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Abstract. Focal oncogene amplification and rearrangements drive tumor growth and 

evolution in multiple cancer types. We developed a tool, AmpliconArchitect (AA), which can 
robustly reconstruct the fine structure of focally amplified regions using whole genome 
sequencing. AA-reconstructed amplicons in pan-cancer data and in virus-driven cervical cancer 
samples revealed many novel insights about focal amplifications. Specifically, the findings lend 
support to extrachromosomally mediated mechanisms for copy number expansion, and 
oncoviral pathogenesis.  

 

Cancer is marked by somatic DNA lesions. While these include small nucleotide 
changes, and chromosomal aneuploidies, focal amplifications of smaller regions are also a 
prominent signature in a large proportion of human cancers1. Focally amplified regions are 
found to be hotspots for genomic rearrangements, which can include the juxtaposition of 
segments of DNA from distinct chromosomal loci, into a single amplified region2–8. While 
common, these types of focal gene amplification present a mechanistic challenge -- how do 
multiple regions from one or more chromosomes rearrange together in cancer? Our team 
recently showed that focal amplification in nearly half of samples across a variety of cancer 
types can be explained by circular, extrachromosomal DNA (ecDNA) formation9.  Furthermore, 
ecDNA formation can dramatically change the outlook for tumor evolution even as compared 
other types of somatic mutations. Due to this renewed understanding, there is an urgent need 
for tools to study the biological properties of ecDNA, and more importantly facilitate ecDNA-
based techniques for cancer treatment and diagnostics. Specifically, tools to elucidate the 
structure of ecDNA can provide insights into the mechanisms of oncogene amplification and 
evolution through complex rearrangements. 

An 'amplicon' is defined as a set of non-overlapping genomic ‘intervals’ connected to 
each other and amplified, and an 'amplicon structure' as an ordered arrangement of the 
genomic ‘segments’ within the amplicon. An amplicon interval may be partitioned into multiple 
genomic segments depending on the rearrangement breakpoints within the amplicon structures. 
We recently found that oncogenes amplified on ecDNA are often part of highly rearranged 
amplicons, that may juxtapose regions from different chromosomes. Traditional structural 
variant (SV) analyses cannot decipher complex rearrangements10–13. The few methods that 
extend the analysis, chain together breakpoints into paths and cycles, but often do not 
reconstruct the amplicon in the specific region of interest, and do not provide a comprehensive 
view of alternative structures14–19. Reconstruction remains challenging due to extreme variability 
in copy counts (5X-200X) and sizes (100kbp-25Mbp) of amplicons, samples containing 
heterogeneous mixture of multiple amplicon structures, and inaccuracy of SV identification. 

We describe AmpliconArchitect (AA), a tool for reconstruction of ecDNA amplicon 
structures using whole genome sequencing data (Fig 1A-J, Methods 1,2) that overcomes these 
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difficulties by providing a versatile representation of an amplicon that encodes all supported 
structures and provides a framework for algorithmic reconstruction of possible structures.  

 
AA takes as input, short, paired-end reads mapped to the reference genome as well as a 

seed interval in an amplicon. It automatically searches for other intervals participating in the 
amplicon (Fig 1A-B), and then performs a carefully calibrated combination of copy number 
variant (CNV) analysis20 and SV analysis (Fig 1C-E). For algorithmic prediction of the amplicon 
structures, AA uses SV signatures (e.g. discordant paired end reads and CNV boundaries) to 
partition all intervals into segments and build a breakpoint graph. It assigns copy numbers to the 
segments by optimizing a balanced flow on the graph21 (Fig 1F). As short reads may not span 
long repeats, they cannot disambiguate between multiple alternative structures. AA addresses 
this in two ways. First, it creates a succinct “SV View” displaying the raw SV signatures 
including coverage depth, copy number segments and discordant genomic connections (Fig1G), 
which by itself is informative to the user for manual interpretation of the amplicon structure. 
Second, AA decomposes the graph into simple cycles, and provides a “Cycle View” to intuitively 
visualize the segments of the cycles in the context of the SV view, showing their genomic 
locations. The AA Cycle View provides a feature to interactively merge the simple cycles and 
explore candidate amplicon structures (Fig 1I-J, Supplementary Fig 1). 
 
 A robust amplicon reconstruction tool should predict the amplicon structure for a diverse 
set of focal amplifications observed in cancer in a high-throughput manner. Previous studies 
examining complex rearrangements tested small sets of cancer samples and validated 
individual rearrangements using PCR. On those samples, AA performed at least well as the 
other studies and identified SV signatures that other methods were unable to identify (Methods 
3, Supplementary materials, figshare). A complete validation of entire structures would require 
ultra-long read fragments (Mbp) or isolation of amplicons from the rest of the genome. 
Moreover, multiple experiments would be needed to test AA effectively on the diversity of 
reconstructed amplicon structures (e.g., see Fig S7, figshare). Therefore, we developed a 
simulation-based benchmarking strategy and error model to quantify the accuracy of predicted 
structures. 
 
 We simulated a diverse set of ~1000 amplicons, including rearrangements with varying 
levels of copy number (4x-32x), size (40kbp-2.4Mbp), number of rearrangements (0-16), 
duplication probability (0-0.75), and sequencing coverage (1x-32x) (Methods 4). AA had 
consistent performance in terms of prediction of SV signatures with changing copy number and 
coverage (Supplementary Fig 3). To measure the accuracy of the complete reconstruction, we 
developed a novel metric based on a 'graph edit distance', described informally by the number 
of operations required to transform the predicted amplicon structure into the true structure 
(Methods 5, Supplementary Fig 2).  The metric partitions the graph operations into two 
categories: (i) number of errors caused by AA and (ii) number of swaps across repeat branches 
indicative of the number of cycle merging operations a user would need to perform to obtain the 
entire structure. The number of errors was normalized by the total segments in the amplicon 
and contrasted against a naive ‘permutation predictor’ which picks a random order of the 
amplicon segments from the copy number profile (Methods 6). This metric reported that even on 
our wide-ranging simulations, AA had an error rate <=11%, averaging about 1 error per 9 
rearrangements (Fig 1K-N, Supplementary Fig 3, 4). 
 

We applied AA to sequencing data of 117 cancer samples (sample set 1) (supplemented 
by 18 replicates and drug-treated variants) from 13 cancer types9 (Methods 7, Supplementary 
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Table 1). We used the CNV tool ReadDepth22 (Methods1, Supplementary Table 2) to identify 
255 focally amplified intervals in 55/117 samples with size >100kbp and copy number >5X. 
Using the 255 intervals as seeds, AA reconstructed 135 non-overlapping amplicons, each 
containing one or more seeds (Supplementary Table 3, figshare).  We observed a range of 
amplicon structures including simple cycles, heterogeneous mixtures of related structures, a 
breakage-fusion-bridge amplification, and highly rearranged amplicons with intervals from one 
up to 3 chromosomes (Fig 2A-C, Supplementary Table 3, figshare). The number of detected 
rearrangements (breakpoint edges) per amplicon ranged from 0 to 49 with average of 4.9 
rearrangements per amplicon, a likely underestimate, because of the low-coverage sequencing 
data. 
 

Typical mechanisms invoked for CN amplification rely on repeated breaks at fragile sites 
followed by duplication events. We used AA to test an alternative model, that (a) starts with 
breaks at random sites, followed by ecDNA formation; Poisson random breaks result in an 
exponential distribution of segment lengths. (b) Aggregation of ecDNA may create larger, highly-
rearranged, multi-interval, structures. (c) Replication and independent segregation of ecDNA 
create cells with a diversity of copy numbers; however, (d) positive selection for higher copy 
numbers due to proliferative elements (e.g. oncogenes) on ecDNA result in amplification without 
the need for repeated breakpoint use and duplication events; (e) oncogenes could be expressed 
in a tissue specific manner providing selective advantage to different tumor sub-types. 
Therefore, amplicons sampled from specific tumor sub-types could be enriched in specific 
oncogenes, while being structurally quite different; finally, (f) ecDNA can also reintegrate into 
non-native chromosomal locations as homogenously staining regions (HSRs), while maintaining 
their structure across cell passages. 
 

To test the tenets of this model, and get statistically more meaningful numbers, we 
explored the 135 AA amplicons in sample set 1 as well as 12,162 somatically amplified intervals 
in 2513 TCGA23 samples determined by CNV arrays (Methods 8). Importantly, intervals from the 
AA amplicons showed a significant overlap with the TCGA intervals (Methods 9, p-value 
� 1.1 � 10��).  Consistent with tenet (a), the TCGA interval size and copy number both followed 
exponential distributions with mean 1.74Mbp and 3.16 copies respectively (Methods 10; Fig2E, 
Supplementary Fig 5). Individual intervals within multi-interval AA amplicons were similar in size 
to single-interval amplicons; however, (see tenet (b)) complete AA amplicons containing multiple 
intervals from a single chromosome (14/135) (Fig 2B) or from multiple chromosomes (17/135) 
(Fig. 2C) were on average larger in size than the amplicons containing only one interval 
(101/135) (Fig2A) (Fig 2F, Methods 11, figshare). In support of tenets (c), (d), we had previously 
shown an increase in the copy number heterogeneity as well as an enrichment of oncogenes in 
ecDNA9.  

 
Corroborating tenet (e), that ecDNA formation drives tumor growth through the 

amplifications of oncogenes which specifically confer a high selective advantage to the specific 
tumor sub-type, we found that amplifications of 59 distinct oncogenes were specifically enriched 
in 19 of 33 cancer types in the TCGA sample set (Supplementary Fig 6, Methods 12). For 
example, MDM4 and EGFR were enriched in glioblastoma, MYC and ERBB2 were enriched in 
breast cancer whereas MDM2 was enriched in both. In turn, a significant portion of the enriched 
oncogenes manifested in the amplicons of the corresponding cancer types from sample set 1. 
Limiting the analysis to the 48 enriched oncogenes in 10 TCGA sub-types that were present in 
sample set 1, we found that amplicons in 4 cancer types contained 18/48 oncogenes which 
were enriched in the corresponding TCGA cancer types while in 4 more cancer types, the 
corresponding TCGA samples did not show any enriched oncogenes (Supplementary Table 4). 
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In support of tenet (f), we found no separation between intra-chromosomal (HSR) and 
extrachromosomal (ecDNA) amplicons in terms of their size and copy number. Detailed AA 
reconstructions showed that amplicons preserved their structures within biological replicates but 
evolved over time, in response to drug treatment, and in transition from ecDNA to HSR and 
back9 (Fig 2D, Supplementary Fig 7).  

 
 To test whether neighboring chromosomal features or functional elements outside the 

oncogenes played a role in amplicon formation or tumor growth in multiple samples, we 
measured the size of the overlap between amplified intervals containing the top 3 oncogenes - 
EGFR, MYC and ERBB2. For each oncogene, and each pair of samples focally amplifying the 
oncogene, we measured the size of the overlap to evaluate the hypothesis that the size of the 
overlap was significantly larger than in a null model in which overlaps are obtained from a 
random choice of breakpoints around the oncogene. The QQ plots of pairwise similarity scores 
indicated that the null hypothesis could not be rejected (Supplementary Fig 8, Methods 13). 
Thus, we found no evidence to suggest that recurrent breakpoint use is important for amplicon 
formation. These results complement previous results2 which also reported a lack of association 
with fragile sites, segmental duplications or repetitive elements in regions of complex genomic 
rearrangements, and they strengthen the case for an ecDNA based model of CN amplification. 

 
In a second application of AA, we looked at focal amplifications near genomic viral 

integrations from 68 cervical cancer tumor samples23 (sample set 2) with matched normal blood 
samples (Methods 14, Supplementary Table 5). AA detected human papillomavirus (HPV) 
genomic sequence in 67/68 tumor samples and none in matched normal. We found HPV 
integrated into the human genome in 18/20 high-coverage(>30x) and 33/48 low-coverage(<10x) 
samples. AA reported that viral integrations induced formation of 41 human-viral fusion 
amplicons containing both viral DNA and segments from the human genome in 49% (33) of all 
samples (Fig 3A, Supplementary Fig 9, Supplementary Table 6, figshare). While six fusion 
amplicons contained an oncogene (3 with MYC, 1 each with ERBB2, BIRC3 and RAD51L1), the 
majority of fusion amplicons contained human sequence from intergenic regions. 

 
The simplest mechanism of viral integration, which we will call a unifocal integration, 

consists of the virus inserting itself into the human genome by causing exactly one double-
stranded break (Fig 3B). AA reconstruction revealed a novel bifocal signature where the 
endpoints of the amplified human interval were flanked by the virus (Fig 3C). For example, if 4 
ordered segments ABCD represent a section of the normal human genome and V represents a 
viral segment, then a fusion amplicon induced by a unifocal integration might result in a 
structure of the form A[BVC]nD. In contrast, we see structures of the form AB[VB]nC, reminiscent 
of a bifocal insertion. A simpler explanation for bifocal signature is a circular extrachromosomal 
amplification of the form (BV) where V is connected back to B. Only 14(34%) fusion amplicons 
displayed a unifocal signature. In contrast, 19(46%) amplicons displayed a bifocal signature. An 
additional 12(29%) amplicons showed a ‘weak’ bifocal signature where only the highest copy 
segment was flanked by the virus but the virus did not flank neighboring amplified segments 
with smaller copy numbers (Supplementary Fig 9, Methods 15). Thirteen amplicons contained 
multiple human-viral connections. Sample TCGA-C5-A0TN contained an unusual amplicon with 
a 2-way bifocal signature where, 2 segments from chr2 and chr3 were connected together and 
the virus in turn flanked the outer end of each segment in a circular or tandemly duplicated 
structure with 10 copies (Fig 3D). Through simulations, we concluded that a unifocal integration 
followed by random rearrangements is unlikely to result in the formation of an amplicon with a 
bifocal signature (Methods 16, Supplementary Fig 10).  Akagi et al have proposed a looping 
model where origins of replication on the human genome drive amplification24. However, the 
prevalence of bifocal signatures and multiple chromosomes as part of an amplicon and the 
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ubiquitous presence of the HPV origin of replication alongside the viral oncogenes E5 and E6 in
reconstructed amplicons suggest an alternative possibility that the chimeric amplification could
be mediated through ecDNA formation. Although episomal virus in its native form has been
reported extensively in cancer cells, the AA reconstructions make a compelling case to
investigate the presence of fusion human viral segments in the form of ecDNA. 

 
AA is a robust and viable tool for reconstructing possible ecDNA and other focal

amplicon structures from short-read data and allows for an interactive exploration of alternative
structures. This method and subsequent analysis on a pan-cancer data set suggests that
formation of ecDNA could play an important role in creating the complex rearrangements and
copy number increases across the spectrum of cancer subtypes. 

 

 

Figures: 

 

 Figure 1. Schematic of Amplicon Architect (AA). AA takes as input: (A) aligned whole-
genome sequencing data from a sample with an amplicon, and B) a ‘seed’ interval from the
amplicon. It automatically searches for and identifies other intervals that are part of the same
amplicon; C) Next, AA identifies breakpoints by segmenting intervals at positions with a sharp
change in copy number, or (D) containing a cluster of discordant paired-end reads. Finally, (E)
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AA refines breakpoint locations. (F) The collection of segments and breakpoints is used to
generate a breakpoint graph, and a balanced flow approach is used to refine segment copy
numbers. (G, H) The entire graph describes a breakpoint signature and a succinct “SV view” of
the amplicon, which is also decomposed into short basis cycles in the “Cycle view”. (I, J)
Alternative merging of the short cycles with overlapping segments can generate multiple
amplicon architectures consistent with the short-read data. (K-N): Amplicon reconstruction on a
variety of simulations showed high fidelity of reconstruction (red bar, 11% error) relative to a
random ‘permutation predictor’ (grey bar, 85% error). Swaps (blue bars) represent cases with
alternative structures supported by the data. A high fraction of samples were reconstructed
perfectly (parenthesized values), although performance decayed slightly upon increasing
duplications in the amplicons. Values are presented as percentage of twice the sum of number
of segments. 

 

Figure 2. SV view of AA reconstructions. AA reconstructed 135 amplicon structures from 255
seed intervals in WGS of 117 cancer samples. The SV View of reconstructed amplicon
structures shows (A) simple cycles; (B) heterogeneity with amplicons containing EGFR VIII
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deletion as well as the intact EGFR; and (C1) complex rearrangements such as a
medulloblastoma multichromosomal amplification. (C2) A cycle view of the MB amplification. (D)
A combined SV view of all amplicons in a GBM patient derived xenograft (PDX) evolving with
time and in response to drug treatment shows interconversion of ecDNA and HSR, copy
number changes (red arrows: increase, blue arrows: decrease) and structural changes. Left
axis: passage of PDX, right axis: replicate state (ERZ: erlotinib resistant). (E) AA amplified
intervals compared against 12162 amplified TCGA intervals shows significant overlap. The
interval sizes (mean 1.74 Mb) and copy numbers (mean 3.16 copies) are exponentially
distributed, with no clear distinction between HSR and ecDNA amplicons. (F) Amplicons with
intervals from multiple genomic regions from the same chromosome (MultiCluster) and multiple
regions from multiple chromosomes (MultiChrom) are larger in size that amplicons with all
intervals in a single region on a single chromosome (Clustered), but size of amplified region
within each cluster follows a similar distribution as the Clustered amplicons. 

 

 

Figure 3. Amplicon structures near viral insertions. A) In genome sequences derived from
67 cervical cancer samples with matched normal blood, HPV sequence was identified in all 67
tumor samples (with genomic integration in 51) compared to none of matched normal blood
samples. 41 fusion amplicons were reconstructed in 33 samples. B) While 14 of the viral
insertions gave a unifocal amplification signature, consistent with viral insertion at a specific
genomic location, (C) 32 amplicons showed a bifocal signature, (D) A 2-way bifocal signature in
sample TCGA-C5-A0TN with 2 segments from chr2 and chr3 connected to a viral segment in a
circular or tandemly duplicated structure with 10 copies. The prevalence of bifocal signatures is
suggestive of hybrid ecDNA elements containing virus and human sequence. 

  

Supplemental figures: 

• Fig S1: Example of the cycle merging operation 

a 
D) 
ith 
py 
eft 
ed 
he 
lly 
ith 
le 
all 
on 

 

m 
67 
od 
ral 
fic 
 in 
 a 
 is 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/457333doi: bioRxiv preprint 

https://doi.org/10.1101/457333
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

• Fig S2: Error model for benchmarking AA 
• Fig S3: Accuracy of AA submodules and reconstruction 
• Fig S4: Runtime of AA 
• Fig S5: Distribution of amplicon intervals corresponding to Fig 2E 
• Fig S6: Cancer type-specific oncogene enrichment 
• Fig S7: AA amplicons in biological replicates for 7 cancer samples evolving over the 

passage of time or in response to drug treatment 
• Fig S8: QQ-plot of similarity of overlapping amplicon intervals vs expected similarity 
• Fig S9: Size and copy number distribution of human-viral fusion amplicons in cervical cancer 
• Fig S10: Unifocal and bifocal signatures over evolution of fusion amplicons 

 

 

Supplementary tables: 

1. Sample list 
2. Seed intervals 
3. Final amplicon intervals, oncogenes and classification (single or multi-interval) 
4. Oncogene amplified in corresponding types in TCGA and sample set 1 
5. Viral sample list with detected HPV strain and integrations 
6. List of viral amplicons, oncogenes and classification (unifocal/bifocal) 

  

Figshare:HYPERLINK "https://figshare.com/articles/AmpliconArchitect_reconstructions/5950339" 

https://figshare.com/articles/AmpliconArchitect_reconstructions/5950339 

• All reconstructions on previously reported amplicons 
• All reconstructions from sample set 1 and replicates 
• All examples of simple cycles 
• All multi-interval amplicons 
• All multi-chromosomal amplicons 
• Sample with Breakage-Fusion-Bridge signature 

 

Code and data availability: 

The AmpliconArchitect software described in the manuscript is available at 
https://github.com/virajbdeshpande/AmpliconArchitect. Whole-genome sequencing data for 
sample set 1 and 6 replicates for sample GBM39 were downloaded from the NCBI Sequence 
Read Archive (SRA) under Bioproject (accession number: PRJNA338012). 12 replicates for 
other samples are available on SRA under Bioproject (accession number: 
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA437014). The reconstructions described in this 
manuscript may be downloaded from 
https://figshare.com/articles/AmpliconArchitect_reconstructions/5950339 
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Methods: 

1) Seed interval selection: Interval merging and copy number threshold 

AA requires a seed interval in addition to mapped genomic reads. The seed interval 
serves as a starting point for AA to search for all connected genomic intervals contained in the 
amplicon. Here, we pick seed intervals in two different sample sets: a) WGS of tumor samples 
across multiple cancer types, b) WGS of cervical cancer samples infected with HPV. 

A) To identify the set of seed intervals in the WGS samples from the pan-cancer dataset, we 
defined parameters CN_THRESHOLD and SIZE_THRESHOLD for minimum bounds on copy 
number and size of the interval. Aiming to find a criterion for identifying somatically amplified 
intervals, we compared the CNV calls for matched tumor and normal samples downloaded from 
TCGA consisting of 22376 masked CNV call files from TCGA generated from Affymetrix 6.0 
data for 10995 matched cases. For a given CN_THRESHOLD, define an amplified segment as 
a single CNV call with copy number greater than CN_THRESHOLD. A sample might have 
multiple amplified segments adjacent to each other. The size of the amplified segment was 
simply the number of base-pairs in the segment. For each sample, we merged consecutive 
amplified segments within 300kbp of each other to create the set of amplified intervals. The size 
of amplified interval was the sum of sizes of the amplified segments in the interval and the copy 
number of the amplified interval as the weighted average of the amplified segments weighted by 
their sizes. We counted the number of amplified intervals in all normal and tumor samples in the 
TCGA set for values of CN_THRESHOLD in {3, 4, 5, 7, 10} and SIZE_THRESHOLD in {10kbp, 
50kbp, 100kbp, 200kbp and 500kbp}. Based on these, we chose the values 
CN_THRESHOLD=5 and SIZE_THRESHOLD=100kbp for selecting the seed intervals which 
resulted in 25 intervals in normal samples and 12162 intervals in tumor samples which did not 
have a corresponding amplification in the normal samples. 

Next, we analyzed the WGS reads from the WGS samples from the pan-cancer dataset. 
We mapped the reads to the hg19 genome from UCSC genome browser25,26 and obtained CNV 
calls using the CNV calling tool ReadDepth CNV software version 0.9.8.422 with parameters 
FDR= 0.05 and overDispersion parameter=1. We also obtained the CNV calls for 8 normal 
control samples and created the set of amplified intervals from the CNV call sets for all samples 
with CN_THRESHOLD=5 and SIZE_THRESHOLD=100kbp. First, we looked at the amplified 
intervals from the normal samples and found genomic regions which were amplified in 2 or more 
normal samples. These regions were marked as blacklisted regions. Since ReadDepth did not 
report CNV calls for chrX and chrY, we used a previously computed list of recurrent CNVs on 
the X and Y chromosome reported by Layer et al13.  

From the amplified intervals from WGS of tumor samples, we filtered out false intervals 
using 3 criteria: 

(i) We identified intervals overlapping blacklisted regions and trimmed them to exclude the 
portions within 1Mbp of the blacklist regions. 

(ii) For each interval, we calculated its average repetitiveness by defining Duke35 repetitiveness 
score based on the mappability score track from UCSC genome browser26. This mappability 
score track reports the repeat count of each 35 bp window in the reference genome up to copy 
number 5. We computed the Duke35 repetitiveness score of an interval as the average score of 
all 35bp windows in the interval and filtered out intervals with score > 2.5. 
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(iii) We looked at intervals overlapping regions of segmental duplication (SD) reported by the 
human paralog project. For these intervals, we defined an SD-adjusted copy number as the 
interval copy number downscaled by its average repeat count. In the absence of information 
regarding actual repeat counts of the SDs, we assumed a repeat count of 2. As a result, the SD-
adjusted CN = Interval CN / (1 + Total length of overlapping SDs / length of interval). We only 
retained amplified intervals if their SD-adjusted CN was great than 5. 

Finally, to correct for the copy number gain due caused due to aneuploidy, we required 
that the difference in copy number of the interval and the median copy number of the 
chromosomal arm should be at least 3. Specifically, for amplicons in chromosomes with 
reference copy number of two, the copy number cutoff was 2 + 3 = 5 = CN_THRESHOLD. We 
applied these filters on the ReadDepth calls for the 117 WGS tumor samples to obtain 255 
intervals in 55 samples. 

B) For detecting chimeric human-viral amplification in cervical cancer samples, we created a 
combined reference genome consisting of the human chromosomes and the viral reference 
genome and aligned reads to this combined reference (Methods 13). We selected the viral 
genome as the seed interval. This was a highly selective criterion for selection of the seed 
interval which allowed us to perform a more sensitive search for amplicons. As a result, there 
was no initial cutoff on copy number or size of the seed interval. The cutoffs were chosen at the 
end of final reconstruction. 

2) AA methods 

The AA pipeline starts with the seed interval and mapped reads and performs multiple 
steps including search for amplicon intervals, detection of genomic rearrangements, 
construction of breakpoint graph, decomposition of the graph into simple cycles and 
visualization of the cycles. To perform these steps efficiently and accurately, AA implements 
and uses multiple low-level modules. Here, we briefly describe the implementation of AA 
pipeline and the low-level modules. The AA software described here may be downloaded from 
https://github.com/virajbdeshpande/AmpliconArchitect commit id: d993372. 

A) Low level modules: 

(i) Sequencing parameter estimation: This module estimated the parameters of sequencing 
coverage and variability as a function of window size, as well as the read and fragment insert 
lengths of the sequencing library. Given a bam file of mapped reads and a window size ws, AA 
obtained an initial estimate of the median coverage for 1000 randomly chosen windows from 
non-blacklisted regions, excluded all windows with coverage = 0 or > 5 times the initial median 
and recalculated the mean (μ��), median (���) and standard deviation (���) of window 
coverages for the given window size. AA computed the coverage for window sizes ws=10kbp 
and ws=300bp. Further, it obtained the read pairs from the windows used for estimating the 
coverage with window-size 10kbp, estimated the fraction P of "properly mapping" read pairs and 
estimated the mean read length R and the mean (µ(I)) and standard deviation (σ(I)) of the 
fragment insert length of the properly mapping read pairs as reported by the read aligner in the 
SAM alignment flags. 

(ii) CNV boundary detection: This module identified positions of copy number changes in an 
interval using only the coverage histogram. It first identified an initial list of boundaries of CNV 
segments based on a histogram with window size 10kbp and then refined these boundaries 
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through a local search by based on a histogram with window size 300bp within the 
neighborhood of the initial list of boundaries. To estimate the CNV boundaries for a given 
interval size, AA used a meanshift procedure adapted from Abyzov et al20. In the meanshift 
procedure, AA identified the CNV boundaries as the locations of the minima of the Gaussian 
kernel density estimator indicative of a large change in coverage. Specifically, for each window 
"i", define a Gaussian kernel density function 	�: 

	� � 
�� � ��
������

	
�
�

���

· ��
��������

	
�
�  

Here j iterates over 50 neighboring windows on either side of window i, ri, rj are the coverage 
depths for bins i and j, Hb is the bandwidth for bin index and Hr is the bandwidth for the coverage 
depth. For bin i with size ws and coverage ci, AA set �� � max �2, ��� /������� . Hb iteratively 
took values in the order (2, 5, 10, 50, 100) as described below. norm represents the constant 
normalization coefficient. Thus, ��	��, the component of the gradient of 	� along the genomic 
coordinates is: 
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AA selected the boundaries between pairs of consecutive windows where ��	��changes from 
negative to positive, merged all windows between these boundaries into segments and 
calculated the average coverage Cs for each segment s. AA selected the boundaries where the 
difference in coverage |Cs1 – Cs2| for consecutive segments s1 and s2, was found to be 
significant as described below. If either segment was smaller than 15 windows, then it required 
|Cs1 – Cs2| > 3���· max(Cs1, Cs2) / ���. AA detected the meanshift boundaries at various scales 
by iteratively increasing the size bandwidth from 2 to 100 windows while freezing segment 
boundaries it found significant in each stage. AA obtained an initial high confidence set of CNV 
boundaries in an interval by searching for the meanshift boundaries in the entire interval with 
window size ws=10kbp. It then refined these boundaries by running the meanshift algorithm with 
window size ws=300bp and from the new call set, picking the new boundary with desired 
directionality change in coverage and largest difference in coverage of adjacent segments. 

The CNV boundary detection module calculates the average coverage for genomic 
segments and defines the coverage ratio as !"# �  2!�  / $�� . The module could be run in two 
modes. In the sensitive mode, the difference in coverage of adjacent segments |Cs1 – Cs2| was 
considered significant as determined by independent t-test of the distribution of window 
coverage of s1 and s2. In the default mode, the module further filtered out boundaries if the 
difference in coverage ratios |!"��  –  !"�	|  &  '(�1, �!"�� , �!"�	�. The sensitive mode was 
specifically used for chimeric human-viral amplicons where the virus could have very high copy 
number as compared to the human intervals due to independent amplification. The default 
mode was used for all other amplicons in order to focus on amplicon structures that comparable 
in abundance with the highest copy structure and ignore noise from low copy rearrangements. 

 (iii) Breakpoint detection: This module took as input one or more intervals, and identified all 
breakpoints associated with these intervals using discordantly mapping read pairs: 
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a. Identify all discordant reads mapping to the intervals such that the mate maps either 
maps to a different chromosome, has unexpected mapping orientation, or maps at 
location such that the distance between the outermost mapping positions of the read 
pairs is outside of the range (µ(I) - 3σ(I), µ(I) + 3σ(I)). Cluster reads that map within 
(µ(I) + 3σ(I)) basepairs of each other and have the same mapping orientation. 

b. For reads with each cluster identify mapping positions of the mates and create one 
or more cluster pairs, “biclusters” from read pairs (including secondary alignments) 
where the first cluster consists of subset of reads from cluster from step(a) and that 
the second cluster corresponds to mates of these reads that map within (µ(I) + 3σ(I)) 
of each other. 

c. For each bicluster, filter reads in repetitive regions with MAPQ ≤ 5 or satisfying one 
of the 3 criteria for filtering out repetitive intervals described in the seed interval 
selection process. 

d. Remove biclusters whose size is smaller than a significance threshold S as 
described below. The size of a bicluster is the number of unique read pairs in the 
bicluster. 

e. Report pairs of breakpoint inferred from bicluster. 

The significance threshold for number of read pairs in the bicluster could be chosen from 4 
different options used for specific scenarios: (a) a fixed input parameter (e.g., 2 read pairs for a 
sensitive search), (b) minimum number of read pairs determined by the average sequencing 
coverage, read length and fragment insert length, (c) minimum number of read pairs for a region 
with copy number estimated by the coverage ratio of the meanshift segments, or (d) minimum 
number of read pairs determined by the difference in the coverage ratio across the CNV 
boundary. The minimum number of read pairs S associated with a given CR or difference in CR 
of segments was calculated as )��  �  * +  !" + $���  + �, –  "� / 2" / -. Here D = 20 was a 
downscaling factor which we chose based on observations from our simulations which 
suggested that the expected number of read pairs scaled down 20 times provided a classifier 
with high sensitivity without affecting specificity at multiple copy number states. Selection and 
hard-coding of the parameter D was the only fingerprint of "training" AA based on the simulation 
"evaluation set", otherwise all development of AA was done prior to evaluation on the simulated 
examples. 

B) AA pipeline: 

AA implemented a series of steps to start from a seed interval and ultimately reconstruct the full 
structure of the amplicon and provided informative results from each stage: 

(i) Interval search: In this step, AA started with the seed interval and iteratively identified 
the list of intervals belonging to the amplicon. It started by creating a max-heap data-
structure storing the seed interval.  

a. AA repeated the following steps until the max-heap was empty or after 10 iterations 
(Fig 1Aii). 

i. In each iteration, AA selected an interval and determined the discordant read-
pair biclusters in a CN-sensitive fashion and selected biclusters with the mate 
mapping outside previously seen intervals.  

ii. It then attempted to extend the bicluster by querying whether the extended 
portion is amplified. A query segment was classified as amplified if it had at 
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least 20% of windows(ws=10kbp) with coverage > � ��,���
+ 3���,���, or if it was 

smaller than 20kbp and contained at least 2 discordant edges (bicluster size 
corresponding to CN=2). AA then efficiently extended the query bicluster by 
iteratively doubling the size of the extended portion until the extension is found 
to be amplified and then iteratively reduced the extension query size by half. If 
AA was able to successfully extend the query bicluster, then it extended it 
further by 100kbp and recorded the extended interval for future iterations.  

iii. After AA recorded all amplified neighbors, AA marked the interval as seen, 
updated the max-heap ordered by the number of discordant read pairs 
connected to previously seen intervals and greedily picked the interval at the 
top of the heap for the next iteration.  

b. AA reported all amplified intervals from the extension step. 
(ii)  Interval rearrangements, partition and visualization:  

a. AA calculated all the coverage meanshift boundaries and initial copy number estimates 
for corresponding segments (Fig 1Aiii).  

b. It then created the list of discordant read pair biclusters with bicluster size thresholds 
determined by the CN estimates (or differences) (Fig 1Aiv).  

c. Additionally, for meanshift boundaries where it did not find a matching discordant read 
biclusters, it performed a sensitive local search for discordant read pairs with a 
bicluster size threshold of just 2 read pairs (Fig 1Av).  

d. Finally, it created the set of genomic locations of all rearrangements with a discordant 
read pair bicluster or a meanshift boundaries with no matching discordant reads.  
Using this set of locations, it partitioned all the intervals into sequence edges.  

e. For the output from the second stage, AA created a single plot called the SVview 
which displayed the interval set with the coverage histogram, initial copy number 
estimates of the meanshift segments and the discordant read biclusters. 

(iii) Breakpoint graph and copy number estimation: AA used the sequence edge 
partitions to construct a breakpoint graph27.  

a. For each sequence edge, it created 2 breakpoint vertices marking the start and end of 
the genomic segment and added a sequence edge connecting the 2 vertices.  

b. AA augmented the vertex set with a special source vertex. 
c. For each discordant read bicluster, it added a discordant breakpoint edge connecting 

the respective endpoints of the corresponding sequence edges if both the clusters 
belonged to the interval set.  

d. For all biclusters with one cluster outside the interval set, it introduced a source 
breakpoint edge connecting the source vertex to the breakpoint vertices corresponding 
to the clusters within the amplicon intervals.  

e. It also added source breakpoint edges connecting the source vertex to breakpoint 
vertices corresponding to meanshift vertices with no corresponding discordant 
biclusters and to end points of the amplicon intervals.  

f. Finally, AA connected breakpoint pairs corresponding to consecutive sequence edges 
within each interval with concordant breakpoint edges.  

g. For each sequence edge and breakpoint edge, AA recorded the number of reads and 
read pairs respectively mapping to the edge.  

A correctly reconstructed breakpoint graph represents a superimposition of all amplicon 
structures. Each cyclic structure forms a cycle of alternating sequence and breakpoint edges. A 
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linear structure with end-points connected to genomic positions outside the cycle, can be 
represented as an alternating closed walk starting and ending at the source vertex. The 
breakpoint graph construction may not always be complete due to missing edges leading to 
inaccuracies in final prediction of the structures. This problem was partially alleviated by the fact 
that, if AA failed to detect a discordant breakpoint edge, but detected the locations of the 
rearrangement through meanshift boundaries, then the corresponding amplicon structures were 
represented as one or more walks starting and ending at the source vertex. Henceforth, we 
restrict the definition of cycle in the breakpoint graph, as a closed walk with alternating 
sequence edges and breakpoint edges with the exception that the walk may contain 2 
consecutive breakpoint edges connected to the source at most once. Next, we note that the CN 
of each edge is the sum of CNs of each amplicon structure where each traversal of the edge 
separately. As a result, the copy numbers in the graph follow a balanced flow property wherein 
the CN of a sequence edge matches the sums CNs of breakpoint edges connected to each 
breakpoint vertex of the sequence edge. AA modelled the number of read fragments mapping to 
each edge as a Poisson distribution with the parameters determined by the CN, edge length 
and sequence coverage parameters. Under this model, AA estimated the copy number CNseq 
for each sequence edge and CNbp for each breakpoint edge by optimizing a balanced flow 
(linear constraints) with the convex objective function21: 

� θ���� · !/���/" �  0��� · ln3θ���� · !/���/"4
��������

5 � )����
� 0� · ln�)����

� 
�����

 

where SEQG represents all sequence edges and BPG represents all breakpoint edges in 
breakpoint graph G, kseq and kbp represent the number of reads mapping to sequence edge seq 
and the number of read pairs mapping across breakpoint edge bp respectively with the 
constraint: 

67 8 �9��, !/����
�  � !/�
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where seqv represents the sequence edge connected to breakpoint vertex v, VG represents set 
of breakpoint vertices in breakpoint graph G. The optimal solution for the balanced flow was 
obtained using the convex optimization package Mosek version 8.0.0.6028. For the third stage 
output, AA reported the graph edges and their copy counts as text output. 

(iv) Cycle decomposition: As described above, a linear or cyclic amplicon structure can be 
represented as one or more cycles in the breakpoint graph. However, even with correct 
reconstruction and CN assignment to the breakpoint graph, the cycles cannot always be 
inferred unambiguously, especially with repeated traversals of an edge. Conversely, there may 
be two or more possible sets of cycles and associated copy numbers, such that combining the 
cycles within each set may finally result in the same breakpoint graph with the same copy 
number assignments. Here combination of cycles simply means summing up the copy numbers 
for each graph edge from each cycle. It is not always practical to enumerate all possible 
amplicon structures because the number of possible structures can be exponentially large. To 
address this issue, we first observed that a cycle traversing an edge multiple times in the same 
direction can be divided into two smaller cycles and conversely, the two cycles can be merged 
to form the original cycle. However, if we iteratively merge multiple cycles together, then 
changing the order in which the cycles are merged can produce different resulting structures all 
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with the same edges and copy counts. Based on this observation, AA decomposed the 
breakpoint graph in to simple cycles, with the aim to represent a large number of amplicon 
structures using relatively few cycles. We defined a simple cycle as a cycle which traverses any 
sequence edge at most once in each direction and hence cannot be divided into smaller cycles. 
We defined the decomposition of the breakpoint graph as a set of simple cycles with CN 
assignment such that the CNs of any edges in all the simple cycles sum up to the CN in the 
breakpoint graph. While a breakpoint graph may have multiple decompositions and the simple 
cycles in a single decomposition may not be always be combined to form every possible 
amplicon structure, these cases require the breakpoint graph to have certain complex patterns 
expected to occur in a small fraction of amplicons. Instead, AA decomposed the breakpoint 
graph using a polynomial time heuristic which iteratively picked the simple cycle with the highest 
CN and decremented the CN from the corresponding edges in the breakpoint graph. With this 
algorithm, AA could prioritize the structures that had the highest CN as well as the cycles which 
occur in a large number of structures providing a meaningful way of highlighting the important 
features of the amplicon. AA provided a text file containing the ordered list of segments within in 
each simple cycle. Additionally, AA provided an interactive visualization of the simple cycles 
called the "CycleView" which could be merged to into larger cycles to investigate possible 
amplicon structures. In the CycleView, AA displayed the segments aligned with their genomic 
position in the SVview and consecutive segments were placed on consecutive rows. If two 
cycles contained overlapping segments, then a user could select the cycles, their overlapping 
segments and merge the cycles to form larger cycles. The CycleView provided a way to 
interpret the structure of the cycle while visualizing the genomic location and annotations. 

3) Samples reported by other studies 

We ran AA on previously reported amplicon and provide a comparison of AA 
reconstructions with previous studies (Supplementary Materials). The samples included: 

Dataset (i) contained 6 samples (HL-60, GLC-1-DM, GLC-2, GLC-3, COLO320-DM, 
COLO320HSR) provided to us by the authors of the original paper. Each sample was predicted 
by the original study to contain an amplicon with the oncogene MYC, along with PCR validation 
of breakpoint edges. We mapped the WGS samples to with with coverage between 4.6X to 
10.5X and remapped the reads to hg19 reference genome with BWA MEM. We picked the seed 
intervals using the ReadDepth as described on Online methods section 1. 

Dataset (ii) had 3 glioblastoma samples (TCGA-06-0648, TCGA-06-0145, TCGA-06-
0152) from Sanborn et al19, also studied by Dzamba et al18 . 1 ovarian cancer sample from 
Oesper et al15 (TCGA-13-0723) also studied by Dzamba et al18. We downsampled the bam files 
to coverage between 4X-7X by selecting read pairs with specific read group identifiers. The read 
group identifiers were selected to be sets of identifiers with the same read length and roughly 
similar insert length. The exact identifiers selected are mentioned in Supplemental materials. 
We picked seed intervals based on calls from CNV calling tool ReadDepth with copy number > 
5 and size > 100kbp as described in Methods 1A. 

Dataset (iii) consisted of 12 HPV infected cancer samples (HNSCC and CESC) from 
Akagi et a24. For each sample we predicted the HPV strain as described in Methods 13, 
remapped all the reads to the combined reference by concatenating the hg19 human reference 
genome to the reference genome of predicted HPV strain, and used the interval corresponding 
to the predicted HPV genome as the seed interval. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/457333doi: bioRxiv preprint 

https://doi.org/10.1101/457333
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

4) Simulation algorithm 

We developed a simulation algorithm, AAsim, to simulate 960 amplicons with known 
"true" structures to measure the accuracy of AA. Simulations of AAsim can be flexibly adjusted 
of multiple input parameters including: i) Interval size, ii) Copy number, iii) Number of 
rearrangements, iv) Probability of duplication and v) Depth of coverage. To allow testing the 
reconstruction without the bias of seed selection, AAsim simulated viral (HPV16) human hybrid 
structures. The HPV16 genome served as a de facto seed interval such that AA could be tested 
without providing any additional information about the span of the amplicon. AAsim simulated 
ecDNA structures through the following steps: 

1. Chose a random location on the human genome and integrate the HPV16 genome at 
this location. 

2. Randomly select an interval of input interval size around the site of integration and 
circularize it to create an ecDNA element containing the human interval with the 
integrated virus. 

3. Iteratively perform rearrangements on the ecDNA, including deletions, duplications, 
inversions and translocations such that in each iteration. Each type of rearrangement is 
selected with preset probabilities, as described below. The breakpoint coordinates for 
each rearrangement are chosen uniformly at random from the entire ecDNA structure, 
but rearrangements that deleted the viral genome entirely were not permitted. Iterations 
were performed until the required number of rearrangements were induced. 

4. Record the order of segments in the final structure to be used as "truth" set and 
assigned a copy count to the ecDNA using the input parameter. 

5. Generate 100bp paired-end reads from the ecDNA using the ART Illumina read 
simulator29 with given depth of coverage. Reads are also generated from other regions 
of the reference genome for AA to estimate the profile of the sequencing depth. 

The output of AA sim included the target "true" amplicon structures and the paired-end reads 
simulated for these amplicons. The values chosen for the input parameters were: i) Interval size: 
40kbp, 160kbp, 640kbp, 2.4Mbp; ii) Copy number: 4,16, 32; iii) Number of rearrangements: 0, 4, 
8, 16, 32; iv) Probability of duplication: 0, 0.25, 0.5, 0.75; v) Depth of coverage: 1, 4, 16, 32. In 
total, we generated 960 simulations for all combinations of these parameters. The sets of 
simulations with increasing duplication probability presented test sets with increased difficulty of 
reconstruction due to larger number of cycles per structures as well as larger number of 
segments. In order to estimate the runtime of AA for larger amplicons, we simulated 24 more 
structures with parameters: i) Interval size: 5Mbp, 10Mbp; ii) Copy number: 32; iii) Number of 
rearrangements: 0, 8, 32; iv) Probability of duplication: 0, 0.25, 0.5, 0.75; v) Depth of coverage: 
32. 

5a) Accuracy of methods for SV and CNV analysis 

SV and CNV analyses provide the building blocks for AA to accurately reconstruct the 
breakpoint graph and ultimately predict the full structure. In order to establish the reliability of 
these critical components, we measured the accuracy of methods for interval detection, 
discordant edge detection and meanshift edge detection. In terms of interval detection, even 
though AAsim simulated an ecDNA circularized from a single interval, the final structure can 
have multiple intervals due to deletion of intermediate segments. We measured the number of 
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intervals completely identified by AA (TP), the number of intervals not completely identified by 
AA (FN) as well as the number intervals reported by AA which did not have any amplification 
(FP). For measuring the accuracy of CNV detection, we measured the number of CNV 
boundaries correctly (within 10kbp) identified by the meanshift edge detection algorithm (TP), 
the number of CNV boundaries not identified (FN), as well as the number of locations reported 
which actually did not have a copy number change (FP). Similarly, for discordant edges, we 
reported the number of edges with both breakpoints predicted correctly (within 300bp) (TP), one 
or more breakpoints not detected (FN) and discordant edges reported which did not exist in the 
true structure (FP) (Supplementary Fig 3). 

5b) Edit distance computation and reporting 

For measuring the accuracy of final amplicon reconstruction, we defined a distance 
measure to quantify the difference between the predicted structure as compared to the true 
structure from the simulation. Inspired by the genome sorting problem, the goal of the distance 
measure is to represent the number of operations to transform the predicted structure into the 
true structure. The genome sorting problem aims to find the distance between two related 
genomes by counting the minimum number of operations to transform one genome into another. 
These operations may include inversions27, translocations30 or double-cut-and-join(DCJ) 
operations31. We adapted the DCJ operation to measure reconstruction accuracy by defining 
the Repeat-DCJ (RDCJ) distance which can separately count the portion of operations caused 
due to reconstruction errors and due to alternative traversals across repeats. See 
Supplementary Figure 2. The RDCJ distance is defined as the sum of a two-part measure: i) 
repeat branch swaps and ii) reconstruction errors. First, the prediction may have errors caused 
by inaccurate breakpoint graph construction including missing or false breakpoint edges and 
inaccurate copy numbers of segments. We denote these as reconstruction errors as they 
represent errors caused by the reconstruction algorithm. Reconstruction errors involve addition 
and deletion of breakpoint edges. On the other hand, under perfect graph construction, the only 
operation needed to transform the predicted structure into the true structure is to transform the 
order of traversal across repeated segments without any change in the set of breakpoint edges 
used. We call this operation a repeat branch swap. Two cycles can be merged together through 
a single repeat branch swap. In measuring the RDCJ-distance, we simultaneously minimize the 
number of reconstruction error corrections and repeat branch swaps required for the 
transformation. 

Under the RDCJ model, we count the edits on each segment independently and sum 
these up to obtain the total distance for the entire reconstruction. To achieve this, we represent 
each segment by a switch. A switch is a bipartite graph where the two parts represent the start 
and end of the segment respectively and the vertices are the union of breakpoint vertices from 
the true and predicted structures. If a breakpoint vertex is traversed multiple times in either of 
the structures, then we create multiple copies of the vertex equal to the maximum number of 
traversals in the two structures. We define a switch graph as a graph which consists of all the 
switches as subgraphs connected through connective edges which are union of the breakpoint 
edges from the breakpoint graphs of the true and predicted structures with appropriate 
multiplicities. Each switch vertex has exactly 1 connective edge. Finally, each of the true and 
predicted structures form a walk on the switch graph inducing respective matchings within the 
bipartite switches. The edges within the matching, called match edges, connect consecutive 
breakpoint edges in the structure. As a result, we represent the edit distance of the predicted 
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structure to the true structure by counting the number of operations of transforming each switch 
independently. 

Consider a switch with vertices V1, V3 on one shore, and V2, V4 on the other shore of the 
bipartite graph with switch edges (V1, V2) and (V3, V4). In using a repeat branch swap to 
transform the predicted matching to the true one, we can, for example, replace edges (V1, V2) 
and (V3, V4) by 2 new edges (V1, V4) and (V3, V2).  Note that a repeat branch swap represents a 
copy number neutral operation and correspondingly, the number of switch edges does not 
change. Since the set of vertices in the matching is invariant, the set of connective edges 
connected to matched vertices also does not change. In contrast, correction of reconstruction 
errors involves addition, deletion or reassignment of exactly 1 vertex of a match edge. 

To measure the accuracy of AA, we counted and reported the required the number of 
the operations of both types across all switches for each simulated structure. We classified the 
960 simulated structures on 4 groups based on the value of the parameter probability of 
duplication, representing amplicons which are increasingly difficult to reconstruct. To provide a 
standard yardstick, we compared the reconstruction errors of AA predictions against those of a 
random predictor. The random amplicon structure consisted of a randomly shuffled order of all 
segments from the true amplicon structure. Notably, the average performance of the random 
predictor closely followed 2 times number of segments in the amplicon where number of 
segments is measured by adding up counts of segments. Based on this observation, we defined 
the error rate of one or more predictions as the total reconstruction errors as a percentage of 2 x 
total number of segments (Fig 1h-k, Supplementary Fig 3). 

6) Runtime computation 

We recorded the runtime of AA for each simulated amplicon using the Python function 
time.time(). We plotted a scatterplot of the runtime as a function of the total DNA content of the 
amplicon on a logscale graph to capture performance on small and large amplicons 
(Supplementary Fig 4). The total DNA content was defined as length of ecDNA structure X copy 
number X depth of coverage. We plotted the best fit line on the logscale graph for the runtime 
as function of the total DNA content using the linregress function available in the Python library 
scipy.stats. 

7) SRA samples, ReadDepth CNV calls: 

We used sequencing data from 117 cancer samples including cell lines, patient-derived 
xenografts (PDX) and tissue samples and 8 normal control samples originally described in 
Turner et al9. These samples may be downloaded from NCBI Sequence Read Archive (SRA) 
under Bioproject (accession number: PRJNA338012). Additionally, we studied WGS of 18 
biological replicates of 7 samples totaling to 135 cancer WGS datasets. 4 of these samples had 
replicates treated with targeted drugs and glioblastoma PDX GBM39 also had post-treatment 
replicates (Table S1). FISH results for oncogene probes reported in Turner et al were used to 
mark amplicons to be present on EC only, HSR only or both EC and HSR (Fig 2D, Table 3). 

After reconstruction of amplicons in 117 WGS tumor samples using the 255 seed 
intervals from ReadDepth, AA reconstructed 135 amplicons which consisted of 265 intervals. 
While AA merged multiple seed intervals into larger intervals, AA reported 63 new intervals not 
intersecting the seed intervals including possible false positives from repetitive regions (Table 2, 
3). 
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8) TCGA interval set and somatic CNV identification 

We downloaded 22376 masked CNV call files from TCGA23 generated from Affymetrix 
6.0 data for 10995 cases. We mapped the original calls from hg38 coordinates to hg19 
coordinates using the Liftover tool from UCSC genome browser. We selected 10494 cases for 
which Liftover successfully mapped the calls for at least 1 cancer sample and 1 matched normal 
sample. For cases with multiple call sets, we took the average copy number of each segment 
for cancer and normal call sets respectively. Next, we selected the CNV calls in the tumor 
samples according to the seed interval selection procedure described in Methods 1. However, 
we did not exclude the calls from the blacklisted regions since we believe those regions only 
need to be blacklisted due to artefacts specific to WGS samples and not array data. Using this 
method, we obtained 12162 intervals in 2527 cancer cases. Comparing the copy number calls 
in cancer samples with copy numbers in matched normal samples, we filtered out calls where 
the difference in copy number was less than 3 (specifically, copy number at least 5 when there 
was no CNV call in the normal sample). This criterion only filtered out a small number of 
intervals resulting in 12162 intervals in 2513 cancer cases. We used this set for further analysis.  

9) Overlap of AA amplicons with intervals amplified in TCGA 

We tested whether amplicons reconstructed by AA in sample set 1 were representative 
of the focal amplifications across human cancer by testing whether the overlap between AA 
amplicons with TCGA intervals was significantly larger than expected by random change. As 
originally described in Turner et al9, for each sample, we computed a match score between the 
AA amplicons for the sample and the TCGA intervals from the corresponding cancer types 
which were amplified with frequency > 1%. The match score for the sample was simply the sum 
of frequencies of the TCGA intervals within the corresponding cancer types that overlapped an 
amplicon from the sample. We recorded the cumulative match score as the sum of match 
scores for all samples in sample set 1. 

To test if the cumulative match score for the TCGA intervals was significantly larger than 
expected by random chance, we generated 720 million permutations of the TCGA intervals 
which were amplified with frequency > 1% in each cancer type by assigning random positions to 
the intervals within the human reference genome while maintaining their size. We computed the 
cumulative match score of each permutation with sample set 1 using the same procedure as 
above and found that 8 permutations had a larger match score than the original TCGA intervals. 
The p-value of the significance of overlap between amplicons in sample set 1 and TCGA 
intervals was reported as 8/720 million = 1.1 � 10�� 

10) Size and copy number determination and exponential distribution 

The size of an amplified interval was defined as the sum of sizes of all amplified 
segments with copy number > 5 within the interval. The size of the amplicon was the sum of 
sizes of all intervals in the amplicon. The copy number of an interval was the average copy of 
the amplified segments in the interval weighted by their size. Similarly, the average copy 
number of an amplicon was the weighted average of amplified segments in all intervals of the 
amplicon weighted by their size. In the analysis of final reconstructions, we used the copy 
numbers assigned to sequence edges by AA rather than CNV calls from ReadDepth. We 
plotted the scatter plot for copy number vs size of the 135 AA amplicons for the 117 samples 
and the TCGA intervals (Fig 2d). For direct comparison, we also plotted the copy number vs 
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size of the AA intervals (Supplementary Fig 5). We observed 6 AA amplicons and 3 AA intervals 
with sizes > 3Mbp and copy number > 30, whereas we observed exactly 1 TCGA interval 
satisfying these constraints. Particularly, the CNV array calls were capped off at copy number 
around 40. We verified that this was the case for the amplicons from all 4 TCGA WGS sample 
from previous publications where the sequencing data reported higher copy counts. 

Next, we plotted histograms for the copy number and size of the TCGA intervals with bin 
sizes of copy number 1 and size 400kbp where the height of the histogram was log-scaled. (Fig 
2d). Both histograms displayed a linear decay indicating exponential distributions. We obtained 
the best fit lines for these histograms using the polyfit function in the Python package Numpy 
based on 20 bins each for copy number (5-25) and sizes (0bp-8Mbp) beyond which the data 
became too sparse. Estimates for the means of the exponential distributions, 3.16 copies and 
1.74 Mbp, were obtained using the negative inverse of the slop of the best fit lines in both 
cases.  

11) Determination of multi-interval and multi-chromosomal amplicons 

We compared the sizes amplicons containing a single genomic interval as compared to 
amplicons with multiple intervals from one or more chromosomes. To be more conservative in 
the interval selection and avoid false intervals detected by AA from repetitive regions, we 
selected intervals based on segments reported to be amplified by the meanshift based CNV 
analysis. As a result, only high confidence intervals detected by the CNV analysis at a resolution 
of 10kbp were selected. Next, for a uniform definition of interval, only for this analysis, we 
merged all CNV segments within 5Mbp of a neighboring segment into a single interval. After 
merging these segments, we classified the amplicons into 3 categories: (i) Clustered: 104 
amplicons containing a single interval, (ii) MultiCluster: 14 amplicons containing multiple 
intervals from the same chromosome and (iii) MultiChrom: 17 amplicons containing multiple 
intervals from multiple chromosomes. (Fig 2e). 

We plotted the distribution of amplicon sizes of the entire amplicon for each of the 3 
categories as well as the size distribution of the set of all intervals in all amplicons in the 
MultiCluster and MultiChrom categories using the Python Seaborn library function "violinplot". 
We compared the sizes of all amplicons and intervals in the MultiCluster and MultiChrom 
category to the sizes of all Clustered amplicons using RankSum test available through Python 
Scipy.Stats library function "ranksums". We observed that the MultiCluster (p=1.58·10-2, 
mean=4.7Mbp) and MultiChrom (p=6.18·10-4, mean=7.7Mbp) amplicons were significantly 
larger than the Clustered amplicons (mean=2.3Mbp). However, the sizes of intervals from all 
amplicons in the MultiCluster (mean=2.2Mbp) and MultiChrom (mean=2.7Mbp) categories did 
not show any significant difference from the Clustered amplicons.  

12) TCGA subtype specific enrichment 

We considered the significance that the amplicons amplified specifically amplified 
oncogenes in a tumor-type specific fashion. To compute the significance, we assume under the 
null model that each amplicon interval is randomly positioned. For a genome of length G, the 
probability that amplicon a of length la intersects with oncogene g of length lg is A(a,g) = (la + lg) / 
G. Under the approximate assumption that all amplified intervals are independent of each other, 
the probability that at least 1 amplified interval in sample s randomly intersect g is :��,#� � 1 �
 ∏ �1 � <��,#��$�� . As each sample is independent, the number of samples with an amplicon 
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intersecting a particular oncogene follows a Poisson Binomial distribution with n trials where n is 
the number of samples with success probabilities B(1, g) , …, B(n,g). Thus, if for each tumor type 
with n samples, g is amplified in k samples, then we calculated the p-value for this observation 
under the null model using the PoiBin function provided by https://github.com/tsakim/poibin. To 
answer whether amplifications of g are significantly enriched in the given tumor type, we 
recorded an enrichment if the Bonferroni-corrected p-value was < 0.05, using correction factor 
G / lg (Supplementary Figure 6). 

13) Similarity of amplicons overlapping an oncogene 

To investigate whether amplicons containing an oncogene also contained other genomic 
elements played a significant role in the formation or amplification process, we measured the 
similarity between amplicons from different samples containing one of the oncogenes EGFR, 
MYC and ERBB2 from the WGS dataset of 117 samples. For a given oncogene, if additional 
genomic elements played a significant role, then we would expect a larger overlap within 
amplicons from multiple samples containing the oncogene than by random chance. We 
measured the pairwise similarity between amplicons from 2 samples containing an oncogene, 
we calculated the size of the overlap between the amplicons and quantified the significance of 
the size of the overlap with respect to a null distribution for the size of the overlap. The null 
distribution was set as the distribution of size of overlap for all valid configurations for both 
amplicons, where a valid configuration of an amplicon was defined as any assignment of a 
chromosomal location for the start position of the first interval such that all the intervals 
maintained their order and sizes as the observed amplicon, as well as the distances between 
consecutive intervals such that at least 1 interval contains the given oncogene. Given a pair of 
amplicons, we estimated the null distribution by computing the overlap for all valid 
configurations obtained by shifting the amplicon intervals from the smallest to the largest 
possible genomic location in steps of 10000bp. Finally, for all amplicons containing each of the 
3 oncogenes, we measured the significance of all pairwise similarities and visualized these 
through 3 QQ plots (Supplementary Fig 8). Through the QQ plots, we observed that in our 
sample set, that there was significant similarity within amplicons from multiple samples for any 
of the oncogenes. This suggests that there was no single element that played a significant role 
in the formation or amplification process. 

14) Description of cervical cancer samples 

We downloaded the sequencing data for 68 cervical cancer samples with matched 
normal samples from TCGA23. We downloaded 337 HPV reference genomes from 
PapillomaVirus Episteme database (PaVE)32 on Aug. 15, 2016 and concatenated these with the 
hg19 reference chromosomes to create an hg19_hpv337 reference genome. For each of the 
samples, we randomly extracted 30 million read pairs using the HTSlib bamshuf + bam2fastq 
utilities and aligned these to the hg19_hpv337 reference genome using BWA mem. We 
determined the existence and strain of HPV infecting each sample by identifying the strain with 
the highest number of mapped reads. For each of the identified strains, we separately 
concatenated the genome of the single strain to the hg19 chromosomes, to create the sample 
specific reference genome, for example hg19_hpv16 and mapped all the reads in the sample to 
this reference genome using BWA-mem. Finally, each sample, we ran AA with the --sensitive-
ms (Methods 2) option on the mapped reads with the reference genome of the specific HPV 
strain as the seed interval. From the reconstructions, we combined chromosomal intervals 
within 5Mbp and if AA identified multiple amplified intervals connected to the HPV genome, they 
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were treated as different amplicons unless connected to each other through discordant edges. 
We selected the "amplicons" for which the weighted average of the copy numbers of all 
amplified (CN>2.5) sequence edges from the human chromosomes was greater than 3.0. We 
plotted a scatter plot for the copy number vs size of all amplicons similar to Fig 2d 
(Supplementary Fig 9) and observed that virus-induced amplicons had a mean size of 155kbp 
and mean copy number of 7.04. 

15) Identification of unifocal and bifocal signature 

We developed criteria for calling a unifocal and bifocal signature and for each "amplicon" 
identified according to methods 13, we manually searched for unifocal and bifocal signatures. 
An amplicon defined to contain a unifocal signature if we found 2 reciprocal discordant edges 
connecting the virus genome to the human genome such that these edges had opposite strand 
on each of the genomes and the positions of the edges on the human genome were within 1Kbp 
of each other. An amplicon was defined to contain a "strong" bifocal signature if it contained a 
pair of chimeric edges with opposite orientations which flanked the entire amplified region on the 
human genome. Otherwise, an amplicon was defined to contain a "weak" bifocal signature if it 
contained a pair of chimeric edges with opposite orientations such that all the segments within 
the region flanked by these edges had higher copy number than all the other segments. 

16) Simulation of unifocal and bifocal integrations 

We hypothesized that the formation of amplicons with a unifocal signature was initiated 
by a unifocal integration of the virus into the human genome, whereas a bifocal integration is a 
more likely mechanism for the formation of amplicons with a bifocal signature. To test this 
hypothesis, we simulated 4 sets of amplicons where each set consisted for 40 simulations. Out 
of the 4 sets, 2 consisted of amplicons originating from unifocal integrations and the other 2 sets 
consisted of amplicon originating from bifocal integrations. For the two types of integration, we 
simulated one set each of linear chromosomal amplicons and circular extrachromosomal 
amplicons. Thus, if 4 ordered segments ABCD represent a section of the normal human 
genome and V represents a viral segment, then the circular and linear amplicons with unifocal 
integration had the initial structures [BVC] and BVC respectively. The circular and linear 
amplicons with bifocal integration had the initial structures [BV] and BVB respectively. Here "[ ]" 
represents a circular structure. For each set, the length of an amplicon, B+C in case of 
amplicons with unifocal integration and B in case of the amplicons with bifocal integrations, was 
chosen from an exponential distribution with mean 155kbp matching the mean of the amplicons 
detected in the 67 cervical cancer samples. In case of the unifocal distribution, the location of 
integration defining the segments B and C was chosen uniformly through the amplicon interval. 
For each simulation in all the 4 sets, we iteratively performed 20 rearrangements which was 
comparable to the maximum number of rearrangements in our sample set. The type of each 
rearrangement was chosen randomly from the set: {translocated duplication, tandem 
duplication, inverted duplication, translocation, inversion, deletion} with probabilities: {0.19, 0.19, 
0.19, 0.19, 0.19, 0.05} respectively and the coordinates for each rearrangement were chosen 
uniformly randomly from the amplicon structure formed after the previous iteration of 
rearrangement with the constraint that the rearrangement may not delete all segments from the 
viral genome. The probability of deletion was lower than the other rearrangements to make sure 
that too many deletions did not remove large chunks from the amplicon. After each iteration, we 
tested whether the amplicon structure could show a unifocal based on the existence of a pair of 
proximal viral connections to opposite strand of the human genome within 1kbp of each other. 
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Similarly, we tested if the amplicon structure could show bifocal signature by checking if the 
virus had connection flanking the outmost ends of the human segments in the amplicon. For 
each set of 40 simulations and after each iteration of rearrangements, we reported the number 
of amplicons that showed a unifocal signature and the number of amplicons that showed a 
bifocal signature (Supplementary Fig 10). We found high fidelity between the type of integration 
and the observed signature in the amplicon. To elaborate, we found that most amplicons with 
unifocal and bifocal integrations showed unifocal and bifocal signatures respectively, but it was 
rare to observe amplicons with a unifocal integration to show a bifocal signature or amplicons 
with a bifocal integration to show a unifocal signature. This suggests that amplicons with bifocal 
signatures were unlikely to have originated from a unifocal integration of the virus, whereas 
amplicons with a unifocal signature were highly likely to have originated from a unifocal 
integration. 
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