, a well-74 

defined, user friendly simulation workflow and methodology would be an important tool for translational 75 

computational biology. To that end, we present SNP2SIM (Figure 1), a scalable workflow for simulating 76 

the impact of protein sequence variation on binding to small molecule ligands. 77 

 78 

Implementation 79 

At its core, SNP2SIM is a modular set of simulation and analysis tools wrapped in a command line 80 

python script. The three functional modules correspond to the molecular dynamics simulation of a protein 81 

variant, conformational analysis of molecular dynamics trajectories, and small molecule docking to 82 

variant specific structural scaffolds. The workflow controls the generation of tool specific preprocessing 83 

and analysis scripts, configuration files, and file structure based on an initial PDB formatted protein 84 

structure file, and executes the simulation software. The command line implementation of SNP2SIM is 85 

available for download (https://github.com/mccoymd/SNP2SIM), and the varMDsim, varScaffold, and 86 
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drugSearch modules are also available as apps on the Seven Bridges Cancer Genomics Cloud [10] 87 

(http://www.cancergenomicscloud.org/).   88 

varMDsim 89 

With the minimal input of a PDB formatted protein structure file and simulation time in nanoseconds, the 90 

varMDsim module will generate a solvated, ionized water box, generate the configuration files for the all-91 

atom simulation, and compile the results for downstream analysis. Specifying an amino acid variant will 92 

automatically mutate the input structure prior to solvation. The varMDsim module utilizes versions of 93 

Visual Molecular Dynamics (VMD) [11] and Nanoscale Molecular Dynamics (NAMD) [12] installed on 94 

the user’s system, and the CHARMM36 topology and parameters [13] and simulation configurations files 95 

are hardcoded into the workflow, standardizing the resulting simulation for reuse and promoting the 96 

reproducibility of the computational simulations.  97 

varScaffold 98 

The simulation trajectories are analyzed using the varScaffold module to produce characteristic structures 99 

of variant proteins. The user supplied clustering parameters specify how the protein structures are first 100 

aligned, and then clustered based on root-mean-square deviation (RMSD), using VMD’s Atom Selection 101 

Language and clustering plugin. This separate alignment and clustering parameters allow for the 102 

investigation into protein specific features of interest. For example aligning an entire protein structure by 103 

its backbone residues and clustering by the geometry of the binding pocket captures specific structural 104 

variation impacting the functional interaction with a ligand. Similarly, this can be used to measure 105 

internal dynamic behavior, such as the motion of a disordered region or positions of internal structural 106 

features. Representative PDB structures are generated for each unique cluster that is populated by at least 107 

10% of the simulated trajectory at a given RMSD cluster threshold. The varScaffold module will accept 108 

multiple PDB or DCD formatted trajectory files generated through parallel execution of the varMDsim 109 

module. 110 
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drugSearch 111 

The drugSearch module uses AutoDock Vina [14] to bind a predefined library of low molecular weight 112 

molecules into the variant scaffolds. This requires the user to supply a PDB formatted protein structure, 113 

and an associated parameter file that defines the search space for ligand binding. Additionally, the user 114 

can specify a set of residues within that search space model with flexible sidechains. Variant scaffolds are 115 

aligned to the reference coordinates, and the associated configuration files are generated for each ligand in 116 

the drug library. General analysis tools included along with the SNP2SIM package include bash scripts to 117 

compile the quantified AutoDock Vina results from multiple files, generate PDB formatted files of the 118 

ligand and flexible side chain orientations, and to visualize the relative binding affinity between wildtype 119 

and variant structures. 120 

Case Study: PD-L1 small molecule inhibitors 121 

The immunomodulatory protein PD-L1 was used to demonstrate the application of the SNP2SIM 122 

workflow to drug development in personalized medicine. Development of small molecule inhibitors has 123 

clinical applications, and a number of molecules are currently being investigated for therapeutic use in 124 

cancer. To understand how these molecules may differentially bind to variants of PD-L1, known 125 

mutations in the binding domain were processed through the SNP2SIM workflow. The initial starting 126 

structure used the Ig-like V-type domain from PDB: 4Z18, and 500 ns of simulation were generated for 127 

each protein variant. Variants were selected based on their occurrence in PD-L1 expressing cell lines as 128 

well as those most commonly occurring across all cancer types (L53P, V68L, R86W, L94M, G95R, 129 

A97V, M115T). Variant trajectories were aligned using the entire domain backbone and clusters were 130 

defined using a 0.7 RMSD cluster threshold for the backbone atoms in residues interacting with low 131 

molecular weight inhibitors in PDB crystal structures(cite) (Residues 19, 20 54, 56, 66, 68, 115, 116, 117, 132 

121, 122, 123, 124, 125). These same interacting residues were also modeled with flexible side changes 133 

when bound to a library of 17 small molecule ligands. The SNP2SIM workflow was run using the Seven 134 

Bridges Cancer Genomics Cloud infrastructure (cite).  135 
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 136 

 137 

Results 138 

The SNP2SIM workflow enables the efficient parallelization of the computationally intensive molecular 139 

dynamics simulations. Variant structures of PD-L1 were simulated for 5 independent runs of 100 ns each 140 

Figure 2. The SNP2SIM results from the varMDsim module. Each color represents an independent 100 ns 

NAMD simulation of the solvated PD-L1 variant structure (5 per structure variant). Root-mean-squared deviation 

(RMSD) of the domain backbone (alignment residues) and binding show (clustering residues) reveal differences 

in wildtype and variant conformational dynamics.  
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(total 50 ns), and the resulting trajectories were combined for downstream analysis. The RMSD of both 141 

the domain backbone and small molecule binding residues (Figure 2), show the variants all maintain a 142 

relatively stable conformational population. Despite the overall lack of molecular motion on a global 143 

scale, the results show the variant structures behave differently relative to wildtype. This is reflected in 144 

the deviation of the entire PD-L1 domain backbone, which is even more pronounced when only 145 

considering the residues which interact with small molecule inhibitors (Figure 3). 146 

 147 

From the initial analysis of the variant trajectories, it’s clear that certain variants induce more 148 

conformational flexibility than others. This is highlighted in the breakdown of the trajectory clustering 149 

results (Figure 3), where clusters were defined by the RMSD of residues involved in binding small 150 

molecules. The wildtype PD-L1 structure had two populated clusters, one just meeting the threshold of 151 

10% of all sampled structures . Depending on the variant, the occupancy of additional clusters decreased 152 

to one (86W, 94M, and 97V), increased to three (95R), or stayed the same (53P, 68L, and 115T), 153 

illustrating the differential impact of sequence variation on the overall conformational flexibility. 154 

Figure 3. The (A) breakdown of the results from the varScaffold module of the SNP2SIM workflow show the 

characteristic variation induced by each missense mutation in PD-L1. Depending on the variant, molecular 

dynamics simulations revealed novel structural conformations (Occupancy > 10%).  (B) The backbone atoms 

from PD-L1 binding residues from trajectory based scaffolds, where the colors correspond to the different 

populated clusters of a given variant relative to the crystal structure (grey).  
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The differences in flexibility translate to changes in the predicted binding affinity, and the difference can 155 

be used to predict if a given variant will be more or less likely to bind a particular ligand (Figure 4). 156 

Since there were two wildtype scaffolds, each was compared separately to each variant scaffold. For the 157 

same variant, the relative binding affinities are largely similar in direction and magnitude for both the 158 

wildtype conformations. But it’s not always the case, and close inspection of instances where the pattern 159 

diverges had the potential to yield significant insight into the functional nature of the protein. The same 160 

applies to differences between input scaffolds for individual variants, where the inhibitory function of 161 

certain small molecules may be related to differential binding to conformational populations.  162 

 163 

 164 

Discussion 165 

Figure 4. The SNP2SIM drugBinding results for trajectory-derived PD-L1 scaffolds bound to small 

molecule inhibitors are used to calculate the binding affinity relative to that predicted for the wildtype 

structure. Positive values correspond to a decreased affinity of the small molecule for the variant 

structure compared to the wildtype. 
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The growing prevalence of genomic testing is revealing an enormous amount of rare variants with 166 

unknown functional significance [15], underscoring the need for predictive computational analysis to 167 

determine their functional significance. This is especially true for variants which occur in proteins where 168 

the effectiveness of targeted therapeutic strategies may be disrupted. For example, missense mutations 169 

emerge in response to evolutionary pressures in a growing tumor which disrupt binding of targeted 170 

inhibitor molecules [16]. SNP2SIM enables the profiling of multiple approved inhibitors to inform the 171 

selection or design of an optimal therapy which maintains a positive clinical response [7].   172 

By simulating the variant specific contributions to the overall protein conformational dynamics and ligand 173 

binding, the unique impact of a variant can be quantified even when the mutated residues do not occur at 174 

the interaction interface. As seen in Figure 3, the proportions populations of distinct protein structures is 175 

impacted in a variant specific manner. Even for the wildtype structure, two populated conformations were 176 

identified which show slightly modified geometries of the protein backbone found in the crystal structure. 177 

The results of small molecule docking show the different scaffolds bind to the small molecule ligands 178 

with different affinities (Figure 4). This additional information will ultimately produce more robust 179 

analysis and improve predictive models used for downstream drug development, design, and utilization.  180 

The widespread use of molecular simulations to generate predictive data, and the insight it can provide to 181 

understanding the functional changes of protein sequence variants, is rate-limited by computational costs 182 

and scale of potential variation. Both of these barriers are being overcome through access to cheap cloud 183 

computing and the development of reproducible workflows. And while a lot has been done to lower the 184 

barrier for novice users to access these tools through widely available infrastructure such as the NCI cloud 185 

pilots, creating an easy-to-use simulation and analysis workflow opens the doors to many researchers who 186 

would otherwise not have access. As demonstrated through the case study of PD-L1, SNP2SIM can 187 

address all these issues. The modular nature and implementation as independent apps on Seven Bridges 188 

Cancer Genomics Cloud allow for parallelization, access to high performance computing resources, and a 189 

user-friendly interface.  190 
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Conclusions 191 

Overall, the SNP2SIM workflow represents a higher resolution approach to the in silico functional 192 

predictions compared to methods that provide a limited characterization of variant pathenogencity. Not 193 

only does a simulation based approach provide detail about disruption of specific functional interactions, 194 

it can evaluate the differential impact of somatic variation on targeted therapies. 195 

 196 
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