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Although single-cell RNA sequencing (scRNA-seq) technologies have shed light on the role 22 

of cellular diversity in human pathophysiology1–3, the resulting data remains noisy and 23 

sparse, making reliable quantification of gene expression challenging. Here, we show that a 24 

deep autoencoder coupled to a Bayesian model remarkably improves UMI-based scRNA-seq 25 

data quality by transfer learning across datasets. This new technology, SAVER-X, 26 

outperforms existing state-of-the-art tools. The deep learning model in SAVER-X extracts 27 

transferable gene expression features across data from different labs, generated by varying 28 

technologies, and obtained from divergent species. Through this framework, we explore the 29 

limits of transfer learning in a diverse testbed and demonstrate that future human 30 

sequencing projects will unequivocally benefit from the accumulation of publicly available 31 

data. We further show, through examples in immunology and neurodevelopment, that 32 

SAVER-X can harness existing public data to enhance downstream analysis of new data, 33 

such as those collected in clinical settings. 34 

 35 
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Highly parallelized scRNA-seq pipelines are now becoming the standard. In many current and 1 

proposed studies, thousands to millions of cells are sequenced, with each cell receiving low 2 

coverage. At low coverages of 500-1000 unique molecular identifiers (UMI) per cell, precise 3 

distinctions between cell states are blurred and genes with low expression cannot be accurately 4 

quantified. To address this challenge, methods have been developed to de-noise and impute 5 

scRNA-seq data 4–7. These methods, however, may not perform well when sequencing is done at 6 

extremely low depth, or when applied to cell types that are rare. Notably, existing denoising 7 

techniques act solely upon the data from a given study and ignore existing datasets in public 8 

domain, which may contain similar cell types. 9 

In light of the Human Cell Atlas initiative 8, the scientific community will soon have detailed atlases 10 

for each anatomic organ in the human body; for the laboratory mouse, such an atlas (Tabula Muris) 11 

was recently unveiled 9. Accumulation of publicly available scRNA-seq data presents an opportunity 12 

to leverage existing data in the denoising of a new scRNA-seq data set. Yet, it is unclear how much 13 

information can be borrowed across datasets which might be generated using different platforms, 14 

wherein samples are processed differently or at different coverages. Moreover, such transfer 15 

learning must guarantee that the denoising process will not introduce bias or force the new data to 16 

lose its distinctive features and conform to the patterns in existing data. 17 

Here we describe a denoising framework, called Single-cell Analysis via Expression Recovery 18 

harnessing eXternal data (SAVER-X). It uses the deep autoencoder, a neural network that achieves 19 

noise reduction by means of an information bottleneck 10. Consider a target dataset to be denoised. 20 

The autoencoder can be trained on this data starting either from random initialization of the weights, 21 

as in other denoising tools like DCA 7, or from weights obtained by training on existing public data 22 

sets (pre-training data; Figure 1b) with related cell types. The latter – initialization by pre-trained 23 

weights followed by refinement on the test data – transfers information from public data to a user’s 24 

current dataset. 25 

A pivotal challenge in transfer learning lies in finding the balance between transferring extensively 26 

and/or scarcely from the pre-training data. While the former would result in the user data losing its 27 
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own distinctive features, the latter risks producing inappreciable improvements. SAVER-X 1 

adaptively achieves an appropriate amount of information transfer by refining and updating weights 2 

to fit the test data (Figure 1a, item 2A). This drives the model away from the pre-training data. 3 

Subsequently, cross-validation is used to identify genes that are poorly fit by the autoencoder, and 4 

the autoencoder output for these genes is replaced by their mean expression values (Figure 1a, 5 

item 2B). Finally, for each gene in every cell, SAVER-X computes a weighted average of the fitted 6 

value and the observed normalized count 4 (Figure 1a, item 2C). This weighted average is the 7 

posterior mean of the gene’s expression in the given cell based on a Bayesian hierarchical model, 8 

assuming the Poisson-alpha technical noise model 11.  SAVER-X outputs the mean denoised 9 

values, which can then feed into downstream analyses. 10 

Many core cell types and essential pathways are shared between human and mouse, and, 11 

importantly, experiments can be performed more readily on mice than on human subjects 8,12,13. 12 

Thus, effective mouse to human transfer learning invites new ways to use mouse as a model 13 

organism. To enable cross-species data sharing, the autoencoder in SAVER-X consists of three 14 

sub-networks with human-specific, mouse-specific and human-mouse shared nodes (Figure 1c). 15 

The human-mouse shared network receives human-mouse homologous genes as input.  To adjust 16 

for the differences between data generated using non-UMI- and UMI-based technologies, an 17 

indicator node at the input layer feeds into each sub-network.  18 

SAVER-X is publicly available at http://singlecell.wharton.upenn.edu/saver-x/, where users can 19 

choose from models pre-trained on 31 mouse tissues and human immune cells. Models jointly 20 

pretrained on cells from both species are also available for brain and pancreatic tissues. For 21 

additional details on SAVER-X architecture and estimation, see Online Methods.   22 

Cells that constitute the immune system are implicated in virtually every disease. While 23 

understanding the features of infiltrating immune cells in an inflamed tissue is of critical importance, 24 

their representation is often small in scRNA-seq studies in the absence of flow sorting. Thus, 25 

denoising the observed values without relying on external data becomes especially challenging 14,15. 26 

We demonstrate that SAVER-X can perform transfer learning for immune cells between healthy and 27 
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disease conditions. By pre-training SAVER-X on scRNA-seq data from the Human Cell Atlas (HCA) 1 

project 8 (500,000 immunocytes from umbilical cord blood and bone marrow) and 10X Genomics 2 

website 16 (200,000 peripheral blood Mmononuclear cells), we were able to meaningfully improve 3 

the data quality in other scRNA-seq studies that profiled immune cells. 4 

First, we evaluated SAVER-X with and without pre-training against existing denoising methods on a 5 

set of purified cells from 9 immune cell types 16. We created a “test” dataset by randomly selecting 6 

100 cells for each cell type (Online Methods). Among this set of 900 immune cells, with an average 7 

UMI count of roughly 1200 per cell, neither is it easy to visually distinguish NK cells from T-cells, nor 8 

can T-cell subtypes be separated (Figure 2a). SAVER-X imputation of this dataset, without using 9 

any existing data for pretraining, enhances the separation of NK cells from T-cells. Although the 10 

visualization of intra T-cell subtype heterogeneity also improves, the subtypes remain difficult to 11 

identify. The impact of transfer learning becomes apparent when we denoise the test data using 12 

SAVER-X pre-trained on the HCA data (Figure 2a). The Adjusted Rand Index (ARI) improves 13 

significantly as CD8+ T-cells clearly separate from CD4+ T-cells, and naïve CD4+ T-cells become 14 

distinguishable from other subtypes. This observation suggests that significant information about 15 

cell type-specific transcriptional signatures can be transferred between datasets even when the cell 16 

types belong to different tissues and are prepared in different laboratories. Furthermore, SAVER-X 17 

pre-trained on both HCA and 10X data led to a distinct separation between CD4+ memory T-cells 18 

and regulatory T-cells (Tregs). The 10X dataset obtained from peripheral blood mononuclear cells 19 

(PBMCs) contains ~120,000 T-cells, and a SAVER-X model trained specifically on these cells 20 

further improves the separation of T-cells subtypes (Fig. 2a). Reliable detection of T-cell subtypes is 21 

crucial to the characterization of a tissue’s immune environment. For instance, naïve CD4+ T-cells 22 

help maintain immune competence throughout life 17, and yet the mechanisms underlying their 23 

establishment and maturation remain elusive. SAVER-X allows us to confidently identify this sub-24 

population and study its homeostasis, which is ultimately critical for clinical applications in both 25 

vaccination and immune reconstitution. 26 
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The potential of transfer learning in biology hinges on its ability to adapt to diverse and practical 1 

settings. Thus, we explored if SAVER-X can effectively learn from healthy HCA cells in the 2 

denoising of immune cells sequenced from primary breast carcinoma samples from eight treatment-3 

naïve patients 18. SAVER-X, pre-trained on publicly available immune cell datasets to denoise the 4 

tumor tissue-resident immune cells, not only allowed us to better characterize immune cell types, 5 

but also clarified the expression patterns of marker genes (Figure 2b, Figure S3) in these patients. 6 

This improved reconstruction of the tumor immune microenvironment typifies the potential gains 7 

achievable by transfer learning from accumulating public data. 8 

We further assessed the utility of SAVER-X in scenarios where either the number of cells 9 

sequenced could be small (less than 100), or the sequencing depth might be too low (60 UMIs per 10 

cell; Table S1). Currently, cells with such low coverage are typically discarded. We show that 11 

SAVER-X not only salvages such data, but also extracts useful information about gene-gene 12 

relationships (Figure S2). We benchmarked SAVER-X against other scRNA-seq denoising methods 13 

that do not employ transfer learning, viz., DCA 7, scImpute 5 and MAGIC 6, and found that SAVER-X 14 

significantly outperforms existing methods (Figure 2c, Figure S1) in most scenarios. As expected, 15 

for separating major cell types, the benefits of transfer learning diminish when a large number of 16 

cells are sequenced at a sufficiently high depth. As a denoising method, SAVER-X enables 17 

improved gene-level analysis; for instance, as gene expression becomes less sparse, selection of 18 

important regulatory and marker genes becomes more reliable (Figure 2d). 19 

Having demonstrated that SAVER-X effectively transfers information across labs and from healthy 20 

to disease settings, we next examined the feasibility of transfer learning across species. Mouse 21 

models have helped scientists understand the basis of several human disorders, and although 22 

transcriptomic patterns in mouse might not always provide a direct route to the cognate human 23 

condition, similarities and disparities of genetic programs, once understood, are likely to provide a 24 

deeper understanding of the fundamental architecture underlying cellular development and 25 

physiology. In this regard, the ability to harness mouse data in the denoising of human data 26 

represents a new mode of cross-species learning. We examined scRNA-seq data from cells in the 27 
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developing ventral midbrain of both human and mouse, and found that, indeed, SAVER-X pre-1 

trained on mouse scRNA-seq data enhances the quality of the human data (Figure 3). 2 

First, we reduced the high coverage human ventral midbrain scRNA-seq data by sampling only 10% 3 

of the reads 13, to a median per cell coverage of 452 UMIs. To compare the gains achievable by 4 

intra- and inter-species transfer learning, we split the human cells randomly into two groups, down-5 

sampled one group and used the other group as the pre-training data (Figure 3a). SAVER-X pre-6 

trained on the matched mouse brain cells led to a distinct improvement in cell type identification for 7 

human compared with the un-pretrained model, affirming the potential of transfer learning across 8 

species (Figure 3b). We found that a model jointly pre-trained on both human and mouse data 9 

further augments the human scRNA-seq data quality compared with pre-training on the human cells 10 

alone. Remarkably, pre-training SAVER-X on cells from regions other than the ventral mid-brain 11 

using the Tabula Muris 9 also improved the ARI (Figure 3b). We then pre-trained SAVER-X on three 12 

human non-UMI datasets 19–21, and found that the model jointly pre-trained using both the non-UMI 13 

human cells and mouse cells outperforms training on either species alone (Figure S4a). These 14 

observations suggest that SAVER-X prevents negative transfer of information between species by 15 

harnessing the heterogeneity among public datasets. Data heterogeneity forces SAVER-X to learn 16 

robust low-dimensional representation of information, which likely contains the true biological 17 

signals that are shared across studies. 18 

To further demonstrate that SAVER-X does not unnaturally bias data denoising, we examined 19 

whether a model pre-trained on mouse data affects human-specific patterns. We denoised human 20 

scRNA-seq data using the matched mouse data, and then compared the log fold-change of the 21 

genes differentially expressed between human and mouse for each cell type before and after 22 

denoising. We found that the fold changes are indeed preserved, suggesting that SAVER-X 23 

introduces negligible bias (Figure 3c). On the other hand, simply relying on an autoencoder, without 24 

gene filtering or Bayesian shrinkage, reduces the fold change between human and mouse for some 25 

genes in some cell types (Figure S4b). This highlights the importance of balancing the autoencoder 26 

predictions against the observed data to prevent bias. 27 
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Taken together, our results demonstrate that the transfer learning framework employed by SAVER-1 

X can leverage existing scRNA-seq datasets to improve the quality of new scRNA-seq data across 2 

UMI-based sequencing platforms, species, organs and cell types. At its core, SAVER-X trains a 3 

deep neural network on scRNA-seq data across a range of study designs and applies this model to 4 

new data to strengthen shared biological patterns. This general framework for inferring “true” 5 

relationships from raw and error-prone experimental data will be broadly applicable in other high-6 

throughput settings. Through applications in immunology and developmental neuroscience, we 7 

show that SAVER-X can improve cell type classification and gene expression characterization in 8 

both healthy and disease settings. With increasing accumulation of publicly available data, SAVER-9 

X will increase in generalization accuracy and in tissue- and cell-type specificity. A technology like 10 

SAVER-X changes the approach to scRNA-seq data analysis from a process of study-specific 11 

quality control and statistical modeling to an automated process of cross-study data integration and 12 

information sharing. 13 

 14 

Methods 15 

Collection of public datasets 16 

The Human Cell Atlas (HCA) dataset was downloaded from the HCA data portal 17 

(https://preview.data.humancellatlas.org/) and the PBMC data was downloaded from the 10X 18 

website (https://support.10xgenomics.com/single-cell-gene-expression/datasets, Table S2). The 19 

purified data for each immune cell type was also downloaded from the 10X website 16. The breast 20 

cancer data 18 was downloaded from GEO (GSE114725). The developing midbrain data 13 was 21 

downloaded from GEO (GSE76381). For other mouse developing brain datasets, we include cells 22 

from neonatal and fetal brain tissues in the Tabula Muris 9 data (GSE108097). For the other non-23 

UMI human developing brain datasets, we include three: GSE75140 20 , GSE104276 21 and 24 

SRP041736 19. No filtering is done on the original data and all genes and cells provided in the 25 

original datasets were used by SAVER-X.  26 
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A complete list of the pre-training datasets used for pre-training the models on the SAVER-X 1 

website is provided in Table S2.  2 

Details of SAVER-X 3 

SAVER-X uses a Bayesian hierarchical model to combine evidence from the raw read counts of a 4 

new data set with predictions made by an autoencoder. The autoencoder can be trained exclusively 5 

on the new data set, or first pre-trained on existing data sets and then on the new data set. The 6 

autoencoder used by SAVER-X has three subnetworks, as shown in Figure 1a, with one 7 

subnetwork taking human genes as input, one subnetwork taking mouse genes as input, and one 8 

subnetwork taking shared human-mouse homologous genes as input.  21183 and 21122 genes are 9 

used for human and mouse (Supplementary Data, Supplementary Note), respectively, as input and 10 

output nodes of the autoencoder. By current annotations using the getLDS() function in the bioMaRt R 11 

package, 15494 genes have homologs shared between the two species (Supplementary Data, 12 

Supplementary Note).  For each sub-network, the number of nodes in the encoding and decoding 13 

layers are, successively, 128, 64, 32, 64, and 128. If only human data are available, only the human 14 

and shared sub-network weights are updated.  Similarly, if only mouse data are available, only the 15 

mouse and shared sub-network weights are updated.   16 

For UMI datasets, let the raw UMI count for each cell 𝑐𝑐 and gene 𝑔𝑔 be 𝑥𝑥𝑐𝑐𝑐𝑐, then the input expression 17 

levels are normalized by library size, re-scaled and log-transformed using formula: 𝑥𝑥�𝑐𝑐𝑐𝑐 =18 

log�𝑥𝑥𝑐𝑐𝑐𝑐/𝑙𝑙𝑐𝑐 × 10000 + 1� where 𝑙𝑙𝑐𝑐 = ∑ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐  is the library size of cell 𝑐𝑐. For non-UMI datasets, TPM 19 

for each cell 𝑐𝑐 and gene 𝑔𝑔 are denoted as 𝑥𝑥𝑐𝑐𝑐𝑐, and then the 𝑥𝑥𝑐𝑐𝑐𝑐 are transformed using the same 20 

formula as that for UMI. If a gene is missing in the dataset, the input is set to 0 while the 21 

corresponding output node is not accounted for in the loss function. Specifically, let the output value 22 

for gene 𝑔𝑔 be defined as 𝑥𝑥�𝑐𝑐𝑐𝑐, which we refer to as the autoencoder prediction.  Conditional on the 23 

prediction 𝑥𝑥�𝑐𝑐𝑐𝑐, the observed UMI count is assumed to follow a Negative Binomial distribution. Thus, 24 

for each cell c, the loss function for UMI-based counts is defined as the sum of log likelihoods:  25 
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L(𝑥𝑥𝑐𝑐 , 𝑥𝑥�c) = � log [NB(𝑥𝑥𝑐𝑐𝑐𝑐; 𝑙𝑙𝑐𝑐𝑥𝑥�𝑐𝑐𝑐𝑐,𝜃𝜃𝑐𝑐𝑈𝑈) ]
node 𝑐𝑐 presents in the dataset

 1 

On the other hand, TPM data is assumed to approximately follow a zero inflated Negative Binomial 2 

distribution (although TPM is not integer-valued, the likelihood function can still be computed) and 3 

the loss is defined as: 4 

L(𝑥𝑥𝑐𝑐 , 𝑥𝑥�c) = � log [ZINB(𝑥𝑥𝑐𝑐𝑐𝑐; 𝑥𝑥�𝑐𝑐𝑐𝑐,𝜃𝜃𝑐𝑐𝑁𝑁𝑈𝑈,𝜋𝜋𝑐𝑐𝑐𝑐) ]
node 𝑐𝑐 presents in the dataset

 5 

where NB(𝑥𝑥; 𝜇𝜇,𝜃𝜃) and ZINB(𝑥𝑥;𝜇𝜇,𝜃𝜃,𝜋𝜋) are the density of Negative Binomial and zero-inflated 6 

Negative Binomial distributions (see Supplementary Note). A separate gene-specific dispersion 7 

parameter 𝜃𝜃𝑐𝑐𝑈𝑈 and 𝜃𝜃𝑐𝑐𝑁𝑁𝑈𝑈 is dedicated for UMI and non-UMI input, respectively. For non-UMI data, the 8 

gene- and cell-specific zero inflation parameter is defined as  9 

𝜋𝜋𝑐𝑐𝑐𝑐
1 − 𝜋𝜋𝑐𝑐𝑐𝑐

= 𝑤𝑤𝑐𝑐 log𝑥𝑥�𝑐𝑐𝑐𝑐 + 𝑏𝑏𝑐𝑐 10 

Our implementation of the autoencoder builds on top of the source code of DCA 7, using its library 11 

functions.  12 

Although SAVER-X accepts pre-training data both with and without UMI, the target data must 13 

have UMI. When SAVER-X is applied to the denoising of a UMI-based target data matrix, the 14 

following steps are applied (Figure 1a): (1) The autoencoder is fit on the target data, optionally 15 

starting with a user-selected pre-trained model.  (2) Cross-validation is applied to filter out genes 16 

that cannot be predicted well by the autoencoder. Specifically, the target data is randomly split into 17 

held-in and held-out cell sets, the autoencoder is trained on the held-in set and then used to make 18 

predictions on the held-out set. For a specific gene 𝑔𝑔, let the normalized predictions using the held-19 

in set trained model on a held-out cell 𝑐𝑐 is 𝑥𝑥�𝑐𝑐𝑐𝑐 and let the held-in sample mean for the library-size 20 

normalized counts be 𝜇𝜇𝑐𝑐. Then a gene is unpredictable if the Poisson deviance of the predictions 21 

and original UMI counts of the held-out samples is larger than that of the held-in sample mean and 22 

held-out original UMI counts, equivalently: 23 
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− � �𝑥𝑥𝑐𝑐𝑐𝑐 log�𝑙𝑙𝑐𝑐𝑥𝑥�𝑐𝑐𝑐𝑐 +  𝜀𝜀� −  𝑙𝑙𝑐𝑐𝑥𝑥�𝑐𝑐𝑐𝑐�
𝑐𝑐 is a held−out cell

>  − � �𝑥𝑥𝑐𝑐𝑐𝑐 log�𝑙𝑙𝑐𝑐𝜇𝜇𝑐𝑐 +  𝜀𝜀� −  𝑙𝑙𝑐𝑐𝜇𝜇𝑐𝑐�
𝑐𝑐 is a held−out cell

 1 

where 𝜀𝜀 = 10−10 to avoid taking the log of zeros. After unpredictable genes are identified, the 2 

autoencoder is trained again on all the cells, but the predicted values of the unpredictable genes or 3 

genes that are not present in the nodes are replaced with the sample mean of library size 4 

normalized UMI counts. (3) After we obtain these predicted values, we apply empirical Bayes 5 

shrinkage, following the model used by SAVER 4. In SAVER, let 𝜆𝜆𝑐𝑐𝑐𝑐 be the true relative expression 6 

level of the gene that we want to recover, then we assume 7 

𝑥𝑥𝑐𝑐𝑐𝑐~Poisson�𝑙𝑙𝑐𝑐𝜆𝜆𝑐𝑐𝑐𝑐�, 𝜆𝜆𝑐𝑐𝑐𝑐~Gamma(𝛼𝛼𝑐𝑐𝑐𝑐,𝛽𝛽𝑐𝑐𝑐𝑐) 8 

where  𝛽𝛽𝑐𝑐𝑐𝑐 is the rate parameter, 𝛼𝛼𝑐𝑐𝑐𝑐 = 𝑥𝑥�𝑐𝑐𝑐𝑐𝛽𝛽𝑐𝑐𝑐𝑐 is the shape parameter and 𝑥𝑥�𝑐𝑐𝑐𝑐 is the filtered 9 

autoencoder prediction. The final denoised expression level of a gene in each cell is a weighted 10 

average of the autoencoder predicted value and its observed UMI count: 11 

�̂�𝜆𝑐𝑐𝑐𝑐 =  
𝑙𝑙𝑐𝑐

𝑙𝑙𝑐𝑐 + �̂�𝛽𝑐𝑐𝑐𝑐

𝑥𝑥𝑐𝑐𝑐𝑐
𝑙𝑙𝑐𝑐

+
�̂�𝛽𝑐𝑐𝑐𝑐

𝑙𝑙𝑐𝑐 + �̂�𝛽𝑐𝑐𝑐𝑐
𝑥𝑥�𝑐𝑐𝑐𝑐 12 

Where �̂�𝛽𝑐𝑐𝑐𝑐 is obtained by maximizing the likelihood in SAVER. 13 

Data denoising using other bench-marking methods 14 

MAGIC 6 was performed using the R version 1.3.0 on the square root transformed mean library-size 15 

normalized expression. scImpute 5 version 0.0.9 was performed on the unnormalized expression 16 

values setting Kcluster = 9. DCA 7 version 0.2.2 was performed on the unnormalized expression 17 

values and the library-size normalized expression output was used for downstream analysis.  18 

Generating down-sampled datasets 19 

For an observed UMI count data matrix, we down-sample the reads to obtain a data set of the same 20 

gene and cell numbers but with lower quality. For cell 𝑐𝑐 and gene 𝑔𝑔, the down-sampled value 𝑦𝑦𝑐𝑐𝑐𝑐 is 21 

generated by independently drawing from a Poisson distribution with 𝑦𝑦𝑐𝑐𝑐𝑐~Poisson(𝜏𝜏𝑐𝑐𝑥𝑥𝑐𝑐𝑐𝑐)  where 𝜏𝜏𝑐𝑐 22 
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is a cell-specific efficiency loss. To mimic variation in efficiency across cells, we sampled 𝜏𝜏𝑐𝑐 as 1 

follows:  2 

1. 10% efficiency: 𝜏𝜏𝑐𝑐~Gamma(10, 100), used on the mouse midbrain data 13 3 

2. 5%  efficiency: 𝜏𝜏𝑐𝑐~Gamma(5, 100), used on the 10X PBMC data 16 4 

t-SNE visualization and cell clustering 5 

We used Seurat version 2.0 to perform cell clustering and t-SNE visualization according to the 6 

workflow detailed at (https://satijalab.org/seurat/pbmc3k_tutorial.html). For all analyses, we set the 7 

number of principal components to 15. For cell clustering using Seurat, resolution is set to be 1.6, 8 

1.2, 0.8 and 0.8 for each of the four experiments (90 cells, 900 cells, 9000 cells and 9000 cells with 9 

down-sampled reads) of the PBMC data and kept the same on all the methods compared. The 10 

resolution is set to 1 for the cell clustering of the midbrain data 13. The adjusted Rand Index (ARI) is 11 

computed using R package mclust.  12 

Differential expression analysis 13 

Differentially expressed genes between human and mouse for each cell type of the developing 14 

midbrain are obtained also using Seurat 2.0, where the Wilcoxon rank sum test is used. P-value 15 

adjustment is performed using Bonferroni correction based on the total number of genes in the 16 

dataset. A gene is selected as differentially expressed if its adjusted p-value is ≤ 0.05 and the 17 

absolute log fold change is ≥ 0.25. 18 
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Figure 1:  Outline of the SAVER-X transfer learning framework. 
a) Online learning: User uploads data (UMI count matrix) to the SAVER-X web portal (1) and chooses a 
desired pre-trained model (2A).  The model is trained with the  user data.  Filtering of unpredictive genes 
(2B) and empirical Bayes shrinkage (2C) are then performed to prevent overfitting. User finally receives a 
denoised data matrix of the same size as the input data matrix (3), which can be used for downstream 
analysis. b) Offline autoencoder pre-training: for each species and each organ/cell-type, public datasets 
are collected and combined to train an autoencoder to generate  pre-trained weights. c) Architecture of 
the autoencoder: The autoencoder allows cells from both human and mouse, both with and without UMI, 
to be used for pre-training. However,  For each species, there are about 20,000 input nodes accepting 
raw gene expression values; approximately two-thirds of the input nodes are shared between species for 
genes with homologs. 
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Figure 2: SAVER-X de-noising of immune cell subsets  
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a) t-SNE plots of 900 immune cells, colored by known cell-type labels, from the original data, and the 

denoised data using de-noising models with and without transfer learning are shown. The number at 

the right-bottom corner of each plot is the adjusted rand index (ARI). b) Infiltrating immune cells in 

resected breast carcinoma from two breast cancer patients from Azizi et al. The three panels show 

visualizations using original data, denoised values by SAVER-X without pre-training, and denoised 

values by SAVER-X pre-trained on HCA and 10X PBMC data. The t-SNE plots show separation 

between cell types (cell labels are obtained from the original paper).  Feature plots show the expression 

of known marker genes, and a darker red color represents a relatively higher expression level. c) The 

performance of SAVER-X is benchmarked against existing imputation methods using clustering ARI. 

Each experiment varies the number of cells and the sequencing coverage. d) Relative expression of 

known marker genes in 5000 PBMC T cells (from the 9000 PBMC cells experiment) before and after 

denoising using SAVER-X. 
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Figure 3: Mouse to human transfer learning improves denoising of single cell expression within 
the developing ventral midbrain. 
a) Summary of datasets and the split-sample experiment design. b) t-SNE plots for the original data, 
the down-sampled data, and the SAVER-X denoised data are shown. No-pretrain denotes that the 
model uses randomly-initialized weights. Other scenarios where weights are initialized on mouse 
ventral midbrain cells (4->2), developing brain cells from mouse cell atlas (5->2), human ventral 
midbrain cells (3->2), and human and brain ventral midbrain cells (3+4->2) are also shown. Reference 
cell labels are obtained from the original paper. The ARI displayed at the bottom-right corner of each 
plot is computed against the original labels. c) Log fold-change between human and mouse data in 8 
major cell types. The X-axis shows the log fold-change computed using the original human data, and 
the Y-axis denotes the log fold-change computed using the denoised and down-sampled human data, 
wherein the denoising is done by SAVER-X pretrained with mouse ventral midbrain cells (4->2 model in 
b). Each dot corresponds to a differentially expressed gene between human and mouse in that tissue. 
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