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Abstract

Several high profile editorials and articles have advocated replacing the ubiquitous, but not
especially informative, bar plot with dot plots or box plots which show the data or some
summary of the data distribution. I argue that the biggest deficiency of bar plots (and other
mean-and-error plots) is that they fail to directly communicate modeled effects and uncertainty,
and dot and box plots do not address this deficiency. A Harrell plot combines a forest plot
of modeled treatment effects and uncertainty, a dot plot of raw data, and a box plot of the
distribution of the raw data into a single, two-part graph. A Harrell plot encourages best
practices such as communication of the distribution of the data and a focus on effect size and
uncertainty, while discouraging poor practices such as hiding distributions and focusing on
p-values.

Introduction

Recommended best practices for the reporting of statistical results include 1) showing the raw
data and/or distribution of data in plots (Drummond and Vowler 2011; Weissgerber et al.
2015; Spitzer et al. 2014; Krzywinski and Altman 2014; Harrell 2014; Weissgerber et al. 2016)
and focusing on 2) effect size and (3) uncertainty in effect estimates instead of p-values of null
hypothesis tests (Nakagawa and Cuthill 2007; Yoccoz 1991; Johnson 1999; Curran-Everett,
Taylor, and Kafadar 1998). By contrast, standard practice throughout experimental biology
includes the reporting of ANOVA results in tables and treatment means and standard errors
of the mean in plots. At best, ANOVA tables poorly communicate effect size and uncertainty.
Effects and uncertainty can be inferred from plots of treatment means and standard errors
only indirectly.
Here, I introduce the Harrell plot, a tool to communicate statistical results from experiments,
or any analysis with categorical independent variables (“ANOVA-like” linear models, including
linear mixed models and generalized linear models). A Harrell plot combines 1) a dot plot to
show individual values, 2) either a box plot or a mean-and-CI plot to show a summary of the
distribution of the response within treatment groups, and 3) a forest plot of effect estimates
and confidence intervals to show modeled effect sizes and uncertainty. The combination
of the effects in the top part and distribution in the bottom part of a Harrell plot was
inspired by Fig. 1.1 of Harrell (2014). The Harrell plot is implemented as an online
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HarrellPlot Shiny app for users with no or limited R experience, including undergraduate
biology majors. An R package for users with some R experience can be downloaded using
install_github(“middleprofessor/harrellplot”). The R markdown file to reproduce all figures is
available as a supplement.

Effect size and uncertainty

By effect, or effect size, I mean the magnitude and direction of the difference in response to
some treatment, or some combination of treatments. If the mean critical thermal minimum
is 5.1 ◦ C in the control group of flies and 5.8 ◦ C in the treated group, then the effect
is 5.8◦C − 5.1C = +0.7◦C. The non-intercept coefficients of a linear model are effects.
Differences between conditional or marginal means from a statistical model are effects. A
confidence interval of the effect is a measure of the uncertainty in the estimate. A 95%
confidence interval of the effect has a 95% probability (in the sense of long-run frequency)
of containing the true effect. This probability is a property of the population of intervals
that could be computed using the same sampling and measuring procedure. It is not correct,
without further assumptions, to state that there is a 95% probability that the true effect lies
within the interval. However, if we have only weak prior beliefs about the possible values of
the effect, then it is valid, though possibly misleading, to state that there is an approximately
95% probability that the true effect lies in the interval (Greenland and Poole 2013; Gelman
2013). Perhaps a more useful interpretation is that the interval contains the range of effects
that are consistent with the data, in the sense that a t-test would not reject the null hypothesis
of a difference between the estimate and any value within the interval (this interpretation
does not imply anything about the true value).
While many experiments in biology are conducted with a proximate goal of discovering
or confirming that an effect exists (that is, the effect is something other than zero), the
ultimate goal of a research program should be to understand the biological (including clinical,
behavioral, ecological or evolutionary) consequences of effects (Yoccoz 1991; Curran-Everett,
Taylor, and Kafadar 1998; Nakagawa and Cuthill 2007; Batterham and Hopkins 2006). These
consequences are functions of effect magnitude and direction and, consequently, estimates
of effect size and uncertainty are tools for these ultimate goals. By contrast, the value of
hypothesis testing and p-values is limited to the more proximate goal of effect presence (and,
because frequentist hypothesis testing only provides evidence against a null, it only provides
indirect evidence for an effect). Importantly, the discovery that an effect exists requires more
than a p-value, including both replicate experiments and modified experiments that “probe
their experimental systems in multiple, independent ways” (Vaux 2012; see also Munafò and
Davey Smith 2018). Probing is standard in much of cell and molecular biology (but see Kaelin
Jr 2017). Replications are uncommon throughout most of experimental biology. It probably
cannot be emphasized enough that finding statistically significant p-values is a very low-bar in
experimental biology. All components of complex biological systems are causally connected
and perturbing any feature of a system will have some effect on everything, however small
(although true null effects may occur in experimental systems with a minimal number of
components). While p-values are a useful, if limited, tool in a researchers toolbox, Type I
errors will generally not exist in complex systems and significance testing (comparing a p-value
to a Type I error rate, the binning of results into “significant” or “non-significant”, using
asterisks to indicate “levels of significance”) should be avoided. Instead, researchers should
be concerned with sign and magnitude errors (Gelman and Carlin 2014) and with conditional
dependencies.
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Confidence intervals of effects can be (and are most often) used to infer “statistical significance”.
Statisticians have long advocated for the far more valuable use of a confidence interval as a
tool to infer the sensitivity of an interpretation or conclusion to the data (Tukey 1991). Again,
a confidence interval of an effect gives the range of parameter values that are consistent
with the data (Amrhein, Korner-Nievergelt, and Roth 2017). Consequently, as evidence for
a theory in academic biology or a decision in applied biology, the whole range of values
within a confidence interval, and not just the point estimate, should be consistent with an
interpretation or conclusion, otherwise the data are ambiguous (or “inconclusive”, but this
might suggest that the results from a single study could ever be “conclusive”).

Motivating data – Effects of increased temperature and CO2 on lar-
val sea urchin growth and metabolism

The Harrell plot was motivated by the reported results of an experiment measuring the effect
of increased temperature and CO2 on metabolic rate (among other outcomes) in the larvae of
the urchin Strongylocentrotus purpuratus (Padilla-Gamiño et al. 2013). The factorial design
included two levels of Temp (13°C and 18°C) and two levels of CO2 (400 µATM and 1100
µATM) with n = 6 replicates in each treatment combination. The motivating part of the
study was the p-value of the interaction effect, which was 0.079 and raised the question “what
is the best practice for interpreting results like this?” The data plotted in Figures 1 and 2
here are simulated to closely match the results reported in Fig. 2 of Padilla-Gamiño et al.
(2013) (the original data are not available in a public archive). Here, I’ve recoded the Temp
factor levels to “Temp-” and “Temp and the CO2 facctor levels to”CO2-" and “CO2+”.

The Harrell plot
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Figure 1: Harrell plot of the simulated urchin data
The plot has two parts. The lower part is a superimposed dot plot and box plot. The large circle for each
treatment combination is the conditional mean. The upper part shows the effects and effect uncertainty.
Here the effects are parameter estimates (coefficients) of the model and 95% confidence intervals of these
estimates. Key: Temp- = 13°C, Temp+ = 18°C, CO2- = 400 µATM, CO2+ = 1100 µATM.
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The Harrell plot addresses all three recommended practices by combining a forest plot of
treatment effects, a box plot, and a jittered dot plot, into a single plot (Figure 1). A Harrell
plot has two unconventional features (at least in the ecology, physiology, and cell biology
literature) that might confuse a reader at first glance: the plot has two “Y” or response axes,
because it is constructed by gluing together two separate plots, and the plot is flipped, so
that the response axes are horizontal. The axis labels for the upper plot, which contains the
effects, are at the top of the Harrell plot. The axis labels for the lower plot, which contains
the raw data, are at the bottom of the Harrell plot.
Modeled effects are illustrated in the upper part of the plot using a dot symbol representing
the effect estimate and horizontal bars representing the effect uncertainty. The bars for
the urchin data are 95% confidence intervals but these could be credible intervals from a
Bayesian analysis. Forest plots of effects with horizontal uncertainty intervals are common in
analyses with multiple responses, in meta-analysis, and in the epidemiology literature. The
illustrated effects can be the coefficients of the linear model or contrasts between treatment
combinations. If contrasts, these can be comparisons with a reference (such as a control) or
pairwise comparisons. In the original plot by Harrell that motivated this plot type, the scale of
the response axis was the same in the upper and lower plots, so the coordinates in the upper
part are a simple, rigid shift of the coordinates in the lower part (Harrell 2014). By contrast,
a Harrell plot allows for more flexibility of the scaling of the coordinate system in the upper
part, which is either a feature, or a bug, depending on one’s underlying philosophy.
The raw data are shown in the lower part of the plot using jittered dots, clustered by group.
The distribution of data in each group is also shown in the lower part of the plot using a box
plot. The precise tool to show the data and distributions is flexible but jittered dots and box
plot reflect the best practice for much of experimental biology. While some advocate the use
of an error bar, the box plot is more informative than an interval based on the sample standard
deviation (including the sample confidence interval). And, if we are specifically interested in
the effects, a standard error of the mean, or a 95% confidence interval of the mean, is not
the uncertainty that we want to communicate (see Effect size and uncertainty above).
In the urchin data example (Figure 1), the illustrated effects in the upper part of the Harrell
plot are the coefficients of the linear model

Resp = β0 + β1Temp
+ + β2CO2+ + β3Temp

+CO2+ + ε 1

where the dummy variables are coded using treatment (or dummy) coding, which is the default
in R but not in many other statistical software packages. Dummy coding is especially useful
for this experiment where there is an obvious control or reference level (Temp−/CO2−). In
this model, the intercept (β0) is the mean of this control group. The Temp+ coefficient (β1)
is the difference in means between the (Temp+/CO2−) group and the control group. It
is the estimated effect of the added temperature but not added CO2. Similarly, the CO2+

coefficient (β2) is the difference in means between the (Temp−/CO2+) group and the control
group. It is the estimated effect of the added CO2 but not added temperature. And finally, the
interaction coefficient (β3) is the difference between the mean of the (Temp+/CO2+) group
and the expected value of this group if the interaction effect were zero, which is b0 + b1 + b2.
It’s what’s left to be accounted after adding temperature and CO2.
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Figure 2: Four alternatives for communicating results of an experiment
(A) bar plot, (B) interaction plot, (C) dot plot, (D) box plot. In all four plot types, the treatment effects
are inferred by mentally computing the distance between treatment means (or median in case of the box
plot). The interaction effect is inferred in (C) by comparing obliqueness of the lines. The uncertainty in
treatment effects and especially the interaction effect cannot be inferred from any of the plots A-D.

Harrell plots vs. common alternatives

Figures 2 A and B illustrate two kinds of mean-and-error plot. The mean response of a
group is represented either by the height of the bar (A) or a point symbol (B). The error
bar most commonly represents one standard error of the mean (shown here); a confidence
interval is less common. Occasionally, the error bar represents one sample standard deviation.
Bar-and-error plots are ubiquitous throughout biology. Point-and-error plots like that in (B) are
more common in ecology and animal physiology than in cell biology and are sometimes called
“interaction plots” because the magnitude of the interaction is inferred by the obliqueness
of the lines connecting means. Perhaps because of the ubiquity of bar plots in cell biology
(including the pages of Science, Nature, and Cell), most criticism of mean-and-error plots
focusses on bar plots, which are pejoratively called “dynamite”, “plunger”, or “antenna” plots.
Three, related criticisms of mean-and-error plots are (Drummond and Vowler 2011; Weissgerber
et al. 2015; Rousselet, Foxe, and Bolam 2016), first, they do not show the data, which is
important because multiple distributions can produce the same mean and error. Second,
mean-and-error plots typically fail to reflect the analyzed model. For example, almost all
mean-and-SE plots illustrate standard errors computed independently in each group instead of
pooled standard errors resulting from the model. Or, for clustered data (repeated measures,
blocked designs) mean-and-error plots give no indication of this lack of independence. And,
third, error bars based on the sample standard deviation or standard error of the mean are
not easily interpretable, and suggest a false interpretation, if the underlying data are not
approximately normal.
Figures 2 C and D illustrate two recommended alternatives to the plots in (A) and (B). (C)
is a jittered dot plot (or strip chart) of the raw values within each treatment combination
and the treatment means and standard errors. A jittered dot plot is recommended when
the treatment combinations have small replicate size, because it “shows the data”. (D) is a
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box plot, a venerable method developed for exploratory data analysis. A box plot is often
recommended when replicate size is large because it summarizes the distribution, including
unusual values (or even all values if the raw data are superimposed). Box plots and especially
jittered dot plots are becoming increasingly common in cell biology, probably in direct response
to the criticisms of bar plots.
The criticisms of mean-and-error plots and even these two solutions do not address the
elephant in the room – all four plot types only indirectly communicate what we often want
to directly communicate: the effects of the experimental treatments and the uncertainty in
these effects. In any of these alternative plots, effects have to be mentally reconstructed by
qualitatively comparing the difference in the response between two groups. This is relatively
easy (at least at a course level of precision) if there are few groups and if the differences are
large relative to the scale of the response axis. In bar plots especially, differences can often be
very small relative to the height of the bar and figure. Regardless, effect uncertainty is much
harder to mentally reconstruct, because the proper interval is a function of a standard error
that is itself a function of the distribution of error variance in multiple groups. Because the
approximate end-points of a confidence interval of a difference is time-consuming to mentally
construct, mean-and-error plots encourage focus on the presence/absence of an effect (and
it’s direction) instead of the magnitude of the effect, including the magnitude of the ends of
the confidence interval.

How Harrell plots improve inference

Interaction effects
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Figure 3: A tale of two plots
The Harrell plot in (A) is the original, simulated data, with interaction p = 0.077. The data in the Harrell
plot in (B) is a slight modification of that in (A), with the consequence that the interaction p = 0.037.

The difficulty with reconstructing effects from the four plot types is magnified when considering
an interaction effect. A common practice throughout biology (encouraged by textbooks and
especially the applied literature) is to use the p-value of an interaction term in an ANOVA
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table in a decision rule to choose one of two conclusions: 1) the interaction p is significant
and main effects are not interpreted but, perhaps, conditional (simple) effects are, or 2) the
interaction p is not significant (and often mistakenly reported as “no effect”) and the main
effects are interpreted from the same table. Occasionally (and more common in ecology), the
non-significant interaction p-value is the signal to refit the model without the interaction term
before interpreting the main effects.
Any of the four alternative plots (bar, interaction, dot, box) encourage this dichotomization
strategy because none directly communicates the interaction effect and its uncertainty. By
contrast, a Harrell plot encourages best practices. The 95% CI of the interaction effect of
the urchin data includes large negative values at one end but only trivially small positive
values at the opposite end. These data, then, are not consistent with a moderate or large
positive interaction, but are consistent with large negative values. Indeed, the maximum
likelihood estimate of the interaction effect is moderately large – over 1/2 the magnitude of
the estimated Temp effect. Given the results presented in the Harrell plot, it just doesn’t
seem very sound to follow the p-value decision rule outlined above and conclude that there is
“no interaction effect” and that temperature and CO2 act additively on urchin metabolism.
This lack of soundness is highlighted by comparing the Harrell plot in Figure 3B to that in
Figure 3A. The data used for Figure 3B are the original, simulated data with the residual
standard deviation contracted from 1.55 to 1.4 pmol/hr/larva (10%) and interaction effect
increased from -2.6 to -2.8 (7.7%). The consequence of this shift is the interaction p = 0.037
and the CI of the interaction effect not covering zero. If we used the interaction p decision
rule, these two results would be interpreted quite differently! But if we were to use the Harrell
plots, we would interpret these the same: the interaction effect is moderately negative and
both large, negative values and very small values are consistent with the data. In other words,
if we had an a priori model that predicted no interaction (or a strong interaction), then the
results are too ambiguous. While the best estimate is a moderately large, negative interaction,
a trivially small interaction is consistent with the data.

Harrell plots encourage focusing on effect magnitude and uncer-
tainty instead of levels of effects

The epidemic of p-values that invariably results from reporting ANOVA tables has spread to
plots, where asterisks indicating “levels of significance” and letters classifying groups into
statistically different bins are now common. Figure 4A is a bar plot with 1 SE bar for the
results of a Drosophila wind-tunnel selection experiment. The unpublished data are the
maximum burst speed of Drosophila melanogaster individuals from two lines (AA) that have
undergone selection in a compartmentalized wind tunnel and two control lines (CN) (Marden,
Wolf, and Weber 1997). Maximum burst speed was measured on individual flies that were
stimulated to take-off and fly against a wind of known speed in a wind tunnel. The asterisks,
which “levels” of significance for tests of specific contrasts, draw the researcher and reader
into comparing means using the heights of the bars. The asterisks are helpful for this because
the standard error bars are not especially helpful given the computations necessary to go from
the illustrated standard error of means to the relevant standard error of differences. But the
asterisks encourage the researcher/reader into focussing on p-values of inferential tests. Even
more egregiously, the asterisks encourage the researcher/reader to misinterpret the number of
asterisks as an effect size.
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Figure 4: Levels of significance vs effects and uncertainty
(A) Bar plot of fly data. Error bars are 1 SEM. Asterisks indicate level of significance of inference test. (B)
Harrell plot of fly linear model results. Conditional (simple) effects are shown in the upper part. Bars are
95% confidence intervals. The effects in the upper part are contrasts and the – in the labels is a minus sign
and not a hyphen. Key: control lines (CN), selected lines (AA), male (M), female (F).

A Harrell plot (figure 4B), by contrast, nudges researchers/readers to focus on modeled effect
size and uncertainty instead of classification of results into “significant” and “non-significant”
bins (or “highly significant” bins). Here, I’ve scaled the contrasts as percent differences
(100 (ȲB−ȲA)

ȲA
), because I haven’t given much thought to the biological consequences of a 50

cm/s increase in burst speed. Thinking about effect size as a percent difference has several
downsides, including, 1) while effect size scaled as percents give us some sense of importance,
percents discourage the hard work of understanding the biological consequences of absolute
effect size, and 2) the standard error of the effect scaled as a percent is not simply 100 SE

ȲA
(and

is larger than this value). One can use the 95% confidence limits to mentally bin comparisons
into significant and non-significant bins, but the plot itself does not encourage it. Instead, the
plot encourages a researcher/reader to consider how the range of values in a CI support, or
fail to support, different interpretations of the results. For example, the effects of the long
term selection experiment is much larger than the effects of sex on burst speed. And, a model
of males having smaller burst speed relative to females in both wind-tunnel selected (AA) and
control (CN) flies is consistant with the data.

Harrell plots show modeled effects

In Figure 5, I have redrawn figure 3 from Kardol, Spitzer, et al. (2016b), which shows
treatment means and standard errors for moss biomass in response to different combinations
of community complexity and precipitation. The original data are available from the Dryad
Digital Repository (Kardol, Spitzer, et al. 2016a). Different letters classify the treatment
levels into statistically distinct bins using significant p-values for tests of marginal means. In
general, the magnitude and uncertainty in contrasts of marginal means (or “main” effects)
in factorial designs are difficult to infer from any kind of mean-and-error plots of cell means,
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Figure 5: Bar plot of moss data
Error bars are 1 SEM. Letters indicate statistically significant tests of marginal means pooled over levels of
other factor
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Figure 6: Harrell plot of moss linear model results
The effects in the upper part are differences between marginal means. The treatment means in the lower
part are conditional on additive effects only. Error bars of marginal effects and modeled means are 95%
confidence intervals

such as Figure 5 or any of those in Figure 2, because this requires mentally averaging over
multiple levels. Or at least the ease of this decreases rapidly with number of treatment levels
and heterogeneity of conditional effects.
By contrast, a Harrell plot of the data and linear model (figure 6 directly shows the modeled
differences among marginal means with a measure of the uncertainty of these estimates
(95% confidence intervals). Certainly, one can use the 95% confidence limits to mentally
classify comparisons into significant and non-significant bins, but the plot itself does not
encourage it. Instead, the plot encourages a researcher/reader to consider how the range
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of values in a CI support, or fail to support, different interpretations of the results. For
example, trivial to moderate (50%) reductions in biomass as rain decreases is consistent with
the Moderate− Frequent contrast CI, but trivial to moderate increases in biomass as rain
decreases are not consistent with the CI. Means with standard errors supplemented with letters
or asterisks do not convey this information.
One needs only the upper, forest-plot component of the Harrell Plot to communicate treatment
effects and their uncertainty but the lower, treatment summary plot also communicates
important information. In figure 6, the illustrated means and confidence intervals are are
conditioned only on the additive effects, which is why the lines connecting the means are
parallel. The magnitudes of the cell or modeled means are often meaningful to knowledgeable
readers (for example, I know the range of fast start acceleration in fish so if I see plots
with data outside of this range, this will immediately raise a red flag about the analysis).
Sometimes, the treatment means are directly relevant for interpretation or decision making.
Other times, the dots or box plots simply give us a since of what the data are. Here, for
example, the dot/box plot indicates that the response (moss biomass gain) can take negative
values while the bar plot in Figure 5 fails to indicate this. Given only the bar plot, a reader
might mistakenly infer that the response is a count, or some other variable that can only take
positive values.

Conclusion: Harrell plots show the model

A spate of articles, editorials, and blog posts have criticized bar plots because they fail to
show the underlying data and have advocated replacing bar plots with dot plots or box plots.
What all these plots fail to show is the modeled effects and uncertainty, which is the most
important result of an experiment. A Harrell plot shows not only “the data” but also “the
model”, or at least the model results. A Harrell plot encourages best practices by nudging
researchers and readers to focus on effect size and to interpret the whole confidence interval
and not just assessing if the interval includes or excludes zero (or some non-nill null). While
a Harrell plot can lead a researcher to good science, it can’t make them think. For that,
researchers will need to do the hard work of working out the ecological, physiological, and
health consequences of effect size.
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