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Abstract  
 

Low-frequency vibrational excitations of proteins macromolecules in the terahertz 

frequency region are suggested to contribute to many biological processes such as enzymatic 

activity, molecular electron/energy transport, protein folding, and others. Two possible 

mechanisms of the formation of long-live vibrational modes in protein were earlier proposed 

by H. Fröhlich and A.S. Davydov in a form of vibrational modes and solitary waves, 

respectively, to explain high effectiveness of energy storage and transport in proteins. In this 

paper we developed a quantum dynamic model of vibrational mode excitation in alpha-helical 

protein interacting with environment. In the model we distinguish three coupled subsystems, 

i.e. (i) hydrogen bond peptide groups (PGs), interacting with (ii) the subsystem of side residuals 

which in turn interacts with (iii) environment (surrounding water) and is responsible for 

dissipation and fluctuation processes. It was shown that the equation of motion for phonon 

variables of the PG chain can be transformed to nonlinear Schrodinger equation for order 

parameter which admits bifurcation into the solution corresponding to weak damped 

vibrational modes (Fröhlich-type regime). A bifurcation parameter was shown to determine 

interaction of protein with environment and in part energy pumping to the protein due to its 

interaction. In the bifurcation region, a solution corresponding to Davydov soliton was shown 

to exist. The suggested mechanism of emergence of the macroscopic dissipative structures in 

a form of collective vibrational modes in alpha-helical proteins is discussed in connection with 

the recent experimental data on the long-live collective protein excitations in terahertz 

frequency region.    
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1. Introduction 

 

Proteins is the most complex molecules in cells which consist of thousands of different 

atoms assembling in 3D ordered structures fitted well their biological functions such as enzyme 

activity, transport, structural, sensor, signalling, and others. These functions are realised 

through complex intraprotein dynamics including protein folding, conformation transitions, 

post-translation modification, and protein-protein interaction. This intrinsic dynamics is 

orchestrated by both intramolecular excitations and protein interactions with their cellular 

environment. Protein excitations related to their functions and structure include either separate 

atom groups and bonds or spread over large scale subdomains of proteins. High-frequency 

vibrations of atom groups and intrapeptide bonds’ (e.g. C=O stretching) excitations lying in IR 

optical spectrum, while low-frequency collective vibrational modes are ranged at the lowest 

end of the far IR spectrum in the terahertz frequency range (THz) [1]. Large-scale collective 

excitation such as normal vibration modes [2], [3], sound waves (phonons) [4], and coherent 

vibrational states  [5], [6] are reported to be excited in protein molecules at the time scale from 

picosecond to nanosecond. A role of these collective modes in protein structure and functions 

such as folding, allosteric interaction, enzyme catalysis, intramolecular transport of 

energy/electron, and photosynthesis are the subject of intensive experimental and theoretical 

works [2], [3], [7]–[9].  

Physical mechanism of collective coherent excitation far from thermal equilibrium in 

biosystems and mechanism of energy supply of this excitation were proposed and investigated 

by H. Fröhlich [10], [11]. He has developed a phenomenological nonlinear model of collective 

longitudinal vibrational-polar modes (phonons) in biological systems such as biological 

membranes and protein macromolecules and showed that they can be excited in the frequency 

range of 0.1 GHz - 1 THz. The mechanism of excitation of the long-live coherent vibrations is 

defined by a continuous supply of metabolic energy, e.g. ATP hydrolysis. These type of 

collective vibrations (polarization waves) was suggested to play a key role in biological 

processes such as enzymatic catalysis and protein-protein  interaction  [12].  The general idea 

underlying this mechanism of long-live coherent vibrations in biological systems lies in the 

assumption that when the energy is supplied to the system at a rate greater than that of energy 

loss, vibrational modes can condense into the lowest-frequency vibrational mode like 

phenomenon of Bose-Einstein condensation. In contrast to Bose-Einstein condensation 

occurring in thermal equilibrium, Fröhlich condensation takes place in nonequilibrium 

condition at the energy supply and dissipation in nonlinear molecular structures [13]. Thus,  
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excitation of Fröhlich mode in the form of coherent quantum dynamic structure can be 

considered as emergence of a space-temporal dissipative structure in according to Prigogine’s  

theory [14] and governed by self-organization principals of Haken’s synergetics in nonlinear 

systems [15].  

Another type of coherent excitation in a form of solitary waves was proposed 

theoretically by A.S. Davydov in order to unravel one of the central problems in bioenergetics 

related to a high effective long-distance transport of energy, electrons and protons within 

macromolecules [16]. As a results, the theory of soliton transport of energy in the alpha-helical 

proteins has been developed in his works [16], [17]. It was shown that alpha-helical peptide 

structure plays a significant role in formation of soliton travelling long distance with weak 

decay. The soliton model was applied to describe transport of energy released by ATP localised 

in the amide-I vibration (C=O bond oscillation) along peptide groups at room temperature  [16]. 

Mechanism of localisation, storage, and transport of energy in the model is defined by 

nonlinear interactions of the high-frequency amide-I excitation (1667 cm-1) and low frequency 

acoustic modes in the 1D protein structure. Alternative to the quantum Davydov model [17], a 

classical vibrational model of the interpeptide excitation dynamics was suggested by Takeno  

and soliton stability was studied at room temperature [18]. Many theoretical aspects of soliton 

dynamics in protein macromolecules including soliton stability, thermalization, solitons’ 

interaction and others  were developed and investigated in various approximations [19]. The 

unified approaches to the description of both Davydov soliton mode and  Fröhlich condensation 

mode excitations in proteins at the  conditions sufficiently away from equilibrium were 

developed [5], [13], [20], [21]. 

Interest to the experimental observation of both of these types of the coherent excitations 

did not abate since 1970s when these concepts have been developed and remains an area of 

intense experimental research and source of lively debate [22]–[24].  Searching for these two 

types of coherent excitations in protein macromolecules was carried out in IR absorption 

spectrum by Raman spectroscopy and in molecular excitation by THz radiation [25], [26].  

         In this work we model collective excitations in alpha-helical peptide macromolecule 

interacting with environment in the framework of quantum dynamics. Following the Fröhlich 

approach [12] we distinguished three subsystems in the protein molecule interacting with its 

environment: (i) hydrogen bond peptide groups (PGs) interacting with (ii) the subsystem of 

side residuals of the protein which in turn interacts with surrounding water. Here we used the 

quantum mechanics approach developed earlier to model autolocalized states (polaron) of 

quantum quasiparticle of intramolecular excitation (valent electron) in a bimolecular chain of 
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PGs interacting with the substrate  [19], [27], [28]. In this approach we investigate conditions 

at which molecular interaction among the PGs, side residual chain and protein’s environment 

causes the coherent excitations of vibrational and soliton types in alpha-helical protein 

structures.   

2. Phonons in a one-dimensional chain of hydrogen-bonded peptide groups 

interacting with side radicals  

The secondary protein structure, alpha-helix is formed as a result of folding up of 

polypeptide chain in a helix due to the interaction of amino acid residues. This interaction 

determines space periodicity of the secondary structure in proteins and its stability is ensured 

by hydrogen bonds between NH- and CO-groups of the backbone (Fig. 1a). The alpha-helix 

has a form of coil and its inner part consists of tightly twisted backbone with amino acid 

radicals directed outwards (Fig. 1b).  Electrical charge distribution in the peptide group (PG) 

forms its electrical dipole moment being equal to 3.5 D and directed along H-bond [17].  

 

 

Fig. 1.  (a) The chain of hydrogen-bonded peptide groups.  (b) Structure of alpha-helical protein 

where one of the three hydrogen-bonded PG chains with side radicals (R) is shown. Hydrogen-

bonds are depicted by dots.  

Consider a one-dimensional chain of hydrogen-bonded peptide groups with hydrogen 

bonds between (NH)- and CO-groups (Fig. 1). Assume intrinsic motion of proton and the rest 

of the PGs (NCO). Define equilibrium positions of the PGs in the l-site z=la (l=0, 1, 2, …) 

along the alpha-helix (the z-axis), where a= 5.4 Å is chain spacing. Denote displacement of 

the atoms from equilibrium positions of the PG in the l-site by ξ𝑙,1  for hydrogen and ξ𝑙,2 for 

the rest of the PGs. In harmonic approximation, potential energy of interaction between atoms 

of the nearest PGs and nearest radicals R is expressed by a quadratic form: 
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𝑈 =
1

2
∑ [𝜒1,2(𝜁𝑙+1,1 − 𝜁𝑙,1)

2
+ 𝜒2,1(𝜁𝑙,1 − 𝜁𝑙,2)

2
+ 𝜒0,1𝜉𝑙,1

2 + 𝜒0,2𝜉𝑙,2
2 ] ,

𝑙

 (1) 

where χ1,2 and χ2,1 are elastic coefficients of hydrogen and valence bonds respectively;  χ0,1 

and χ0,2 are elastic coefficients of interaction of protons and group NCO with the side chain 

radicals, respectively. Choose the following cyclic boundary condition for the PG chain 

𝜁𝑙,𝛼 = 𝜁𝑙+𝑁,𝛼 for α=1 and 2,                   (2) 

where N is a number of GPs in the chain.  

To write the Hamiltonian of the PG chain, express the operators of atom displacement 

from equilibrium positions through the operators of the creation 𝑏−𝑘,𝑠
+   and annihilation 𝑏𝑘,𝑠   of 

phonons as 

𝜉𝑙,1
(𝑠)

= ∑ [
ℏ

2𝑚𝛼𝑁𝛺𝑠(𝑘)
]

1/2

𝑒𝑖𝑘𝑥(𝑏𝑘,𝑠 + 𝑏−𝑘,𝑠
+ ),

𝑘

 (3) 

where the operators of the creation and annihilation satisfy the commutative relationships  

''',', ],[ sskksksk bb =+
 and  0],[ ',', =sksk bb . (4) 

Here   is the Kronecker symbol, k is the wave number taking N values in the first Brillouin 

zone 

𝑘 =
2𝜋𝜂

𝑁𝑎
, where 𝜂 = 0, ±1, ⋯ , ±

𝑁

2
, (5) 

and index s points to either acoustic (s=1) or optic (s=2) phonons.  

The Hamiltonian of phonons in the PG chain can be written in the harmonic 

approximation as  

𝐻𝑝 = ∑ ℏ

𝑘,𝑠

𝛺𝑠(𝑘) (𝑏𝑘,𝑠
+ 𝑏𝑘,𝑠 +

1

2
), (6) 

where two functions 𝛺𝑠(𝑘) define frequencies of acoustic and optic branches of the vibration 

in the chain with s = 1 and 2 respectively. The dispersion relationship 𝛺𝑠(𝑘) for the PG chain 

with interaction defined by eq. (1) can be obtained in the form 

Ω𝑠
2(𝑘) = 𝐴 + (−1)𝑠√𝐴2 − 𝐵(𝑘), (8) 

where 

𝐴 =
1

𝑚1𝑚2
[𝑚1𝜒0,2 + 𝑚2𝜒0,1 + (𝑚1+𝑚2)(𝜒1,2 + 𝜒2,1)] 

and 

𝐵 =
1

𝑚1𝑚2
[(𝜒0,1 + 𝜒0,2)(𝜒1,2 + 𝜒2,1) + 𝜒0,1𝜒0,2 + 4𝜒1,2𝜒2,1𝑠𝑖𝑛2 (

𝑘𝑎

2
)]. 
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Here m1=mp and m2 = 41.7mp are mass of proton and the PG group respectively. Dispersion 

curves calculated at the values of elastic constants of the PG chain [19] are shown in Fig. 2. As 

seen, according to dispersion equation (8), the PG chain with interaction (1) obeys a narrow 

band of the normal modes of the vibrations 𝛺𝑠(𝑘) in terahertz frequency range.  

 Similarly introduce the phonon Hamiltonian for the radical system of the PG chain 

which can be represented as a system of N oscillators of mass M having own frequencies of 

oscillation 𝛺𝑡(𝑞)    

𝐻𝐶 = ∑ ℏ

𝑞,𝑡

𝛺𝑡(𝑞) (𝑐𝑞,𝑡
+ 𝑐𝑞,𝑡 +

1

2
), (9) 

where 𝑐𝑞,𝑡
+   and 𝑐𝑞,𝑡 are the operators of the creation and annihilation of phonons in the radical 

chain which corresponds to the displacement of the radicals from their equilibrium positions  

𝜍𝑙.  𝛺𝑡(𝑞) are the phonon frequency of type t in the radical chain. 

Consider interaction of the phonons in the PG and radical chains in the alpha-helical 

protein structure by adding the following anharmonic operator of interaction to the Hamiltonian 

of non-interacted chains 

𝑊 = ∑ 𝑉(𝑙)𝜍𝑙
(𝑡)𝜉𝑙,1𝜉𝑙,2 ,

𝑙

 (10) 

where 

 

𝜍𝑙
(𝑡)

= ∑ [
ℏ

2𝑀𝑁𝛺𝑡(𝑞)
]

1/2

𝑒𝑖𝑘𝑥(𝑐𝑞,𝑡 + 𝑐−𝑞,𝑡
+ ) ,

𝑞

 

 

(11) 

Substitution of eqs. (3) and (10) into eq. (9) gives the operator of anharmonic perturbation in 

the form  

𝑊 = ∑(𝑉𝑘,𝑘′𝑐𝑘−𝑘′
+ 𝑏𝑘

+𝑏𝑘′ + 𝐻. 𝑐. ) ,

𝑘,𝑘′

 
(12) 

 

where 

𝑉𝑘,𝑘′ = (
ℏ3

8𝑁3𝑚1𝑚2𝑀𝛺𝑠(𝑘)𝛺𝑠′(𝑘′)𝛺𝑡(𝑘 − 𝑘′)
)

1/2

. 
(13) 

 

 

The matrix elements (13), which are different from zero on the functions of occupation 

numbers, corresponds to the processes which occur with energy and momentum conservation 

without consideration of umklapp process 

𝛺𝑡(𝑘 − 𝑘′) + 𝛺𝑠(𝑘) = 𝛺𝑠′(𝑘′). 
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Fig. 2. Dispersion curves for the chain of hydrogen-bounded PGs at the following elastic 

constants [19]. (a) s=1, χ1,2 = 13.0 N𝑚−1,  χ2,1 = 17.0 N𝑚−1,   χ0,1 = 5.0 N𝑚−1,    χ0,2 =

0 N𝑚−1. (B) s=2, χ1,2 = 13.0 N𝑚−1,  χ2,1 = 17.0 N𝑚−1,  χ0,1 = 5.0 N𝑚−1,    χ0,2 = 0 N𝑚−1.  

(b) Dependence of the frequency Ω01 (C) and Ω02 (D) (k=0) on constant χ02 at the fixed 

values of elastic constants χ1,2 = 13.0 N𝑚−1,  χ2,1 = 17.0 N𝑚−1 and different constant χ0,1: 

line 1 - χ0,1 = 0.0 N𝑚−1,    line 2 - χ0,1 = 3.0 N𝑚−1 , and line 3 - χ0,1 = 25.0 N𝑚−1. 

Dispersion curves were calculated in MATLAB package (MathWork Inc). 

3. Interaction of alpha-helical protein with environment (heat reservoir) 

Consider interaction of the alpha-helical protein with its environment, surrounding 

water, at non-zero temperature. This protein-water interaction defines dissipation processes in 

the system and contributes to the   structure and functions of proteins. In the model, we 

represent surrounding water by a large set of harmonic oscillators interacting with the protein 

molecule and suggest that this system possesses collective excitation modes with amplitude 

dynamics similar to that of an oscillators’ ensemble. Note that the collective vibrational  

subpicosecond dynamics (phonons) of  the hydrogen bond network was observed in hydration 

shells of protein molecules in terahertz and IR spectra [29].   
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Similarly to eqs. (3) and (10), describe oscillators’ dynamics using the operators of the 

creation 𝐵𝑝,𝑡
+  and annihilation 𝐵𝑝,𝑡 of phonons with the wave number p and frequencies 𝜔𝑡(𝑝) . 

Then the energy operator of the surrounding water can be written as a sum of energy operators 

of the single oscillators in the form 

𝐻𝐵 = ∑ ℏ𝜔𝑡(𝑝) (𝐵𝑝,𝑡
+ 𝐵𝑝,𝑡 +

1

2
)

𝑝,𝑡

 (14) 

 

To calculate energy of a joint action of reservoir’s oscillators on the protein macromolecule, 

WB, we assumed that each oscillator contributes linearly to the energy WB  and interacts only 

with the radical chain of alpha-helical protein. So, following [18], we suggested that the PG 

chain interacts with the environment through radicals R (Fig. 1B). Then, interaction operator 

WB can be written as 

𝑊𝐵 = ℏ ∑ {𝜎𝑡𝑡′(𝑔, 𝑝)𝑐𝑔,𝑡
+ 𝐵𝑝,𝑡′ + 𝐻. 𝑐. }

𝑝,𝑔𝑡,𝑡′

 . (15) 

 

Parameter 𝜎𝑡𝑡′(𝑔, 𝑝) defines a strength of interaction between reservoir’s oscillators of types  

𝑡′ and the side chain oscillators of type t. Note that operator (15) describes a wide class of 

relaxation mechanisms related to collective excitation [19].  

For simplicity, let drop below indexes which define phonon type, and indexes s, t, and t’ 

of variables will thereafter mean that the specific variable belongs either to the PG chain or the 

radicals’ chains or reservoir respectively. 

4. Equation of motion  

  One of the features of a self-organisation behaviour of complex systems is the occurrence 

of instability of either one or several variables (dynamic modes) at some critical conditions 

[15]. If the rest of the modes damp the different exclusion procedures of the stable variables 

can be applied at the modelling. It follows that the system behaviour as a whole is defined by 

the behaviour of few unstable variables which govern all the damped modes. In real systems, 

hierarchy of relaxation times takes place most often that allows applying adiabatic 

approximation for exclusion of the fast-relaxing variables. In case of protein molecules, the 

fast-relaxing variables 𝑐𝑔  
+  and 𝑐𝑔 relate to the radical subsystem which directly interact with 

the environment (structured water) surrounding a native protein and supporting stability of its 

structure.  

To exclude fast-relaxing variables 𝑐𝑔  
+   and  𝑐𝑔, we use Heisenberg equation for these 

operators 
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𝑖ℏ
𝑑𝐴

𝑑𝑡
= [𝐴, 𝐻],  

(16) 

 

where  A = {𝑐𝑔  
+ , 𝑐𝑞} and H is the energy operator of the macromolecule-reservoir system  

                                 .BPBCP WWHHHH ++++=                                              (17) 

Substitution of HP , HC , HB , WP, and WB in to eq. (17) and then to eq. (16) gives the equation 

of motion for the operator 𝑐𝑔   

𝑖ℏ
𝑑𝑐𝑔

𝑑𝑡
= ℏ𝛺𝑡(𝑔)𝑐𝑔 + 𝑁 ∑ 𝑉𝑘,𝑔𝑏𝑘−𝑔

+ 𝑏𝑘 +

𝑘

ℏ ∑ 𝜎(𝑝, 𝑞)𝐵𝑝

𝑝

,  
(18) 

 

and the identical equation for the operator  𝑐𝑔
+. Then let require  

𝑑𝑐𝑔

𝑑𝑡
=

𝑑𝑐𝑔
+

𝑑𝑡
  = 0. 

 

(19) 

 

The following relationship can be obtained for  𝑐𝑔
+ and  𝑐𝑔  from eqs. (18) and (19)  

𝑐𝑔 = −
𝑁

ℏ𝛺𝑡(𝑔)
∑ 𝑉𝑘,𝑔𝑏𝑘−𝑔

+ 𝑏𝑘

𝑘

− ∑
𝜎(𝑝, 𝑞)

𝛺𝑡(𝑔)
𝐵𝑝

𝑝

.  
(20) 

 

Using eqs. (20) and commutation relations (4) for the Bose-operators, we get the energy 

operator in the form  

𝐻𝑆 = 𝐻𝑃 + 𝐻𝐵 + 𝐻𝑃𝐵,  (21) 

 

where the energy operator of protein macromolecule is expressed only through the variables 

related to the chain of PGs 

𝐻𝑃 = ∑ 𝜀𝑘𝑏𝑘
+𝑏𝑘

𝑘

−
𝑁2

ℏ
∑

𝑉𝑘,𝑘′𝑉𝑘′,𝑔
∗

𝛺𝑡(𝑔)
𝑏𝑘

+𝑏𝑘′−𝑔
+ 𝑏𝑘−𝑔𝑏𝑘′

𝑔,𝑘,𝑘′

.  
(22) 

 

Here  

𝜀𝑘 = ℏ𝛺𝑡(𝑘) −
2𝑁3|𝑉|2

ℏ𝛺𝑡(𝑘)
.  

(23) 

 

Hamiltonian operator of the reservoir HB is written in the form  

 

𝐻𝐵 = ∑ 𝜀𝑝𝐵𝑝
+𝐵𝑝 

𝑝

, (24) 

 

where 

𝜀𝑝 = ℏ𝜔(𝑝) −
ℏ𝑁|𝜎|2

𝛺𝑡(𝑝)
.  

(25) 

 

The energy of interaction of the alpha-helical protein with the reservoir HPB after 

exclusion of the variables related to the side chain is defined by 

𝐻𝑃𝐵 = − ∑{𝐺(𝑘, 𝑝)𝑏𝑘
+𝑏𝑘−𝑝

+ 𝐵𝑝 + 𝐻. 𝑐. }

𝑘,𝑝

, (26) 

 

where  

𝐺(𝑘, 𝑝) =
𝜎(𝑘, 𝑝)𝑉𝑁

𝛺𝑡
. 

(27) 
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Equation of motion for dynamic variables of the PG chain and reservoir can be derived 

using Heisenberg equation (16) for the operators 𝑏𝑘, 𝑏𝑘
+, 𝐵𝑝, and 𝑏𝑝

+, the Hamiltonian operator 

(21), and eqs. (22)-(27)  

𝑖ℏ
𝑑𝑏𝑘

𝑑𝑡
= 𝜀𝑘𝑏𝑘 −

𝑁2

ℏ
∑

𝑉𝑘,𝑘′𝑉𝑘′,𝑔
∗

𝛺𝑡(𝑔)
𝑏𝑘′−𝑔

+ 𝑏𝑘−𝑔𝑏𝑘′

𝑔,𝑘′

− ∑ 𝐺(𝑘, 𝑝)𝑏𝑘−𝑝
+ 𝐵𝑝

𝑝

 
(28) 

 

and 

𝑖ℏ
𝑑𝐵𝑝

𝑑𝑡
= 𝜀𝑝𝐵𝑝 − ∑ 𝐺∗(𝑘, 𝑝)𝑏𝑘−𝑝𝑏𝑘

+

𝑘

. 
(29) 

 

At the next step, we use the obtained eqs. (28) and (29) to derive the motion equation 

for the modes growing up to macroscopic values and define system dynamics near unstable 

stationary points. Moreover, we describe dissipation in the system and express fluctuating 

forces which are coursed by the interaction of the protein macromolecule with environment 

and enable the systems to overcome an unstable threshold and reach new dynamic states. 

5. The Langevin equation for generalized coordinates of the 

macromolecule 

 As known, all basic (microscopic) equations of motion are invariant with respect to 

time reversal, that is the motion is entirely reversal. Although dissipative forces, violating this 

invariance, cannot be expressed  in the original equations,  under certain assumptions the 

Langevin equations can be derived from the Heisenberg equation for a system interacting with 

a reservoir represented by a set of harmonic oscillators [30]. 

So far, we considered systems of quantum oscillators as the model of alpha-helical 

protein molecule interacting with the reservoir. However, these systems can be considered as 

the classical ones. This can be justified by that a number of phonons in strong exciting modes 

defining protein dynamics and a number of oscillators in the reservoir system are significantly 

larger than unit. This allows us to represent phonon amplitudes by c-numbers and substitute 

operators 𝑏𝑘, 𝑏𝑘
+, 𝐵𝑘 , and 𝐵𝑘

+ in eqs. (28) and (29) for c-numbers 𝛽𝑘, 𝛽𝑘
∗, 𝐵𝑘, and 𝐵𝑘

∗  

respectively. Amplitude 𝛽𝑘(𝑡)  can be considered as the generalized coordinates with 

corresponding generalized momentum  𝑖ℏ𝛽𝑘
∗. Moreover, coefficients, defining intensity of 

phonon interaction of the different subsystems in the model, are assumed to weakly depend on 

the phonon momentum. Then, eqs. (28) and (29) can be integrated as the classical ones that 

gives the solution of eq. (29) in the form: 

𝐵𝑝(𝑡) = 𝐵𝑝(0)𝑒−𝑖
𝜀𝑝

ℏ
𝑡 + 𝑖 ∫ ∑

𝐺∗(𝑘, 𝑝)

ℏ
𝛽𝑘−𝑝(𝜏)𝛽𝑘

∗(𝜏)𝑒−𝑖
𝜀𝑝

ℏ
(𝑡−𝜏)𝑑𝜏

𝑘

𝑡

−∞

 , 
(30) 
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where  𝐵𝑝(0) is the initial value of amplitude 𝐵𝑝(𝑡) at t=0.  

Introduce new variable 𝛽𝑘̃(𝑡) 

𝛽𝑘(𝑡) = 𝛽𝑘̃(𝑡)𝑒−𝑖Ω𝑘𝑡  (31) 

 

and use thereafter the previous notation 𝛽𝑘(𝑡). Then apply adiabatic approximation commonly 

used  in the modelling of cooperative systems, i.e. the relaxation times of the strong exciting 

phonon modes become longer in comparison with the typical relaxation times for reservoir 

variables. This allows factoring out the preexponential term in eq. (30) and obtain it in the form  

𝐵𝑝(𝑡) = 𝐵𝑝(0)𝑒−𝑖
𝜀𝑝

ℏ
𝑡 + 

+𝑖 ∑
𝐺∗(𝑘, 𝑝)

ℏ
𝛽𝑘−𝑝(𝑡)𝛽𝑘

∗(𝑡)

𝑘

∫ 𝑒𝑥𝑝 {−𝑖 [
𝜀𝑝

ℏ
− 𝛺𝑘−𝑝 + 𝛺𝑘] (𝑡 − 𝜏)}  𝑑𝜏

𝑡

−∞

 , (32) 

 

Integrals in eq. (32) gives  

∫ 𝑒𝑥𝑝 {−𝑖 [
𝜀𝑝

ℏ
− 𝛺𝑘−𝑝 + 𝛺𝑘] (𝑡 − 𝜏)}  𝑑𝜏

𝑡

−∞

= −
𝑖

𝜀𝑝

ℏ
− 𝛺𝑘−𝑝 + 𝛺𝑘

= −
𝑖

𝛬
=

= −𝑖 [𝑃 (
1

𝛬
) + 𝑖𝜋𝛿(𝛬)], 

(33) 

 

 

where P is a symbol of principal value. Finally,  𝐵𝑝(𝑡) is obtained in the form 

  

𝐵𝑝(𝑡) = 𝐵𝑝(0)𝑒−𝑖
𝜀𝑝

ℏ
𝑡 + 𝑖 ∑

𝐺∗(𝑘, 𝑝)

ℏ𝛬(𝑘, 𝑝)
𝛽𝑘−𝑝(𝑡)𝛽𝑘

∗(𝑡)

𝑘

. (34) 

 

Substitution of eq. (34) into eq. (28) gives us equation for  𝛽𝑘(𝑡) 

 

𝑑𝛽𝑘(𝑡)

𝑑𝑡
= −𝑖

𝜀𝑘

ℏ
𝛽𝑘(𝑡) + 𝑖𝑁2 ∑

𝑉𝑘,𝑔𝑉𝑘′,𝑔
∗

ℏ2𝛺𝑡
𝛽𝑘−𝑔(𝑡)𝛽𝑘′−𝑔(𝑡)𝛽𝑘′

∗ (𝑡) −

𝑔,𝑘′

− 𝑖 ∑
𝐺(𝑘, 𝑝)𝐺∗(𝑘′, 𝑝)

ℏ2𝛬
𝛽𝑘−𝑝(𝑡)𝛽𝑘′−𝑝(𝑡)𝛽𝑘′

∗ (𝑡) +

𝑔,𝑘′

+ 𝑖 ∑
𝐺(𝑘, 𝑝)

ℏ
𝛽𝑘−𝑝(𝑡)𝐵𝑝(0)𝑒−𝑖

𝜀𝑝

ℏ
𝑡 

𝑝

. 

(35) 

 

 

Eq. (35) is the Langevin equation for phonon amplitudes 𝛽𝑘(𝑡) 

 

𝑑𝛽𝑘(𝑡)

𝑑𝑡
= −

𝑖

ℏ
(𝜀𝑘 + 𝑒𝑘)𝛽𝑘(𝑡) +

𝑖𝑁2|𝑉𝑘|2

ℏ2𝛺𝑡
∑ 𝛽𝑘−𝑔(𝑡)𝛽𝑘′−𝑔(𝑡)𝛽𝑘′

∗ (𝑡) −

𝑔,𝑘′

−
1

2
𝛾𝑘𝛽𝑘(𝑡) + 𝑖𝐹𝑝(𝑡) , 

(36) 

 

where the following variables are introduced  

 

𝑒𝑘 =
1

ℏ
∑ 𝐺(𝑘, 𝑝)𝐺∗(𝑘′, 𝑝)𝛽𝑘′−𝑝𝛽𝑘′

∗ 𝑃 (
1

𝛬
)

𝑝,𝑘′

 , (37) 
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𝛾𝑘 =
2𝜋

ℏ2
∑ 𝐺(𝑘, 𝑝)𝐺∗(𝑘′, 𝑝)𝛽𝑘′−𝑝𝛽𝑘′

∗ 𝛿(𝛬)

𝑝,𝑘′

 , (38) 

 

and 

𝐹𝑘(𝑡) = 𝐹𝑘̃(𝑡)𝑒−𝑖𝛺𝑘𝑡 =  
1

ℏ
∑ 𝐺(𝑘)𝛽𝑘−𝑝(𝑡)𝐵𝑝(0)𝑒−𝑖

𝜀𝑝

ℏ
𝑡

𝑝

 , (39) 

 

Function 𝐹𝑘(𝑡) (39) can be considered as a random force with the correlator:  

< 𝐹𝑘
∗(𝑡)𝐹𝑘(𝜏) >= 

=  
1

ℏ2
∑|𝐺(𝑘)|2 < 𝛽𝑘−𝑝

∗ (0)𝛽𝑘−𝑝′(0) >< 𝐵𝑝
∗(0)𝐵𝑝(0) > 𝑒−𝑖(𝛬(𝑘,𝑝)𝑡−𝛬(𝑘,𝑝′)𝜏).

𝑝,𝑝′

 

(

(40) 

 

Assume that at the initial time, amplitudes 𝛽(0) and 𝐵(0) are not correlated, i.e. 

 

< 𝛽𝑘−𝑝
∗ (0)𝛽𝑘−𝑝′(0) >= 𝑛𝑝𝛿𝑝𝑝′ (41) 

and 

< 𝐵𝑝
∗(0)𝐵𝑝′(0) >= 𝑁𝑝𝛿𝑝𝑝′ , (42) 

where 

𝑛𝑝 = (𝑒𝜃ℏ𝛺𝑝 − 1)
−1

 (43) 

and 

𝑁𝑝 = (𝑒𝜃ℏ𝜔𝑝 − 1)
−1

. (44) 

 

Here θ = 1/𝑘𝐵𝑇  , where T is environment (reservoir) temperature.  

Substitute eqs. (41)-(44) into eq. (40) and take into consideration that the main 

contribution in a sum in eq. (40) is given by terms 𝛬(𝑘, 𝑝) = 0 at not too small values of a 

difference (𝑡 − 𝜏). Then finally obtain  

< 𝐹𝑘
∗(𝑡)𝐹𝑘(𝜏) >=

2𝜋

ℏ2
|𝐺(𝑘)|2𝑛𝑝𝑁𝑝𝛿(𝑡 − 𝜏) = 𝐷𝑘𝛿(𝑡 − 𝜏). (45) 

  

It can be shown that after averaging in eq. (38) for 𝛾𝑘 with consideration of eq. (44) and 

substituting this result into eq. (45), the value 𝐷𝑘 can be written in the form  

𝐷𝑘 = ℏ2𝛾𝑘𝑁𝑝. (46) 

  

6. Vibrational dynamics of alpha-helical protein in a long wave approximation  

   Consider vibrational modes in the alpha-helical protein at the various parameters 

characterising its environment. We applied a long wave approximation to derive the equation 

for undamped modes which grow up to macroscopic values and investigate system dynamics 

in the vicinity of an unstable point. In a long wave approximation, for small values  𝑘𝑎 ≪ 1 

and according to eq. (8), phonon frequencies can be written in the form    
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𝛺𝑠(𝑘) = 𝛺0𝑠 + 𝐼𝑠𝑘2𝑎2, (47) 

where  

𝐼𝑠 = (−1)𝑠+1
𝜒1,2𝜒2,1

4𝑚1𝑚2𝛺0𝑠√𝐴2 − 𝐵(0)
. (48) 

 

Here Ω0s and B(0) are defined by eq. (8) at  k= 0. Note, that the value  

√𝐴2 − 𝐵(0) =
1

2
(𝛺02

2 − 𝛺01
2 ) (49) 

can be found from the dependence of frequencies  Ω0s on the elastic constants shown in Fig. 2.  

As in the long-wave approximation the value 𝛬(𝑘, 𝑝) = 𝛬(𝑝) does not depend on k, we 

turn to continuum limit in eq. (36) after Fourie transformation by multiplication of all terms in 

eq. (36) by 𝑁−1/2𝑒𝑖𝑘𝑧 and summing up over k according to eq. (47). In continuum limit, eq. 

(36) for photon modes with dispersion relation (47) takes the form  

𝑖ℏ
𝜕𝛽𝑠(𝑥, 𝑡)

𝜕𝑡
+ ℏ𝑎2𝐼𝑠

𝜕2𝛽𝑠(𝑥, 𝑡)

𝜕𝑧2
− 𝐸𝑠𝛽𝑠(𝑥, 𝑡) + 𝑄𝑠|𝛽𝑠(𝑥, 𝑡)|2𝛽𝑠(𝑥, 𝑡) = 𝐹𝑠(𝑥, 𝑡), (50) 

 

where 

𝐸𝑠 = 𝜀0𝑠 − 𝑒0𝑠 −
𝑖ℏ𝛾𝑠

2
= 𝐸0𝑠 −

𝑖ℏ𝛾𝑠

2
 

(51) 

and 

𝑄𝑠 =
𝑁2|𝑉𝑠|2

𝛺𝑠
. 

 

Solution of eq. (50) can be represented in the form  

 

𝛽𝑠(𝑧, 𝑡) = 𝛷𝑠(𝜌)𝑒𝑥𝑝 {𝑖(𝑞𝑠𝑧 − 𝜔𝑠𝑡) −
𝛾𝑠

2
𝑡}, (52) 

  

where 𝜌 = 𝑧 − 𝑧0 − 𝑉𝑠 , 𝑉𝑠 is the velocity of excitation motion along the PG chain, and the 

real amplitude Φ𝑠(ρ) satisfies the following normalization condition 

1

𝑎
∫ 𝛷𝑠

2(𝜌)

+∞

−∞

𝑑𝜌 = 𝑁0 . (53) 

 

Consider solutions of eq. (50) at weak damping, i.e. when γ𝑠 ≈ 0. In this condition, 

according to eq. (46) and fluctuation-dissipation theorem, fluctuations are small and can be 

neglected. Then eq. (50) takes the form: 

[Ξ𝑠 + ℏ𝑎2𝐼𝑠

𝜕2

𝜕𝑧2
+ 𝑄𝑠|𝛷𝑠(𝜌)|2] 𝛷𝑠(𝜌) = 0, (54) 

 

where Ξ𝑠 is a spectral parameter connected with phonon energy by the equation: 
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ℏ𝜔𝑠 = 𝛯𝑠 + 𝐸𝑠 + ℏ𝑞2𝑎2𝐼𝑠 . (55) 

Eq. (54) has solution 𝛷𝑠(𝜌) = 𝑐𝑜𝑛𝑠𝑡: 

𝛷𝑠(𝜌) = 0 at 𝜆𝑠 =
𝛯𝑠

𝑄𝑠
> 0 (56) 

and 

𝛷𝑠(𝜌) = 0 and 𝛷𝑠(𝜌) = (−𝜆𝑠)1/2 at 𝜆𝑠 < 0, (57) 

where parameter λ𝑠 defines interaction of the PGs with its environment. At changing λ𝑠 the 

oscillation modes become unstable and their amplitudes 𝛷𝑠(𝜌) play a role of the order 

parameters. Solutions (56) and (57) obtained under conditions of the smallness of dissipation 

in the system and absence of fluctuations. Thus, living time 𝜏𝑠 of the dynamic modes of the PG 

chain corresponding to nontrivial solutions is less than the inverse-time of relaxation  

𝜏𝑠 < 𝛾𝑠
−1 . (58) 

So, dynamics of this system is defined by weak damped (long-living) phonon modes. 

More detailed analysis of the dynamic equation of the type (50) is given in [31], where it was 

shown in part that the right hand side of this equation can be obtained from the potential 

𝑈(|𝛷𝑠|) = 𝛯𝑠|𝛷𝑠|2 −
1

2
𝑄𝑠|𝛷𝑠|4 . (59) 

  

This allows writing and solving the corresponding Fokker-Planck equation and then finding a 

distribution function for the phonons in coherent excitation state 

 

𝛹(𝛷𝑠)~𝑒𝑥𝑝 {−
2𝑈(|𝛷𝑠|)

𝐷𝑠
} , (60) 

  

where parameter 𝐷𝑠 defines an intensity of fluctuating force according to eqs. (45) and (46) at 

k = 0 for both phonon branches. From eq. (60) follows that fluctuations enable the system to 

switch to a new state. The role of fluctuations is much significant at the transition of the system 

to an unstable mode at λ𝑠 ≤ 0 when, as known, fluctuations sharply increase [15]. At the sign 

change of parameter  𝜆𝑠, solution Φ𝑠(𝜌) = 0 remains one of the solutions of eq. (54). 

Transition of the system to the new states, corresponding to nontrivial solutions Φ𝑠(𝜌) ≠ 0, is 

possible as a result of an action of external factors including fluctuations.  

Eq. (54), being nonlinear Schrodinger equation, besides the solutions considered above 

has a solution in the form of solitary wave (soliton) travelling along the z-axis and satisfying 

normalization condition (53). For any positive  𝑄𝑠, eq. (54) has a normalized partial solution 

in the form  
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𝛷(𝜌) = (
𝑎𝛩0𝑁0

2
)

1/2 1

𝑐ℎ[𝛩0(𝑧 − 𝑧0 − 𝑉𝑠𝑜𝑙𝑡)]
 , 

 

(61) 

where 𝑧0 is the soliton centre, 𝑉𝑠𝑜𝑙 is soliton velocity, and  

𝛩0 =
𝑄𝑠𝑁0

4ℏ𝑎𝐼𝑠
 . (62) 

In the presence of dissipation, when 𝛾𝑠 ≠ 0, a solution of eq. (50) in view of eqs. (51) 

and (52) is written in the form: 

𝛽(𝑥, 𝑡) = (
𝑎𝛩0𝑁

2
)

1/2 𝑒𝑖(𝑞𝑠𝑧−𝜔𝑠𝑡)

𝑐ℎ[𝛩0𝑒−𝛾𝑠𝑡(𝑧 − 𝑧0 − 𝑉𝑠𝑜𝑙𝑡)]
 , (63) 

where    
tseNN

−
= 0 . 

The region occupied by soliton, soliton’s width, is defined by equation 

𝑑(𝑡) =
𝜋

𝛩0
𝑒𝛾𝑠𝑡 . (64) 

 

7. Discussion: Vibrational modes and self-organization in alpha-helical protein 

structures  

The theoretical investigation of the dynamics of the alpha-helical protein interacting 

with environment showed that the equation for phonon dynamics in the protein is essentially 

defined as the equation for the order parameter that admits bifurcation of its solutions. Thus, 

this system can function in different dynamic modes which are defined by the behaviour of 

order parameters. Switch between the vibrational modes occurs at a change in the bifurcation 

parameter 𝜆𝑠 which in according to eq. (37) determines interaction of the macromolecule with 

its environment and phonon pumping into the molecule. The PG chain dynamics below and 

above of the switching threshold are significantly different. At  𝜆𝑠 > 0, the system is 

characterised by the absence of excited modes, and the PGs fluctuate that results in a zero-

mean amplitude of the phonon modes. At 𝜆𝑠 < 0, behaviour of the system changes so that 

either one or several vibrational modes become unstable and their amplitudes grow up to 

macroscopic values. This transition to a state when the energy is condensated in a set of the 

low-frequency vibrational modes can lead to the excitation of coherent vibrations in proteins 

in terahertz frequency range. Thus, dynamic behaviour of the macromolecule is defined by 

both fluctuations governed by the dissipation in the system and switching regime as a result 

of an order parameter change controlled by environment.  

As shown, the condition of the vibration mode excitation in the model is the energy 

pumping to the system that agrees with the condition of Fröhlich vibrational mode excitation 
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which can be formed at a high rate of energy channelling into the lowest frequency vibration 

of protein macromolecules [12]. We suggest that the vibrational energy may be channelled to 

the protein through the its interaction with the environment by mechanism considered in the 

model. A key role in this energy pumping can be played by  the ordered water clusters bound 

to the hydration shell of proteins [9], [32] and the hydrogen bond network of water molecules 

which was suggested to possess the collective vibrational sub-picosecons dynamics and 

propagating phonon-like modes in terahertz and IR spectra [7], [29].  

Another condition of the collective vibrations obtained in our model is a low rate of the 

relaxation of the PG vibrations (eq. (59)). The reasonable mechanisms of the reduced 

relaxation of protein collective motion, which were discussed in connection with the Fröhlich 

condensation in biological structures, can be linked again to the interaction of macromolecules 

with their environment e.g. with ordered water clusters possessing slow dynamics [33], [34].  

According to our model, space-temporal structures of the type of solitary waves 

(Davydov regime) can emerge in the PG chain. The following features of the Davydov regime 

in the PG chain were defined in this work. First, soliton formation is governed by phonon-

phonon interaction between PGs and radical chain in alpha-helical proteins, and second, 

Davydov regime realises at the values of bifurcation parameter when excitation of vibrational 

mode (Fröhlich-like regime) occurs in the system. It was suggested that, cooperative behaviour 

of the PGs may lead to formation of a giant oscillating dipole [12] due to a large dipole moment 

of the PGs that is likely to be associated with some protein function such as selective forces, 

protein-ligand interaction, molecular recognition, and catalytic enzyme activity. On the other 

hand, soliton formation including acoustic solitons [16] can lead to energy and electron 

transport along alpha-helical protein structures due to either exciton or electron-phonon 

interaction [27], [35]. Similar mechanism of collective excitation was explored in the 

theoretically description of energy transport in microtubule [36], [37].  

The obtained results on the dynamics of alpha-helical protein interacting with 

environment showed that vibrational mode instability induced by a change in the protein-

environment interaction parameter can cause a formation of new macroscopic space-temporal 

structures in the system. A joint action of random and deterministic forces can lead to the 

switching of the system to a dynamic state characterised by cooperative behaviour of 

subsystems (subunits) making up protein macromolecule.  One of the factors of this self-

organisation was shown to be the nonlinear interaction of several subsystems in protein 

interacting with environment i.e. the regular chains of hydrogen bonds, side chain radicals, 

and hydrogen bond network of water molecules. 
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Progress in terahertz spectroscopic techniques and their combination with other 

spectroscopic methods led to a revival of interest to experimental observation of Fröhlich 

coherent excitation in biological structures [26], [38]. For example, experimental confirmation 

of a long-range quantum coherent state in proteins comprised of alpha-helical structures were 

undertaken in experiments with interaction of biomolecular structures with microwave and 

terahertz radiation [25]. Authors used X-ray crystallographic methods to visualise low-

frequency collective vibration modes in the lysozyme protein crystal irradiated by 0.4 THz 

radiation [25]. Estimated microsecond lifetime of these excited longitudinal compression 

modes in the alpha-helix turned out to be significantly longer then femto- and nanosecond time 

scale of the decay of intramolecular vibrations due to their interaction with environment 

(thermalization). Authors refer this underdamped vibration to Frohlich condensation mode 

exited by terahertz radiation.  The existence of these persisting motions indicates that damping 

and intermode coupling are weaker than previously assumed [3]. 

Vibrational wave packets  with long lifetime over 500 picoseconds were observed in 

bacteriorhodopsin exposed by picosecond far IR sources [34]. Authors discussed a possible 

mechanism of slow relaxation due to quantum effects of restricted interaction of the low 

frequency collective modes with solvent and suggested a link between collective undamped 

collective vibration and the conformational transitions in proteins enriched by alpha-helical 

structures.  

Experimental investigation of the coherent vibrational dynamics in proteins were 

intensified  by the observation of long-lived coherent excitonic states in light-harvesting 

proteins in photosynthetic bacteria [8]. The results of 2D IR coherent spectroscopy suggests 

that the coherent vibrations in photosynthetic pigment–protein complexes contribute to the 

effective electron and energy transport due to the electron-vibrational couplings [6], [39]–[41]. 

Note that a role of coherent longitudinal electric modes (polarization waves) of lowest 

frequency (0.01 THz – 1 THz) in a storage of light energy in photosynthesis was proposed by 

Fröhlich in 1968 [10].  

As seen current experiments using new experimental techniques in terahertz range and 

2D IR spectroscopy can provide new valuable data on the molecular mechanisms of the 

quantum coherent vibration excitations in protein one of which was suggested in the paper. 

Together theoretical and experimental investigation of the conditions for the triggering of long-

live, low-frequency vibrations in alpha-helical protein interacting with environment may help 

to elucidate a role of one-dimensional dynamics in extraordinary effectiveness of protein 

biological functions such as energy storage, transport and transformation.  
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Figure legends  
 
Fig. 1.  (a) The chain of hydrogen-bonded peptide groups.  (b) Structure of alpha-helical 

protein where one of the three hydrogen-bonded PG chains with side radicals (R) is shown. 

Hydrogen-bonds are depicted by dots. 

 

Fig. 2. Dispersion curves for the chain of hydrogen-bounded PGs at the following elastic 

constants [19]. (a) s=1, χ1,2 = 13.0 N𝑚−1,  χ2,1 = 17.0 N𝑚−1,   χ0,1 = 5.0 N𝑚−1,    χ0,2 =

0 N𝑚−1. (B) s=2, χ1,2 = 13.0 N𝑚−1,  χ2,1 = 17.0 N𝑚−1,  χ0,1 = 5.0 N𝑚−1,    χ0,2 = 0 N𝑚−1.  

(b) Dependence of the frequency Ω01 (C) and Ω02 (D) (k=0) on constant χ02 at the fixed 

values of elastic constants χ1,2 = 13.0 N𝑚−1,  χ2,1 = 17.0 N𝑚−1 and different constant χ0,1: 

line 1 - χ0,1 = 0.0 N𝑚−1,    line 2 - χ0,1 = 3.0 N𝑚−1 , and line 3 - χ0,1 = 25.0 N𝑚−1. 

Dispersion curves were calculated in MATLAB package (MathWork Inc). 
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