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Abstract. We describe a Bayesian/Maximum entropy (BME) procedure and software to
construct a conformational ensemble of a biomolecular system by integrating molecular simu-
lations and experimental data. First, an initial conformational ensemble is constructed using
for example Molecular Dynamics or Monte Carlo simulations. Due to potential inaccuracies
in the model and finite sampling effects, properties predicted from simulations may not agree
with experimental data. In BME we use the experimental data to refine the simulation so that
the new conformational ensemble has the following properties: (i) the calculated averages are
close to the experimental values taking uncertainty into account and (ii) it maximizes the
relative Shannon entropy with respect to the original simulation ensemble. The output of
this procedure is a set of optimized weights that can be used to calculate arbitrary properties
and distributions. Here, we provide a practical guide on how to obtain and use such weights,
how to choose adjustable parameters and discuss shortcomings of the method.
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1 Introduction

Experimental determination of biomolecular structure and dynamics is an important and difficult
problem in molecular biology. A large variety of techniques to tackle this problem exists, including
X-ray/neutron diffraction and scattering experiments, nuclear magnetic resonance (NMR) spec-
troscopy, cryo-electron microscopy, and a plethora of other techniques. These experiments often
result in noisy and incomplete data, making it non-trivial to solve the inverse problem of recon-
structing structural and dynamical molecular properties from experiments alone [1].

Computer simulations based e.g. on physics-derived or knowledge-based models can in principle
provide a detailed thermodynamic description for arbitrary molecular systems. Performing such
simulations is, however, often not sufficient, due to inaccuracies of the molecular models (force
fields), and the high computational cost associated with extensive simulations.

For these reasons, there exists a number of integrative approaches in which simulations and ex-
periments are combined [2-6]. In some of these approaches, a physical model (i.e. the force field) is
complemented by a set of experimental restraints favouring molecular conformations that individ-
ually match experimental data. When studying flexible molecular systems that populate multiple
conformations, however, this approach leads to wrong results, because it drives the simulation to-
wards intermediates that are not representative of any of the relevant states (Fig. 1) [6-11]. Such
problems may be particularly relevant when the systems are structurally very heterogeneous, and
when the experimental measurements have nonlinear dependencies of the conformational proper-
ties.

Maximum-entropy (ME) [12] approaches treat experimental data as time/ensemble averages,
and make it possible to combine the physico-chemical information deriving from the simulation
with experimental knowledge. In its basic implementation, however, the ME formalism does not
take uncertainty and noise into account. Recently, it has, however, been shown how to generalize
ME to take into account the uncertainty associated with the experimental data [10,13, 14].

There are two principally different ways of combining the experimental data and molecular force
field to generate the ME ensemble [11]. One set of methods uses the experimental data directly
as restraints during the simulations, thus generating samples directly from the target probability
distribution. An advantage of this approach is that one can focus sampling efforts only on the most
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Fig. 1. Schematic example showing two different strategies to restrain simulations using experimental data.
When performing a molecular simulation, samples from a prior distribution, P, are generated, using for
example the Boltzmann distribution from a Molecular Dynamics (MD) simulation. When a calculated
average (-)po does not match the experimental measurement, it is possible to use the experimental data
to modify the prior distribution, resulting in new, optimized probability distribution P* (also called the
posterior). The new average (-) p~ matches the experimental data with some level of uncertainty. Different
strategies to derive the posterior distribution are possible. a A common choice is to require all individual
molecular conformations to match the experimental data within uncertainty. b In the ME formalism, P*
is instead the minimal modification to P° that brings the calculated averages to match the experimental
data, resulting in the optimal combination between simulations and experiments.

relevant regions of conformational landscape, but comes at the cost of both additional complexity
in simulation software, and a requirement that the experimental data can be calculated rapidly
from molecular conformations and with analytical gradients. The second approach uses standard
simulation methods to generate a conformational ensemble, which is then reweighted afterwards
using the experimental data to generate a weighted ensemble representing the target probability
distribution P*. The advantages of this approach includes its simplicity, the fact that it can easily
be combined with numerous methods for enhanced sampling, and that one can use rather complex
models for calculating experimental observables [15]. Tt is this second method that is the focus on
this paper.

Thus, we here describe a procedure to apply the ME approach to existing simulations sampled
from some prior probability distribution. The procedure is in essence identical to the Bayesian in-
ference of ensembles (BioEn) [10, 16], also originally called ensemble refinement of SAXS (EROS)
[17,18], that consists in finding the set of weights that maximize a functional that ranks configura-
tion space distributions. Here, we explicitly make use of the ME formalism: this makes it possible
to simplify considerably the minimization problem [13,19]. For ease of reference we refer to our
approach as Bayesian/MaxEnt (BME) reweighting. Note that equivalent or similar reweighting
schemes have been used to construct conformational ensembles in biomolecular contexts [20-26].

We begin by briefly describing the underlying theoretical problem, and then exemplify the
procedure on a two-dimensional toy model. We then proceed with providing a step-by-step guide
for two examples showing how to combine (i) NMR data with MD simulations of a single-stranded
RNA tetranucleotide, and (ii) SAXS data with both atomistic and coarse grained simulations of a
dynamic, 2-domain protein. In these examples we also show how to use the optimized weights to
calculate other structural properties, thereby providing a more accurate description of the system
of interest. Throughout the examples we use our software called BME, which is freely available at
https://github.com/sbottaro/BME under the GNU GPLv3 license, and where the reader may
also find detailed step-by-step guides and examples.
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Bayesian-MaxEnt ensemble refinement 3

2 Methods

2.1 Theoretical background

We consider the case in which one samples molecular conformations, x, from a prior distribution
P°(x). Sampling can be performed using e.g. MD simulation with an atomistic force field or Monte
Carlo simulations with a coarse-grained model. In practice, our model P° is only an approximation
of the ‘true’ (but generally unknown) probability distribution PTRVE. Depending on the system,
PTRUE may be characterized by a single dominant state (as in a structured protein) or by several
distinct states with different populations, as in single stranded RNA or intrinsically disordered pro-
teins. Because of model inaccuracies, P® and PTRUE may differ: In these cases averages calculated
from simulations < F°¢ > do not agree with corresponding experimental measurements F¢*P.
In the BME approach, one seeks a new probability distribution P* with the following properties:

— It maximizes the relative Shannon entropy:

SREL(PHPO) = f/de(x) log {;)(()2)} (1)

— It matches a set experimental m constraints F;"? within a tolerance, €;, determined via some
error model (see further below):

<Ff4e>=F" i=1...m (2)

— It is normalized:

/ dxP(x) =1 (3)

Note that the relative entropy Srgr(P||P°) is the negative Kullback-Leibler divergence [7, 27,
28]: The probability distribution that maximizes the relative entropy can then be considered as
the smallest modification to P°, where the notion of distance in probability distribution space is
given by the Kullback-Leibler divergence. A direct link to Bayesian statistics is provided by the
observation that the Maximum Entropy distribution is the most probable probability distribution
compatible with the data [29].

Here, we consider the discrete case where a finite number of configurations x; ... X, have been
sampled from the prior distribution PY. The integrals in Eq. 1-3 can then be written as summations
over the n configurations with corresponding weights w{ ... w0, so that < Ff¢ >= E?Zl w; Fi(x5).

For methods such as standard MD or MC simulations that generate samples directly from the
Boltzmann distribution defined by the force field, the initial weights are uniform (w? =1/nVj=
1...n). When using biasing techniques such as umbrella sampling [30] or metadynamics [31] they
are non-uniform, and have to be estimated using standard techniques prior to using BME.

It can be shown [7,12,13, 28] that the weights {w7 ... w}} that satisfy Eqs. 1-3 are given by

m

0= o bl YO NF ) W

%

Where the normalization Z is defined as
Z\) = wiexp[- Y A Fi(x;))] (5)
j=1 i

and A" = \¥ ..\

¥, is a set of Lagrange multipliers (one per experimental constraint). When assum-

2
ing that uncertainties are modeled by independent Gaussian distributions, i.e. P(e;) exp(—Q;—;_g),

the Lagrange multipliers are determined by minimizing the following function [13, 28]:

T'(A) =1log(Z(X\)) + Z NFPP 4 g Z \o? (6)
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4 Reweighting of conformational ensembles using experimental data

Here, o; is the uncertainty on the constraint F; ¥ and includes experimental errors and inaccuracies
introduced by the calculation of the experimental quantity from a structure (i.e. the forward model).

Because this combined uncertainty is not always known accurately, a global scaling parameter,
0, is introduced [17]. When 0 is large, all o are multiplied by a large factor, and in the limit § — oo
this corresponds to no confidence in the experimental data and reverts to the prior distribution.
Conversely, a perfect match with experimental data is achieved when § = 0. Note that when o = 0
Eq. 6 reduces to the maximum-entropy solution with no error treatment.

It has been shown that the optimal weights w? obtained in this way correspond to the weights
that minimize the function [17,10]:

Lw .. .w,) = %)f(wl o wy) — OSREL (Wi . . . wy) (7)

In this equation, x? quantifies the agreement with the experiments

m nij X; 7FiEXP 2
Pl owy) = Ly 2 4 09) ) ®)

a;

and the relative entropy term Spgp = — Z;l w; log (%) measures the deviation from the initial
J
weights w?.

Few items are worth highlighting. First, the function £ in Eq. 7 can be interpreted as a ‘pseudo
free-energy’, where x2 plays the role of enthalpy, Srer is the entropy and the parameter 6 is the
temperature. At high temperature (large ) the entropy dominates, while in the limit § — 0 all
that matters is to minimize the deviation between experiments and simulation.

While Eq. 7 can more easily be interpreted, it may in practice be difficult to minimize if
the number of weights, determined by the number of conformations n, is large. One approach
previously employed has thus been to cluster the conformations prior to reweighting, thus reducing
the number of weights that need to be determined, but at the same time also loosing details present
in the original ensemble. Since the Bayesian and Maximum Entropy with error formulations are
mathematically equivalent, it is thus in many cases more convenient to minimize I'(A) in Eq. 6
rather than Eq. 7, because the number of experimental measurements, m, is typically much smaller
than the number of frames, n.

3 Results

3.1 Toy model

We illustrate the application and outcome of the above-described reweighting procedure on a two-
dimensional toy model (Fig. 2A). We construct a model with three states (S1, S2, S3) defined
by PTRUE(z 4), that here represents the ‘true’ probability distribution (shown in grey/black). We
then assume that it is possible to measure, with some error, the average of the  and y coordinates,
shown as a dark purple square with error bars in Fig. 2A. We then construct a prior distribution
PY(x,y) that has the same three states as PTRUF but with different populations (red lines).
P? corresponds, for example, to a situation in which the molecular force field is inaccurate or
when sampling is not converged. We sample n = 10 (x,y) coordinates from P°, and calculate
the average position Ff¢ = Z?Zl w?xj,FQC“lC = Z;Zl w?yj. By construction, the calculated
averages (red star) are not identical to the ‘true’ averages (black sphere), and the differences to
the experimental estimate of these average are greater than the ‘experimental’ error.

Given the initial weights wg = 1/n of each sample, and the ‘experimentally’ measured values
and uncertainties, we minimize I'(A1, A2) (Eq. 6) and find the optimal weights w* defined via
Eq. 4. This procedure is repeated for different values of 6. At high values of 6, the entropy term
dominates and the weights are close to their initial (uniform) values. As 6 is decreased, the weights
become less uniform as they are reweighted to find a combination to match the experiment better
(decrease x?). This decrease in ‘flatness’ of the weights corresponds to a drop in the number of
frames that effectively contribute to the calculated averages, and can be quantified by the ‘effective
fraction of frames’ Ny = exp (Sre1). We thus find it useful to plot Ncgs versus x? to illustrate the
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Fig. 2. BME reweighting illustrated using a 2D model. (a) PTRVE(z, ) (grey scale) and prior distribution
P%(x,y) (orange/red). Both distributions are characterized by three states (S1, S2, S3), but with different
populations. The boundaries between the states are shown as dashed lines and are used to calculate the
probabilities for the three macrostates, but are not needed in the reweighting analysis. The marginal
distributions along = and y are shown as black or red lines. The average ,% position calculated from P°
(red star) is not compatible with the one calculated from PTRUE (black dot). In this example, the dark
purple square shows an hypothetical experimental measurement of (z), (y) with associated uncertainty.
(b) The effective fraction of frames left after reweighting is shown versus x? for different values of the
parameter 6. In this case x & 1 is obtained using 6 = 3. (c¢) The histogram calculated using the optimized
weights w* with # = 3 is shown in blue and overlaid on PTRVE (grey scale). The new average (blue star) is,
per construction, in better agreement with the experimentally-measured average position, and also closer
to the ‘true’ average. (d) Table reporting the average x,y position and the population of the three states
S1,82,83 for the ‘true’ model, calculated from the prior P°, and after reweighting using # = 3 and 6 = 0.
(e) Values of the optimized weights w*. The state corresponding to the weights is indicated in the labels,
and for visualization purposes the samples were sorted so that samples from the same state are shown
together.
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6 Reweighting of conformational ensembles using experimental data

balance between the requirement of fitting the data well (low x?) and minimally perturbing the
prior distribution (large N.ss) (Fig. 2B).

Inspection of this plot shows as expected that when 6 — 0 we achieve a very good agreement
between simulation and ‘experiments’ (x? — 0). At the same time, we introduce a large perturba-
tion to the prior probability distribution P?, so that the relative entropy is a large, negative number
and the fraction of effective frames becomes small. In the limit of large 6, instead, x? approaches
the initial value obtained when sampling from P°, the new weights w* are close to w® and thus
the number of effective frames N.y; approaches 1. A practical solution to the trade-off between
the two limits can be found by scanning different values of the parameter, starting from a large
number, until a further decrease in 6 does not result a significant decrease in the associated x? .
Such a procedure, often termed finding the ‘elbow’ of the curve (and similar to L-curve selection
in other regularization techniques), provides a range of viable values for #: in the toy model, for
example, one could pick § = 3, that leads to a x? =~ 1 for both 2 and y coordinates. After fixing
0 = 3 we can observe the modification to the probability distribution introduced by reweighting
(Fig. 2C). First, the calculated average (blue star) is close to the experimental average (within a
level set by the uncertainty). Additionally, the reweighted (blue) and ‘true’ distribution (grey) are
similar one to another.

In this toy model we have three distinct states, whose population can be calculated by summing
the weights of the samples belonging to each region. In Table 2E we report these population for
the ‘true’ model, for the prior distribution P° and after reweighting with § = 3 and 6 = 0. We note
that this kind of clustering into states is not a part of the actual reweighting procedure, but may
be useful in the subsequent analyses. We can see that the population of state S1 decreases from
55% in the unreweighted ensemble to ~ 25% in the reweighted one. The population of S3, instead,
is increased from 5% to 40%, substantially closer to the ‘true’ population of 50%. Note that it is
in principle possible to obtain a better agreement with experiments by setting § = 0 (Table 2D).
In a realistic scenario this would not be advisable, since experimental quantities are not known
with infinite precision, and setting 8 = 0 effectively corresponds to ignoring the uncertainties in
the experiments and forward models.

Finally, it is instructive to plot the individual weights w* for each sample (Fig. 2E). In agreement
with the population shift described above, we can see that all samples belonging to state S1 are
down-weighted with respect to the initial weights w®, while the opposite effect happens to samples
belonging to S3.

As is clear from the example above, the BME reweighting procedure enables the reconstruction
of an ensemble that is closer to the ‘true’ ensemble by combining the imperfect prior model with the
experimental data. Before proceeding to discuss application in molecular simulations and structural
biology, we note, however, that there might occur situations in which the reweighting approach
described here would provide incomplete or wrong result. More precisely, we identify four possible
sources of problems:

— Non-informative experimental data. There might be situations in which the available experi-
mental data cannot substantially correct the inaccuracies of the model. In the toy model, this
would correspond for example to knowing the average y position but not z. In such a situation,
the ‘true’ population of state S3 could not be determined very accurately because the average
x position carries information on the relative populations of S14S2 with respect to S3. In
practice for high-dimensional systems such as biomolecular ensembles, the situation is more
complex. Indeed, most experimental measurements are sensitive to some, but not other aspects
of the distribution of conformations, and generally there are many more degrees of freedom
than experimental observations. Indeed, it is this underdeterminism that necessitates the use
of the prior model.

— Insufficient sampling. If sampling is not exhaustive, relevant states are not explored, and thus
it is not possible to estimate with any certainty their weights after reweighting. This observa-
tion is equivalent to the well-known problem of large uncertainties in estimating free energies
between states with little overlap. In such cases a small 6 (corresponding to a small N.ys)
could be required to achieve a reasonable agreement between simulations and experiments. As
a consequence, most of the optimized weights are vanishingly small, and a small set of weights
dominates the ensemble. In this situation, longer simulations or the use of enhanced sampling
techniques are necessary, and could e.g. be guided by the structures whose weights are increased


https://doi.org/10.1101/457952
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457952; this version posted October 31, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Bayesian-MaxEnt ensemble refinement 7

at intermediate values of 6. In practice, the prior that enters the reweighting approach is not
the full distribution, P°, but rather our estimate of this from the finite samples representing
the starting ensemble.

— Inaccurate force field. The reweighting approach relies on the accuracy of the prior distribution,
in particular when the data is sparse and noisy. One can imagine for example the case of a
uniform prior distribution over x, y (within some range) in the toy model. A small modification
to this distribution would lead to a very good agreement with the experimental data, but would
not be close to the ‘true’ probability distribution. Indeed, the BME formalism is not guaranteed
to give the best model possible. Instead, it provides the least biased model that takes into
account all the knowledge we have of the system, encoded both in the (potentially inaccurate)
force field and the (noisy and sparse) experimental data, and no more than this information. If
more information were available or assumed (such as assuming that the ensemble is narrow),
this should preferably be encoded and input into the model.

— Inconsistent or wrong experimental data. When data are inconsistent, the reweighting approach
might fail in obtaining improved agreement with all experimental data. For example, in our
previous work we have identified spectral overlaps by noticing that a subset of NOE distances
could not be reweighted [19]. In certain cases, the presence of inconsistent data points could
be detected via cross-validation. In general, however, there is no guarantee that erroneous data
cannot be fitted with an erroneous ensemble, and indeed ensemble fitting can be prone to such
‘overfitting’ to erroneous data. When very small values of 6 are needed to fit the data, this
can be a sign of either a poor prior, underestimation of the uncertainty in the data, or actual
errors in the experiments.

In realistic cases, these problems can occur simultaneously, and can be sometimes difficult to
disentangle. We also stress that BME is inherently an ensemble refinement procedure [17], and the
successful use of this approach depends on the amount/quality of experimental data, on sampling
and on force field accuracy. Further discussions of problematic situations in ME approaches are
also found in Refs [10, 28, 6].

3.2 Combining NMR data with MD simulation of RNA

Following the above introduction of the BME method with the two-dimensional toy model, we now
proceed to describe how to obtain the conformational ensemble of an RNA tetranucleotide using
atomistic MD simulations in combination with experimental data from nuclear magnetic resonance
(NMR) spectroscopy. In particular, we describe how to carry out the analysis and suggest some
best practices using the Python code for BME that is freely available under under a GNU GPLv3
license license at https://github.com/sbottaro/BME. Data and a detailed list of commands to
perform the analysis described below are available on the github repository.

In essence, the procedure can be summarized in four steps: 1. Data collection and preparation,
2. Minimizing I" and parameter selection 3. Cross validation and 4. Interpretation of the weights
and of the reweighted ensembles.

Step 1: Data collection and preparation The first step is to collect and format experimental
and simulation data necessary for BME reweighting. The experimental datafile(s) contains m
experimental averages and uncertainties, and has the following format:

# DATA=JCOUPLINGS PRIOR=GAUSS

label; F* oy
labels F;‘Xp o9
label,, F* on

The first line is a header that specifies the type of input data and the type of prior on the error.
Currently, the BME software specifically supports the following data types: nuclear Overhauser ef-
fect (NOE), scalar couplings (JCOUPLINGS), chemical shifts (CS), small-angle x-ray scattering (SAXS),
and generic distance restraints (DIST). Only a Gaussian (GAUSS) error prior is implemented in the
current version of the BME software. Since all-linearly average data are treated in the same way,
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8 Reweighting of conformational ensembles using experimental data

other sources of information can use these functions. The first column is a user-defined label that
indicates e.g. the torsion angle in a 3J scalar coupling or the name of the protons involved in the
NOE. The second column is the experimental value and the third the associated uncertainty. For
NOEg, it is possible to specify upper/lower boundaries instead of average values. In such cases, the
restraint is applied only if (F°a¢) is larger /smaller than FFXF. This information can be specified
by flagging the experimental datafile in the following fashion:

# DATA=NOE PRIOR=GAUSS POWER=6

label; FE* 5, UPPER
labels FE*® &5y LOWER
label,, FE*®  4,, LOWER

For most types of experiments, the underlying model is the same in the sense that the ensemble
averaged values is simply a linearly-weighted average over the values calculated for each frame, e.g.

for scalar couplings (JCAMC) = E;-lzl wjJ JCALC. When using NOE data, however, the experimental

data has to be specified as a distance 7**F and the imposed restraint is proportional to the volume

of the corresponding peak in a NOESY spectrum, i.e. V/c = (rFXF)=P = > i W (r§ALC)=P. The
power p, is by default set to 6, but it can be set to a different value (e.g. 3 [32]) using the keyword
POWER in the header of the experimental datafile.

The other information required for reweighting are the values of the experimental observables
calculated for each frame in the simulation. The data is stored in a file with the following format

label; A ..o RS

labels e . Y

label, FMC ... BNC

Here, FJ%ALC corresponds to the i'" experimental average (as ordered in the experimental datafile)

calculated on the j** frame. The label is user-defined and can for example be the frame number.
The number of frames n can be on the order of tens or hundreds of thousands: there is in principle
no restrictions on n since the complexity of the problem is mostly determined by the number of
experimental restraints m. Note also that the back-calculation is performed only once, and any
type of forward model can be used as long as the calculated values can be written as a weighted
average over the input configurations.

As an example, we here consider experimentally measured NMR 2J scalar couplings in an RNA
tetranucleotide [33] and extensive MD simulation of the same system taken from our previous study
[19]. In Fig. 3a we show in grey the m =25 experimental measurements, sorted by magnitude for
visualization purposes. The averages calculated directly from the simulations using n = 20000
frames are shown in red. Simulations and experiments do not agree perfectly: in this case at least
five MD averages do not fall within experimental uncertainty.

Step 2: I' minimization and 6 selection Given the data described above, and at a fixed value
of 6, we minimize the function I' defined in Eq. 6 with respect to the m Lagrange multipliers.
In our implementation, we use the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
optimization algorithm implemented in the NumPy library. Since the analytic gradient can be
easily calculated, the optimization is computationally inexpensive and typically takes seconds on
a standard desktop computer with m = 10% and n ~ 10* — 10%. The optimization returns a set of
optimal A that are used to calculated a weight for each frame via Eq. 4. By definition, the optimal
weights improve the agreement with input experimental data. As described in the previous section,
we then scan different values of the parameter 6, and consider how the number of effective frames
neg and x2 vary as a function of this parameter.

In our RNA tetranucleotide example (Fig. 3b), a small value of 6 corresponds to a better fit
with scalar couplings (low x?), but obtained at the cost of a large drop in relative entropy and
hence only a small effective fraction of frames used. Using a large 6, instead, we approach the
x? of the prior distribution. In this case one can identify useful values of # in the range 2 — 10,
corresponding to the ‘elbow’ region in the n.g versus x2 plot.


https://doi.org/10.1101/457952
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/457952; this version posted October 31, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

a

available under aCC-BY-NC-ND 4.0 International license.

Data collection

- experimental averages and uncertainties
- back-calculate experimental data from simulation

%) (Hz)

NOE (A)

10

5.5

5.0

4.5

4.0

3.5

3.0

25

Scalar couplings

—=— experiment
——=— simulation

0 5 10 15 20 25

Index
Cross-validation
o Feeighee _%
. ;Iz+!++++**if*

seniti?

0 5 10 15 20 25
Index

Bayesian-MaxEnt ensemble refinement

b I minimization and 0-selection
- o
o o~ ~ —
Il 1 o2
[ (oo D Q
4
NOE
—— J-couplings
3 -
N>< 2 -
1 -
O -I d T T T T
0.0 0.1 0.2 0.5 1.0
Neff
d
Structural interpretation
simulation
4 reweighted
3
2
=
3
82
o
1
0
0.0 0.5 1.0 15 2.0

eRMSD from A-form

Fig. 3. Experimentally-restrained simulation of an RNA tetranucleotide. a: Experimental 3J couplings
(grey) compared to calculated averages using the original MD simulation (prior distribution, shown in red).
Error bars indicate experimental uncertainties (grey bars) or the standard error of the mean estimated
using 5 blocks (red bars; typically, smaller than the point). b: N.s versus x? plot using scalar couplings
restraints for different values of 0, and cross-validation using NOEs. ¢: Experimental NOEs (grey) compared
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10 Reweighting of conformational ensembles using experimental data

Step 3: Cross-validation When possible, it is recommended (at least initially) to split the exper-
imental data into some used in optimization and some used for cross-validation. In our example, we
monitor the behavior of the NOE data, that were not used as input for reweighting. The agreement
with NOE distances has a clear minimum around 6 = 10. Note that when § = 0.1 the x? relative to
the NOEs is high, meaning that enforcing a tight agreement with scalar couplings is detrimental.
Here, we choose 6 = 2 as it provides improved agreement with scalar couplings without a dramatic
drop in neg. Having fixed § = 2, it is possible to calculate the individual NOE averages before
(red) and after (blue) optimization (Fig. 3c).

Step 4: Structural interpretation In order to understand how the new weights affect the
original MD conformational ensemble, it is useful to calculate the distribution of various structural
parameters. As an example we show the histogram of the eRMSD [34, 35] from a reference A-form
helix of the original MD simulation (prior) and of the restrained one (Fig. 3d). The effect of the
experimental restraint is to favor the presence of structures closer to A-form, as also described in
our previous work [19].

3.3 Combining SAXS data with simulation of proteins

We now proceed to apply the BME method and software on a larger, more complex system with
less informative experimental data. In particular, we show the results for a two-domain protein
that shows substantial structural heterogeneity of the relative orientation of the two domains, and
describe how we can refine our molecular simulations by reweighting against small-angle X-ray
scattering (SAXS) data. The reweighted ensemble in turn allows us to improve our description of
the dynamical domain-domain motions. As object for our study we chose the protein sf3636 from
the bacterium Shigella flexneri 2a. Previous studies have shown that the protein consists of two
structural domains (NTD and CTD), with substantial interdomain motions as probed via different
experiments including SAXS [36], thus providing a good example for applying BME to proteins.

Because large-scale motions in proteins might be difficult to sample with conventional simula-
tions, they are attractive targets for coarse-grained (CG) simulations. Specifically, we here applied
a recently updated parameterization of the Martini CG model [37]. In line with standard recom-
mendations for studying protein dynamics with Martini, we applied harmonic restraints to keep
each of the folded domains relatively rigid [38], whereas no restraints were applied between pairs of
atoms spanning between the NTD and CTD. We performed a 4 us long simulation using MARTINI
3.0beta with the force constant for the harmonic restraint set to the default 500 kJ/(mol- nm?)
using the Gromacs software [39] and standard settings. We analysed and reweighted an ensemble
consisting of 8000 structures from the simulation by taking each 500 ps frame (Fig. 4a).

For comparison, we also performed an all-atom, explicit solvent simulation using the a99SB-
disp force field [40]. This force field has recently been parameterized to provide an accurate balance
between protein-protein and protein-water interactions, and thus should be particularly useful for
looking at transient interactions between the two domains. Specifically, we performed a 2 us long
simulation using a time step of 2 fs, a temperature of 298 K and 1 bar pressure with the velocity
rescaling thermostat [41] and Parrinello-Rahman barostat [42]. We analysed and reweighted an
ensemble consisting of 20,000 structures from this simulations by taking one frame every 100 ps in
the simulation (Fig. 4b).

We used Pepsi-SAXS [43] to calculate the SAXS data for each of the extracted structures
from the two simulations (Figs. 4c and 4d). In the case of the Martini simulation we first used
standard approaches to reconstruct all-atom models from the CG beads [44]. As Pepsi-SAXS has
several free parameters whose values may vary between proteins, we estimated these values from
the ensembles. Because optimizing the values from each conformation might lead to substantial
overfitting, we instead used an approach where we (for each ensemble) used the average value
of such-optimized Pepsi-SAXS parameters over the entire ensemble and reran Pepsi-SAXS with
these parameters fixed. We then compared the ensemble-averaged SAXS data from the atomistic
and the coarse grained ensembles with previously determined experimental values [36]. The results
show that while both simulations are in reasonably good agreement with experiments, the all-atom
simulations appear provide a better description of the structure and dynamics in sf3636 (Figs. 4c
and 4d).
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Fig. 4. SAXS refinement of coarse-grained and atomistic simulations of a flexible two-domain protein.
Left (a,c,e,g), refinement of a coarse-grained MARTINI 3.0b simulation with an elastic network force
constant of 500 kJ/(mol-nm?). Right (b,d,f,h), refinement of an atomistic simulation using the a99SB-
disp force field. (a,b) The black structure is the starting configuration, and the blurred blue illustrates the
sampled configurational space for each simulation by showing every fifth frame in the simulation aligned
to the (bottom) NTD domain. (c,d) Calculation of SAXS data from the original MD simulations and the
refined ensembles are compared to the experimental data. (e,f) Evaluating the effect of the global scaling
parameter 6 to balance the prior (force field) and the experimental data. For the atomistic simulation we
chose 8 = 30, and for the coarse grained simulation we chose § = 100. (g,h) Analysis of the effect of
reweighting against experimental data on the interdomain distance.
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12 Reweighting of conformational ensembles using experimental data

Despite the good overall agreement, both simulations show systematic discrepancies with ex-
periments, in particular at low-to-middle values of q. We thus use the BME procedure to refine the
simulations of sf3636 against the SAXS data. Here, the experimental input file and the simulation
input file with SAXS calculations for each frame in the ensemble have the following formats:

Experimental file format: Simulation SAXS file format:

# DATA=SAXS PRIOR=GAUSS # label a1 co quas

a1 I(q1) o1 frame_1 I(q)™ -+ I(qus)™®
Q2 I(q2) o2 frame_2 I(qu)S™ - I(qus)$Me
q148 I(qi48) O14s frame_n I (q1)$1ALC e I ((1148)(31ALC

We determine the x? between the calculated and experimental scattering intensities over all
scatter vector points, ¢;, in the range 0.006-0.3 A~!. Because of difficulties in estimating errors in
scattering intensities and due to correlations between neighbouring points the absolute value of
x? may be difficult to interpret for a SAXS experiment [45]. Thus, for each ensemble we analysed
theN. f-vs-x? plot to find a value of § that reflects the compromise between the prior (simulation)
and the data (Figs. 4e and 4f). From these we choose § = 30 for the all-atom simulation and 6 = 100
for the coarse grained simulation, and the resulting calculated SAXS curves are, as expected, in
much better agreement with experiment (Figs. 4c and 4d).

With the optimized weights it becomes possible to analyse other properties of the confor-
mational ensembles. As an illustration, and following the previous study of this protein [36], we
analysed the distribution of the interdomain distance, quantified as the distance between the cen-
tres of mass of the NTD and CTD. The resulting histograms show that the reweighting in general
has the effect of increasing the interdomain distances, suggesting that despite recent force field
improvements for both coarse-grained and all-atom MD simulations they might still overestimate
protein-protein interactions. Thus, the BME approach has the potential for making the resulting
ensembles more robust than those from the unbiased simulations, thereby removing some of the
uncertainty coming from the imperfect force fields.

4 Notes

— Our software, BME, is freely available on the Internet at https://github.com/sbottaro/BME
together with examples on how it can be used.

— When using biasing enhanced sampling techniques such as umbrella sampling or Metadynamics,
the weights of the prior distribution are not uniform, i.e. w? # 1/n. The BME reweighting
approach can be applied in this case by using the function set_weights() before calling the
function optimize().

— The BME software can easily be extended to include additional types of experimental data
that can be calculated as the average over the weighted contribution from each frame. Exper-
imental data that depend also on global parameters that need to be optimized are currently
not supported. Data that depend on temporal correlations (e.g. kinetic data) are also not
supported.

— It is advisable to assess the robustness of the procedure by performing several cross-validation
tests and by using blocking procedures for error estimation.
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