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Abstract:  12 

A better understanding of how antibiotic exposure impacts the evolution of resistance is crucial for 13 

designing more sustainable treatment strategies. The conventional approach to relating antibiotic 14 

dose to resistance evolution within a bacterial population is to measure the range of concentrations 15 

over which resistant strain(s) are selectively favoured over a sensitive strain – the “mutant selection 16 

window”. Here, we instead investigate how antibiotic concentration impacts the initial 17 

establishment of resistance from single cells, mimicking the clonal expansion of a resistant lineage 18 

following mutation or horizontal gene transfer. Using two Pseudomonas aeruginosa strains carrying 19 

distinct resistance plasmids, we show that single resistant cells have <5% probability of outgrowth at 20 

antibiotic concentrations as low as 1/8th of the resistant strain’s minimum inhibitory concentration. 21 

This low probability of establishment is due to detrimental effects of antibiotics on resistant cells, 22 

coupled with the inherently stochastic nature of cell division and death on the single-cell level, which 23 

leads to loss of many nascent resistant lineages. Our findings suggest that moderate doses of 24 

antibiotics, within the traditional mutant selection window, may be more effective at preventing de 25 

novo emergence of resistance than predicted by deterministic approaches. 26 

 27 

Keywords: antimicrobial resistance, Pseudomonas aeruginosa, minimum inhibitory concentration 28 

(MIC), inoculum effect, mathematical model, extinction probability, demographic stochasticity, 29 

evolutionary rescue 30 

 31 

Significance statement: 32 

The emergence of antibiotic resistance poses a critical threat to the efficacy of antibiotic treatments. 33 

A resistant bacterial population must originally arise from a single cell that mutates or acquires a 34 

resistance gene. This single cell may, by chance, fail to successfully reproduce before it dies, leading 35 

to loss of the nascent resistant lineage. Here we show that antibiotic concentrations that selectively 36 

favour resistance are nonetheless sufficient to reduce the chance of outgrowth from a single cell to a 37 

very low probability. Our findings suggest that lower antibiotic concentrations than previously 38 

thought may be sufficient to prevent, with high probability, emergence of resistance from single 39 

cells.  40 
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Introduction 41 

 42 

Antibiotics have had a huge impact on human health by reducing the burden associated with 43 

bacterial infections, and the use of antibiotics now underpins many areas of medicine. 44 

Unfortunately, antibiotic treatment is also associated with the evolution of resistance [1], resulting 45 

in poorer patient outcomes [2]. A better understanding of how antibiotic dosing affects resistance 46 

evolution could aid the design of more effective treatment strategies that suppress pathogenic 47 

bacteria without driving the emergence of resistance.  48 

 49 

To date, in vitro work addressing how antibiotics affect evolution of resistance has focused on 50 

identifying the range of antibiotic concentrations at which resistant mutants are selectively favoured 51 

by antibiotic treatment, known as the “mutant selection window” (MSW) [3, 4, 5, 6]. Here we will 52 

refer to any strain with reduced susceptibility relative to a wild-type (“sensitive”) strain simply as 53 

“resistant”, as is common in evolutionary microbiology literature (e.g. [7, 8, 9]), as opposed to 54 

defining resistance with respect to clinical breakpoints. Originally, the lower boundary of the MSW 55 

was approximated by the minimum inhibitory concentration of the sensitive strain (MICS) [3, 4, 5, 6], 56 

i.e. the lowest antibiotic concentration that abolishes its growth in a standardized assay (such as 57 

[10]). However, more recent work has emphasized that a resistant strain can be selectively favoured 58 

down to a minimal selective concentration (MSC) that is often well below MICS [11, 12, 13, 7, 8]. The 59 

upper boundary of the MSW is conventionally defined by the lowest antibiotic concentration that 60 

prevents growth of all mutant subpopulations [3, 4]. This upper bound is often equated with the 61 

minimum inhibitory concentration of the most resistant single-point mutant [5] or of a specific 62 

resistant strain under study [13, 8], which we denote MICR. The MSW therefore ranges between 63 

antibiotic concentrations that are so low that they are unlikely to have any clinical benefit (below 64 

MICS) and very high concentrations (up to MICR) that may be difficult to achieve in practice because 65 

of physiological constraints on the accumulation of antibiotics in tissues (pharmacokinetics) and 66 

toxic side-effects of antibiotics [14, 15].  67 

 68 

Selection operates efficiently when both sensitive and resistant populations are large, resulting in an 69 

increase in frequency of the fitter strain in an antibiotic dose-dependent manner. Correspondingly, 70 

the mutant selection window is typically measured by direct competition between large numbers of 71 

cells (typically >104 colony-forming units, CFU) of both resistant and sensitive strains across a 72 

gradient of antibiotic concentrations (e.g. [13]). This provides a powerful approach to measure the 73 

impact of antibiotic dose on selection for established resistant strains, i.e. those that are already 74 
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reasonably prevalent. However, de novo emergence of resistant strains, when not initially present, 75 

should be subject to stochastic processes [16] that are not reflected by the MSW, nor captured by 76 

this experimental design. First, resistance must stochastically arise in a sensitive cell by mutation, or 77 

by acquisition of a resistance gene through horizontal gene transfer. Next, the single resistant cell 78 

thus generated must survive and successfully divide to produce daughter cells that likewise survive, 79 

and so on to generate a large number of resistant descendant cells. The latter process, which we will 80 

refer to throughout as “establishment” of resistance [16], will be our focus here. Importantly, due to 81 

the stochastic nature of cell divisions and deaths on the individual level, establishment is not 82 

guaranteed, even under conditions in which the resistant strain is selectively favoured [17]. 83 

Moreover, if antibiotics even partially inhibit the resistant strain below its MICR, the chance that a 84 

resistant cell dies or fails to divide, and thus the risk that a resistant lineage is stochastically lost, 85 

should increase in the presence of antibiotics at concentrations within the MSW. Despite the 86 

substantial body of work addressing the selection of resistance, very little work has addressed the 87 

stochastic establishment phase (see however [18, 19, 20]). 88 

 89 

We set out to quantify stochastic establishment using in vitro experiments with Pseudomonas 90 

aeruginosa, an important opportunistic pathogen that evolves resistance at an exceptionally high 91 

rate during infections [1, 21]. To isolate the establishment phase, we inoculated hundreds of 92 

cultures, each with a very small number of resistant cells (on average, approx. 1-3), and assessed 93 

culture growth. We tested two strains carrying non-conjugative plasmids (Rms149 and PAMBL2) that 94 

confer resistance to streptomycin and meropenem, respectively, across a gradient of the 95 

corresponding antibiotic concentrations within the MSW. By fitting mathematical models to these 96 

data, we estimated the probability of establishment, i.e. of detectable culture growth due to clonal 97 

expansion from a single resistant cell, as a function of antibiotic concentration. Our key finding is 98 

that the establishment probability of resistant cells drastically declines at concentrations well below 99 

the MIC of the resistant strain, reaching ≲5% at 1/8th of MICR in both systems. These concentrations 100 

lie well above the corresponding MIC values of the sensitive strain and within the conventional 101 

mutant selection window. Our results highlight that antibiotic selection pressure is not a sufficient 102 

condition for de novo emergence of resistance starting from single cells. Accounting for the 103 

demographic stochasticity inherent to the outgrowth of mutant lineages substantially narrows the 104 

window of concentrations at which resistant mutants are likely to establish, suggesting that 105 

moderate antibiotic dosing may be an effective strategy to prevent the emergence of resistance.  106 

 107 

 108 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2019. ; https://doi.org/10.1101/458547doi: bioRxiv preprint 

https://doi.org/10.1101/458547


Stochastic bacterial population dynamics 5 

Results 109 

 110 

Establishment of resistance is inhibited by sub-MICR antibiotic concentrations 111 

 112 

To elucidate the direct impact of antibiotics on resistant cells, we first investigated establishment of 113 

a resistant strain in the absence of a sensitive strain. We first focused on the streptomycin-resistant 114 

PA01:Rms149 strain. To estimate its probability of establishment, defined as outgrowth of a 115 

detectable (i.e. large) population from a single cell, we conducted large-scale “seeding” experiments 116 

(see also [20]). In this assay (Fig. 1), a highly diluted overnight culture of the resistant strain is 117 

inoculated into fresh media in a large number of replicate cultures. The high dilution factors yield 118 

average inoculum sizes of <1 to ~3 cells per culture. Importantly, however, the actual number of 119 

cells inoculated into each replicate culture is random, and can be described by a Poisson distribution 120 

(SI Appendix, Fig. S1). One implication of this protocol is that many cultures are not inoculated with 121 

any cells, while others receive more than one cell; our modelling approach will account for this 122 

variation statistically. We inoculated parallel replicate cultures in streptomycin-free media and at a 123 

range of streptomycin concentrations below the MIC of the resistant strain, denoted MICR, as 124 

measured using standard protocols [10] (SI Appendix, Table S1). We then scored the number of 125 

replicate cultures showing growth based on reaching a threshold optical density (OD) of 0.1 within 3 126 

days post-inoculation. 127 

 128 

A culture could fail to grow either because the inoculum did not contain any cells, or because every 129 

cell in the inoculum failed to give rise to a surviving lineage. To infer the probability that a single cell 130 

yields detectable population growth (i.e. the per-cell establishment probability), we fit a 131 

mathematical model, accounting for both the random inoculum size and demographic stochasticity, 132 

to the observed number of replicate cultures showing growth (Materials and Methods). All 133 

probabilities are normalized by the result in streptomycin-free media, which corresponds to scaling 134 

inoculum size by the mean number of cells that establish in benign conditions (which we call the 135 

“effective” inoculum size). Thus, relative establishment probability 𝑝#$  equals one by definition in 136 

streptomycin-free conditions, while we expect 𝑝#$ ≤ 1 with streptomycin treatment; however, 137 

values larger than one can arise due to sampling error.  138 

 139 

Our seeding experiments revealed that the probability of establishment of a single resistant cell 140 

declines with increasing streptomycin concentration (Fig. 2 and SI Appendix, Table S2). While 141 

exposure to the lowest tested concentrations of streptomycin (up to 1/32 x MICR) had no detectable 142 
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impact on establishment, 1/16 x MICR was already sufficient for significant declines, to 𝑝#$  of 55-73% 143 

(maximum likelihood estimates in two independent experiments). At 1/8 x MICR, 𝑝#$  dropped to just 144 

3-5%. These results suggest that a de novo resistant mutant would only rarely establish at antibiotic 145 

concentrations that are well below its MICR, i.e. within the MSW. 146 

 147 

 148 

MIC depends on inoculum size 149 

 150 

The frequent failure of the resistant strain to grow in our seeding experiments at concentrations well 151 

below its MIC is, at face value, surprising. We hypothesized that these results could be explained by 152 

the difference in inoculum size between these assays. Specifically, standard MIC values are assessed 153 

from an inoculation density of 5x105 CFU/mL [10], which corresponds to an inoculum size of 105 CFU 154 

per 200µl culture on our microtitre plates. In contrast, our seeding experiments used an inoculum 155 

size on the order of 1 CFU per culture. MIC for many antibiotics has been observed to increase with 156 

higher-than-standard inoculation densities (CFU/ml) [22, 23, 24] which corresponds to higher 157 

absolute inoculum size (CFU) for a fixed culture volume. Although less well-explored, it has also 158 

occasionally been noted that MIC can decrease when lower absolute inoculum sizes are used [25, 159 

26]. 160 

 161 

To test the hypothesis that inoculum size influences MIC in the present system, we conducted a 162 

modified MIC assay using the PA01:Rms149 strain with inoculum sizes ranging over three orders of 163 

magnitude, from approximately 102 to 105 CFU per culture (corresponding to inoculation densities of 164 

5x102 up to the standard 5x105 CFU/ml). We found that MIC indeed increases with inoculum size 165 

(Fig. 3a). This pattern arises regardless of whether growth is scored at 20h, as per the standard MIC 166 

assay protocol [10], or up to 3d post-inoculation, as in our seeding experiments, although the 167 

number of cultures showing detectable growth, and thus the measured MIC, tends to increase over 168 

time (SI Appendix, Fig. S2). 169 

 170 

Since all cultures contained the same volume in the above experiment, this pattern could be due to 171 

changes either in absolute inoculum size (i.e. CFU) or in inoculation density (i.e. CFU per unit 172 

volume). These two possibilities are not typically distinguished in the literature; however, they lead 173 

to distinct interpretations. If demographic stochasticity is the dominant force, we expect absolute 174 

numbers to matter, whereas if interactions among cells (e.g. competition or cooperation) affect 175 

establishment, cell density per unit volume could be more important. To disentangle these two 176 
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factors, we repeated the MIC assay co-varying inoculation density and culture volume. This 177 

experiment confirmed that absolute inoculum size has a strong effect on MIC. In contrast, 178 

inoculation density per unit volume does not have a significant effect within the range that we 179 

tested, after controlling for absolute cell numbers (SI Appendix, Fig. S3). 180 

 181 

 182 

Population growth can be explained by an independent chance of each cell to establish 183 

 184 

Taken together, our seeding experiments and MIC assays reveal that the absolute number of cells in 185 

the inoculum has a strong effect on whether the culture eventually shows detectable growth. The 186 

simplest explanation for this result is that population growth can be attributed to the stochastic 187 

outgrowth of one or more lineages, each initiated by a single cell in the inoculum, acting 188 

independently. This independence assumption yields a “null model” that mathematically describes 189 

the effect of inoculum size on the probability of outgrowth of a detectable population (Materials 190 

and Methods, Eqn. 1). Here the probability of establishment of each cell in the inoculum (𝑝#$) is a 191 

scaling parameter, which does not depend on inoculum size. Note that this null model would not 192 

hold if interactions among cells substantially influenced their chances of successful replication. For 193 

example, if cells secrete an enzyme that breaks down an antibiotic extracellularly, then the 194 

establishment probability of each cell could increase with inoculum size. On the other hand, if cells 195 

compete for limiting resources or secrete toxins, the per-cell establishment probability could 196 

decrease with inoculum size. 197 

 198 

To formally test the null model, we again conducted seeding experiments with the PA01:Rms149 199 

strain, but now using many different inoculum sizes, spanning approximately three orders of 200 

magnitude. We tested two streptomycin concentrations (1/16 and 1/8 x MICR) for which growth 201 

often failed from a single cell, but succeeded from standard inoculum size in MIC assays. In parallel, 202 

we tested growth in streptomycin-free media in order to estimate the effective mean inoculum size 203 

(SI Appendix, Fig. S4). This left one free parameter, the per-cell relative establishment probability 204 

(𝑝#$), to fit at each streptomycin concentration. 205 

 206 

We found good agreement between the null model and our experimental data at all tested 207 

streptomycin concentrations, consistent with the hypothesis that cells establish independently 208 

(main experiment, Fig. 3b, and repeat experiments, SI Appendix, Fig. S5). More precisely, the null 209 

model did not show significant deviance from the observed proportion of populations that grew 210 
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(according to the likelihood ratio test), and thus we accept it as a parsimonious explanation for the 211 

data. Furthermore, we obtain estimates of relative establishment probability, 𝑝#$, at 1/16 and 1/8 x 212 

MICR similar to those from the previous seeding experiments (SI Appendix, Table S2). 213 

 214 

To summarize, the probability of culture growth at any given streptomycin concentration depends 215 

on inoculum size, according to a simple quantitative relationship. Our experimental data are 216 

consistent with a simple model of cells behaving independently, such that a fixed per-cell 217 

establishment probability can explain our growth data across inoculum sizes.  That is, cells are not 218 

“more susceptible” to streptomycin at lower inoculum sizes, but rather, culture growth is less likely 219 

to be observed simply because fewer cells are available to establish, and not all cells succeed. In 220 

turn, the minimal concentration of streptomycin required to prevent growth in some proportion of 221 

replicate cultures (i.e. the observed MIC) increases with inoculum size. 222 

 223 

 224 

Sub-MICR streptomycin concentrations induce resistant cell death and extend lag phase 225 

 226 

We hypothesized that resistant cells sometimes failed to establish in our seeding experiments 227 

because exposure to streptomycin compromised cell division rate and/or viability.  As a simple test 228 

of this idea, we measured the relative abundance of dead cells in cultures of the resistant strain 229 

grown at sub-MICR concentrations of streptomycin. We found that the fraction of dead cells after 7h 230 

of treatment, as determined by propidium iodide staining, increased from an average of 3-4% in 231 

streptomycin-free conditions to >20% at 1/8 x MICR streptomycin (Fig. 4a and SI Appendix, Fig. S6 232 

and Table S3). Note that this is a conservative measure of cell death, because this assay only detects 233 

cells that have compromised membrane permeability, and not, for example, cells that have already 234 

lysed. Furthermore, this assay provides only a snapshot in time. 235 

 236 

To gain further insight into how sub-MICR streptomycin impacts the population dynamics of the 237 

resistant strain, we quantified viable cell density over the first few hours after inoculation into 238 

streptomycin-containing media. Cultures were inoculated with approximately 100 cells in this 239 

experiment, to ensure that cell numbers were low enough for demographic stochasticity to be 240 

relevant, yet large enough to be detectable using conventional plating methods. 241 

 242 

We found that streptomycin treatment has a significant effect on the growth of resistant cultures 243 

(ANOVA, main effect: p < 2e-16), and this effect varies over time (ANOVA, interaction term: p < 2e-244 
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16; Fig. 4b and SI Appendix, Fig. S7). Following inoculation, cultures exhibited a lag phase of 245 

approximately 2 hours. Control cultures in streptomycin-free media then began to grow 246 

exponentially. The lowest tested concentration of streptomycin (1/32 x MICR) had no significant 247 

effect on these dynamics (Dunnett’s test: p=0.87); however, 1/16 x MICR was already sufficient to 248 

slow growth (p=4e-4). Nonetheless, all replicate cultures (n=48 per concentration) eventually grew, 249 

as detected by OD. Meanwhile, higher doses of streptomycin (1/8 x or 1/4 x MICR) had dramatic 250 

effects on growth dynamics (p < 1e-4), with cultures exhibiting an extended lag phase of at least 7-8 251 

hours, in which viable cell density initially declined. After further incubation (up to 3 days), 25% of 252 

cultures (15/60) exposed to 1/8 x MICR eventually showed growth, while the remaining 75% (45/60) 253 

failed to reach detectable OD. At 1/4 x MICR, no viable cells were detected in most cultures from 4h 254 

on, and only 1/60 cultures reached detectable OD within 3 days. 255 

 256 

In summary, sub-MICR streptomycin treatment has the effect of extending the lag phase, before 257 

cultures eventually either grow to saturation or die out. Failure to grow can be explained by 258 

significantly elevated cell death rates beginning at 1/16 x MICR, which can lead to stochastic loss of 259 

initially small populations. 260 

 261 

 262 

Stochastic establishment is recapitulated for a clinically relevant antibiotic and resistance plasmid 263 

 264 

If the frequent failure of resistant cells to establish surviving populations at antibiotic doses well 265 

below their MIC is a general phenomenon, it would have important implications for understanding 266 

the emergence of resistance during antibiotic treatment. To confirm that our result was not driven 267 

by the specific choice of antibiotic or resistance mechanism, we repeated the key seeding 268 

experiment using a P. aeruginosa PA01 strain carrying a recently isolated multi-drug resistance 269 

plasmid, PAMBL2 [27, 28], that confers resistance to meropenem through the blavim-1 270 

carbapenemase. Carbapenems are an important treatment option for serious infections caused by 271 

gram-negative bacterial pathogens, and resistance is of current clinical concern [29, 30]; 272 

carbapenem-resistant P. aeruginosa has been identified as a “critical priority” for new antibiotic 273 

development by the WHO [31]. In agreement with our previous findings, the establishment 274 

probability of PA01:PAMBL2 cells declined at concentrations of meropenem well below this strain’s 275 

MICR (SI Appendix, Table S1), reaching ~5% at 1/8 x MICR, while no establishment was observed at 276 

1/4 x MICR (Fig. 5 and SI Appendix, Table S4). This result highlights that the stochastic loss of 277 

resistant cells is not unique to our primary model system of PA01:Rms149 in streptomycin. 278 
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 279 

 280 

The sensitive population modulates probability of establishment of resistant cells 281 

 282 

So far, we focused on the direct effects of antibiotics on resistant cells by conducting experiments 283 

with monocultures of resistant strains. However, de novo resistance will actually arise within a 284 

sensitive population, by mutation or transfer of a mobile genetic element into a sensitive cell. 285 

Moreover, antibiotic treatment will only begin in clinical settings once the total pathogen population 286 

is large enough to cause symptoms. We therefore asked whether the presence of a large sensitive 287 

population affects the establishment of initially rare resistant cells during antibiotic treatment, 288 

returning to the interaction between PA01 (sensitive) and PA01:Rms149 (streptomycin-resistant) as 289 

a model system.  290 

 291 

We expect the sensitive population and the antibiotic to have interacting effects on establishment of 292 

resistance. In particular, at sufficiently low antibiotic concentrations, a sensitive strain is generally 293 

expected to outcompete a resistant strain due to the fitness cost associated with resistance [13, 7, 294 

8]. We confirmed this expectation in our experimental system using a standard competition assay, 295 

where both strains start from reasonably large inoculum sizes (SI Appendix, Fig. S8-S10 and Table 296 

S5). We found that the sensitive strain is favoured up to a minimum selective concentration (MSC) 297 

between 1-2 µg/ml streptomycin (equivalent to 1/32 – 1/16 x MICS, or 1/2048 – 1/1024 x MICR), in 298 

agreement with previous results for these strains [32]. We hypothesized that competition from the 299 

sensitive strain would prevent establishment of resistance at streptomycin concentrations below the 300 

MSC. 301 

 302 

As a simple test of this idea, we modified the seeding experiment to inoculate very few resistant 303 

cells into a large sensitive population. Since bacterial densities in clinical infections can vary widely 304 

[9, 33], we inoculated the sensitive strain at two different densities: approximately 5 x 105 CFU/ml 305 

(as in a standard MIC assay; labelled “low”) and 5 x 107 CFU/ml (labelled “high”). The resistant strain 306 

was seeded, with mean inoculum size on the order of one cell per culture, immediately thereafter. 307 

 308 

As hypothesized, we found that the presence of the sensitive population (at either density) 309 

abolished establishment of resistant cells in the absence of streptomycin (Fig. 6 and SI Appendix, 310 

Fig. S11 and Table S6). Meanwhile, at streptomycin concentrations above the MSC (1/256 to 1/8 x 311 

MICR, or 1/4 to 8 x MICS), adding the sensitive population at low density had a negligible effect on 312 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 13, 2019. ; https://doi.org/10.1101/458547doi: bioRxiv preprint 

https://doi.org/10.1101/458547


Stochastic bacterial population dynamics 11 

the probability of establishment of resistant cells. At high density, the sensitive population also had 313 

negligible effects on establishment of resistance at streptomycin concentrations up to 1/16 x MICR (4 314 

x MICS). However, at 1/8 x MICR (8 x MICS), the presence of a high-density sensitive population 315 

increased the establishment probability from near zero to 65%. To confirm and further probe the 316 

extent of this apparent protective effect, we repeated the experiment over a higher range of 317 

streptomycin concentrations. The boost in establishment probability was repeatable and highly 318 

significant at 1/8 x MICR (Wilcoxon rank-sum test, high- vs. zero or low-density sensitive: p < 5e-8 in 319 

both experiments). However, at 1/4 x MICR (16 x MICS), an apparent slight boost in establishment 320 

probability was non-significant, and by 1/2 x MICR (32 x MICS) the effect was abolished. Thus, a 321 

sufficiently dense sensitive population can extend the range of streptomycin concentrations at 322 

which the resistant strain is likely to emerge, but does not change the qualitative pattern of 323 

stochastic establishment.  324 

 325 

 326 

Discussion 327 

 328 

In order for resistance to emerge de novo, not only must a resistance gene arise in a bacterial 329 

population by mutation or horizontal gene transfer; this first resistant cell must also successfully 330 

expand to form a large population. Since any individual cell may fail to replicate, particularly in 331 

challenging environmental conditions, the expansion of newly arisen resistant strains is not 332 

guaranteed. Our key finding is that demographic stochasticity imposes a significant barrier to the 333 

emergence of resistance in the presence of antibiotics at concentrations within the mutant selection 334 

window. 335 

 336 

We empirically demonstrated the importance of stochasticity with a simple “seeding experiment” 337 

mimicking the growth of clonal resistant lineages founded by a single cell. First, to assess the direct 338 

impact of antibiotics, we inoculated fresh antibiotic-containing media with approximately one 339 

resistant cell per replicate culture and quantified the per-cell probability of establishing a detectable 340 

population. Strikingly, this establishment probability dropped off at concentrations well below the 341 

MIC of the corresponding resistant strain (MICR). For example, the establishment probability of 342 

PA01:Rms149 was significantly reduced by streptomycin concentrations as low as 1/16 x MICR, and 343 

dropped to <5% at 1/8 x MICR (Fig. 2). Resistant cells failed to establish viable populations because of 344 

the toxic effects of exposure to sub-MICR concentrations of antibiotics (Fig. 4) coupled with the 345 

inherently stochastic nature of individual cell death and division. Importantly, we were able to 346 
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replicate our key finding of frequent stochastic loss using a different, meropenem-resistant strain 347 

(PA01:PAMBL2; Fig. 5). This demonstrated that our results are not limited to a particular model 348 

system, but are also relevant to bacterial pathogens of clinical concern: carbapenem-resistant P. 349 

aeruginosa is considered by the WHO to be of “critical priority” for antibiotic development [31].  350 

 351 

In clinical settings, antibiotic treatment will typically begin only when the total bacterial population is 352 

large enough to cause symptoms. Assuming resistance has not been transmitted, this population will 353 

be predominantly antibiotic-sensitive, and de novo mutation or acquisition of a mobile element 354 

conferring resistance will occur within a sensitive cell. We therefore next asked how the presence of 355 

a large sensitive population would combine with the above effects of antibiotics to shape the 356 

emergence of resistance from this first cell, again in the streptomycin model system. As predicted 357 

from standard competition assays, emergence of resistance was abolished in the absence of 358 

antibiotics (Fig. 6), presumably due to competitive suppression by the sensitive strain [8]. More 359 

interestingly, a sufficiently dense sensitive population (inoculated at ~5 x 107 CFU/ml here) was able 360 

to shift the range of concentrations at which resistance established upwards by approximately two-361 

fold. We speculate that this apparent protection is due to sensitive cells absorbing antibiotics, thus 362 

lowering their concentration in the media [23, 34], despite these concentrations being high enough 363 

to cause decline of the sensitive population (i.e. > MICS). A priori, one may not expect resistant cells 364 

to “need” protection at sub-MICR antibiotic concentrations. However, in the stochastic regime of 365 

establishment, any increase in the probability of individual cells surviving and dividing can make a 366 

qualitative difference to the fate of a rare resistant lineage. This protective effect depends on 367 

bacterial density at the time of treatment, within a realistic range for some bacterial infections [9, 368 

33]: when the sensitive population was inoculated at 100-fold lower density (~5 x 105 CFU/ml), 369 

protection was not apparent. We emphasize that although these experiments provide an initial 370 

proof of concept, a complete investigation of the interacting effects of sensitive population density, 371 

antibiotic dose and timing remains an important direction for future work. Importantly, however, 372 

our main message continues to hold even in the more realistic context of resistance arising within a 373 

sensitive population: stochastic loss of resistant cells is frequent at antibiotic concentrations within 374 

the MSW. 375 

 376 

The failure of resistant cells to establish successful lineages at concentrations well below the MICR 377 

shows a clear disconnect between antibiotic susceptibility of individual cells and populations. To 378 

explain this effect rigorously, we quantified the probability of outgrowth of a detectable population 379 

at a fixed streptomycin concentration, starting from inoculum sizes spanning three orders of 380 
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magnitude. We fit these data to a mathematical model relating inoculum size to probability of 381 

population growth, under the hypothesis that each cell in the inoculum behaves independently (Eqn. 382 

1). This simple stochastic model, with a constant per-cell probability of establishment (𝑝#$), provides 383 

a good explanation for inoculum size-dependent population growth in PA01:Rms149 (Fig. 3b). In this 384 

model, individual cells are not “more susceptible” to antibiotic in smaller populations. Instead, the 385 

cumulative effect of many cells, each with a small chance of establishment (e.g. <5% at 1/8 x MICR in 386 

this system), virtually guarantees population growth from a sufficiently large inoculum size, 387 

reconciling our results with the standard definition of the MIC. We thus emphasize that MIC is not 388 

an innate property of a cell or strain, but rather an emergent property of a population of cells. We 389 

also note that the inoculum size effect on MIC that we found here – a purely stochastic phenomenon 390 

arising at low absolute numbers (CFU) – is distinct from the inoculum size effect already widely 391 

recognized in the literature, which is seen at high cell density (CFU/ml) and attributed to various 392 

density-dependent mechanisms, such as titration or enzymatic inactivation of antibiotics [35, 36, 24, 393 

37, 32, 23, 38]. Although there are hints of the former absolute-number effect in earlier studies [25, 394 

26], to our knowledge we are the first to provide a rigorous explanation in terms of stochastic 395 

population dynamics. 396 

 397 

The good fit of the null model, in which every cell has an equal probability of establishment, at first 398 

seems to be at odds with the growing recognition that bacteria exhibit phenotypic heterogeneity, 399 

which could affect individual cells’ susceptibility to antibiotics [39, 40]. Indeed, it is entirely possible 400 

that the resistant cells that successfully established in our experiments were those with a particular 401 

metabolic state or gene expression level. However, this variability among cells would have no effect 402 

on our experimental outcomes: under our mathematical model (Eqn. 1), the probability of observing 403 

growth in a given number of replicate cultures is the same for any degree of cell-to-cell variation 404 

around a fixed mean, assuming the susceptibilities of cells within an inoculum are independent from 405 

one another (Suppl. Text, section 10.1). Thus, the establishment probability that we infer empirically 406 

should more accurately be interpreted as a mean among cells. 407 

 408 

Although the role of demographic stochasticity in the fate of de novo mutations has long been 409 

recognized in theoretical population genetics, until very recently it had never been addressed 410 

empirically [17]. Our study joins a small handful of others that have now experimentally quantified 411 

establishment probability from single cells [41, 18, 42, 19], including two [18, 19] investigating 412 

establishment of bacterial cells in the presence of antibiotics, using different methods to ours (see 413 

Suppl. Text, section 10.2, for a more detailed comparison). Bacterial evolution of resistance to 414 
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antibiotic treatment is also a prime example of the more general phenomenon of evolutionary 415 

rescue, whereby adaptation prevents extinction of populations facing severe environmental change 416 

[43]. Experiments quantifying the probability of rescue in initially large, but declining, populations 417 

were pioneered around a decade ago in yeast exposed to high salt concentrations [44]. More recent 418 

work clarified the quantitative relationship between initial population size and probability of rescue 419 

[45], coinciding with our Eqn. 1 (see Suppl. Text, section 10.2, for further discussion). More broadly, 420 

the concepts and statistical methods developed here are applicable to a variety of situations where 421 

growth depends on success of rare cells and is thus highly stochastic, for instance the establishment 422 

of productive infection in a host following pathogen transmission [46], the onset of invasive bacterial 423 

infections [47], the outgrowth of bacteria in food products from small initial contaminants [48], or 424 

the establishment of metastases from cancerous tumours [49]. 425 

 426 

In summary, our study highlights the stochastic nature of de novo emergence of antibiotic 427 

resistance. In a practical sense, this stochasticity implies that to accurately assess the risk of 428 

resistance emerging, we must evaluate not only mutation rates, but also the probability that 429 

resistant mutants escape extinction when rare [9], which will depend on the antibiotic dosing 430 

regimen. Our results caution against the naïve use of the mutant selection window (MSW) for this 431 

purpose. While a positive selection coefficient is a necessary condition for resistance to outcompete 432 

an initially prevalent sensitive strain, it does not guarantee emergence when rare; indeed, we 433 

showed that single resistant cells are frequently lost at antibiotic concentrations well within the 434 

MSW. Thus, our findings suggest that moderate antibiotic doses may be more effective than 435 

previously thought at preventing de novo emergence of resistance, especially in infections where 436 

total pathogen density is relatively low. For antibiotics that have mutagenic effects, the chance of a 437 

resistant lineage arising in the first place might also be reduced at lower doses ( [50]; see however 438 

[51]). Furthermore, use of lower antibiotic doses could reduce both adverse effects on patients and 439 

release of antibiotics into the environment [52]. 440 

 441 

 442 

Materials and Methods 443 

 444 

Further details of experimental protocols, data processing, mathematical models and statistical 445 

methods are provided in the SI Appendix, Suppl. Text. 446 

 447 

Bacterial strains, media, and culture conditions 448 
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 449 

Bacterial strains: The majority of our experiments, in streptomycin, were conducted with a set of 450 

Pseudomonas aeruginosa PA01 strains studied previously [32]. The streptomycin-sensitive and -451 

resistant strains are chromosomally isogenic, while resistant strains additionally carry the clinically 452 

derived, non-conjugative plasmid Rms149 [53], which is stably maintained in PA01 at approximately 453 

two copies per cell [54]. Streptomycin resistance is conferred by the aadA5 gene on Rms149, which 454 

codes for an enzyme that adenylates streptomycin [55]. Both plasmid carriers (resistant) and non-455 

carriers (sensitive) are available with either YFP or DsRed chromosomal fluorescent markers or with 456 

no marker [32]. The live-dead staining experiment was conducted with the unlabelled resistant 457 

strain. All other experiments reported in the main text were conducted with the YFP-labelled 458 

resistant strain and, where applicable, the DsRed-labelled sensitive strain. We chose this pairing 459 

because YFP provides a stronger signal, facilitating detection of the resistant strain in mixed cultures. 460 

Previous work with these strains suggests that the two fluorescent labels have similar fitness effects 461 

[32], and we confirmed that the label had no substantive effect on the MIC values of the sensitive 462 

strain (Suppl. Text, section 2.1). For the seeding experiment in meropenem, we transformed the 463 

plasmid PAMBL2 into the same PA01-YFP background (Suppl. Text, section 1). This plasmid, isolated 464 

in 2007 from a patient in a Spanish hospital [27], confers meropenem resistance through three 465 

copies of the blaVIM-1 gene, which codes for a metallo-beta-lactamase [27, 28]. It is non-conjugative 466 

[28] and stably maintained in PA01 at an average of 2-3 copies/cell [54]. MIC values of all relevant 467 

strain-antibiotic pairs are reported in Table S1. 468 

 469 

Media and antibiotics: We cultured bacteria in LB broth containing 5g/L NaCl (Sigma-Aldrich, product 470 

no. L3022). To assess colony-forming units, we plated on LB Agar, Vegitone, containing 5g/L NaCl 471 

and 15g/L agar (Sigma-Aldrich, product no. 19344). Streptomycin was prepared from streptomycin 472 

sulfate salt (Sigma-Aldrich, product no. S6501) and meropenem was prepared from meropenem 473 

trihydrate (Santa Cruz Biotechnology, Inc., product no. SC-485799). Stocks prepared in water were 474 

stored according to supplier directions and added to media on the day of experiments. When high 475 

antibiotic concentrations were required, stocks were instead prepared directly in LB on the day of 476 

experiments to avoid excessive dilution of the media with water. Bacterial cultures were diluted in 477 

phosphate buffered saline (PBS) prepared from tablets (Sigma-Aldrich product no. P4417). 478 

Treatment cultures were set up with 90% media plus 10% inoculating culture by volume; thus, the 479 

final concentrations of LB and antibiotics in the treatments are 90% of the prepared media values 480 

denoted on plots. 481 

 482 
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Culture conditions: All cultures were incubated at 37°C, shaking at 225rpm. Overnight cultures were 483 

inoculated directly from freezer stocks into 2ml of LB in 14ml culture tubes and incubated for 484 

approximately 16h. Overnight cultures were then diluted in PBS and used to inoculate treatment 485 

plates. Unless otherwise noted, experimental treatments were conducted in 200µl cultures in flat-486 

bottom 96-well microtitre plates.  487 

 488 

Scoring culture growth: In all experiments, we evaluated culture growth by measuring optical 489 

density (OD595) using a BioTek Synergy 2 plate reader, at room temperature. Lids on microtitre plates 490 

were briefly removed in a non-sterile environment for the reading; comparison to controls mock-491 

inoculated with PBS indicated that contamination was rare (see Suppl. Text for detailed 492 

quantification in each experiment). We set a threshold of OD595 > 0.1 to score as growth, whereas 493 

background OD in media-only controls was typically below 0.05. Final readings at 3d post-inoculation 494 

were used for data analysis unless otherwise noted. By this time, growth had typically stabilized, 495 

with OD much higher than the threshold. 496 

 497 

MIC assays 498 

 499 

Standard MIC values for all applicable strain-antibiotic pairs (i.e. resistant Rms149-carrier against 500 

streptomycin; resistant PAMBL2-carrier against meropenem; sensitive non-carrier against both 501 

antibiotics) were determined under our culture conditions using the broth microdilution method. 502 

Overnight cultures were diluted 103-fold and inoculated into antibiotic-containing media at 503 

20µl/well on 96-well test plates. This dilution factor consistently yielded an inoculation density close 504 

to 5 x 105 CFU/ml, in accordance with standard protocol [10]; actual density was estimated by 505 

plating. Test plates were incubated and scored for growth at approximately 20h (as per standard 506 

protocol [10]), 2d, and 3d post-inoculation. For consistency with growth scoring in seeding 507 

experiments, the standard MIC values (MICS and MICR) used to scale antibiotic concentrations on 508 

plot axes are based on results at 3d. Consensus MIC values of all tested strain-antibiotic pairs, at 509 

both 20h and 3d, are reported in Table S1, with results of individual replicates reported in the Suppl. 510 

Text, section 2.1. For the YFP-labelled Rms149-carrying resistant strain, an additional MIC assay in 511 

streptomycin was conducted varying inoculum size (Fig. 3a). Here, inoculations were conducted with 512 

overnight culture diluted 103-, 104-, 105-, and 106-fold (see Suppl. Text, section 2.2 for details).  513 

 514 

Seeding experiments: resistant strains in isolation 515 

 516 
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Experimental protocol: A highly diluted overnight culture of the YFP-labelled resistant strain 517 

(Rms149- or PAMBL2-carrier) was inoculated at 20µl/well into antibiotic-containing media on 96-518 

well test plates. For experiments with PA01:Rms149 screening across many streptomycin 519 

concentrations (Fig. 2), we used three dilution factors (4 x 107-, 8 x 107, and 1.6 x 108-fold), each to 520 

inoculate 96 replicate wells at each concentration. To test the null model of the inoculum size effect 521 

(Fig. 4b), we screened fewer streptomycin concentrations across a larger number of dilution factors 522 

(five in streptomycin-free conditions and six to ten in each streptomycin concentration), each with 523 

54 replicates. These dilution factors were chosen differently for each streptomycin concentration to 524 

capture the range over which the proportion of replicate cultures showing growth increased from 525 

near 0 to near 1. For the experiment with PA01:PAMBL2 in meropenem (Fig. 5), we used two 526 

dilution factors (5 x 107- and 2 x 108-fold), each with 96 replicates per concentration. In all cases, test 527 

plates were incubated and scored for growth after approximately 1, 2, and 3d; for the null model 528 

test, incubation and readings were continued up to 5d to confirm stabilization of growth. See Suppl. 529 

Text, sections 4-5, for further details.  530 

 531 

Model fitting: The number of replicate cultures showing growth by 3d (or, additionally, by 5d for the 532 

null model test), at each inoculating dilution factor and antibiotic concentration, was used for 533 

subsequent model fitting. To estimate single-cell establishment probability and evaluate the null 534 

model of the inoculum size effect, likelihood-based methods were used to fit a stochastic model of 535 

population growth to these data (see Mathematical model of establishment below). In addition, to 536 

evaluate the effect of antibiotic concentration on establishment, generalized linear models were fit 537 

to data from the seeding experiments screening across streptomycin (Fig. 2) or meropenem (Fig. 5) 538 

concentrations. Using the built-in R function ‘glm’, growth data were treated as binomial, with 539 

inoculating dilution factor and antibiotic concentration taken as explanatory variables, applying the 540 

complementary log-log link function (Suppl. Text, section 12). 541 

 542 

Seeding experiments: resistant strain in presence of sensitive population 543 

 544 

Overnight culture of the DsRed-labelled PA01 sensitive strain was diluted 5-fold to obtain the “high 545 

density” inoculating culture, and (in the first experiment only) further to 500-fold to obtain the “low 546 

density” inoculating culture. Overnight culture of the YFP-labelled PA01:Rms149 resistant strain was 547 

diluted up to 5 x 107-fold and 2 x 108-fold. These cultures were inoculated as follows into media at 548 

various streptomycin concentrations on 96-well plates. Pure sensitive control cultures (24 replicates 549 

per test condition) were inoculated with 10µl/well of the appropriate diluted culture plus 10µl/well 550 
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PBS. “Blank” wells to serve as background fluorescence controls were inoculated with 20µl/well PBS. 551 

Seeding test plates were first inoculated with 10µl/well of either PBS (for pure resistant control 552 

cultures), low-density or high-density sensitive culture. The resistant strain was inoculated at 553 

10µl/well immediately thereafter (all sensitive and resistant culture inoculations were completed 554 

within an hour). Seeding was conducted with 30-60 replicates per test condition and resistant 555 

dilution factor (see Suppl. Text, section 6, for details). All test plates were then incubated as before, 556 

with optical density (OD595) and fluorescence (excitation: 500+/-27 nm; emission: 540+/-25 nm) 557 

measured at approximately 1, 2, and 3d post-inoculation. Among wells showing growth (OD>0.1), 558 

we considered the YFP-labelled resistant strain to have established if fluorescence exceeded 5 x 105 559 

units, chosen by comparison to pure cultures. In each test condition, the number of replicates in 560 

which resistance established was taken as data for model fitting, as in the previous seeding 561 

experiments. 562 

 563 

Fraction of dead cells by live-dead staining 564 

 565 

This experiment used the PA01:Rms149 resistant strain with no fluorescent label, to avoid 566 

interfering with the signal from the stains. We inoculated streptomycin treatment cultures (six 567 

replicates per concentration) with 103-fold diluted overnight culture, as in the standard MIC assay. 568 

After 7h of treatment, we diluted test cultures 100-fold and stained with thiazole orange and 569 

propidium iodide (BD Cell Viability Kit, product no. 349483). In parallel, we diluted and stained 570 

media and heat-killed cultures as controls. We sampled 50µl per diluted culture using flow 571 

cytometry (BD Accuri C6 Flow Cytometer with fast fluidics, discarding events with forward scatter 572 

FSC-H < 10000 or side scatter SSC-H < 8000). The staining and flow cytometry steps were carried out 573 

in groups containing one replicate per concentration plus controls, to avoid potentially toxic effects 574 

of stain exposure over prolonged times (Suppl. Text, section 7). To better discriminate cells from 575 

background in the flow cytometry data, we first gated on events according to forward and side 576 

scatter before defining clusters of dead (membrane-compromised) and intact cells based on 577 

fluorescence; see Suppl. Text, section 7, and Suppl. Fig. 6 for details. 578 

 579 

Viable cell density dynamics 580 

 581 

Using the YFP-labelled PA01:Rms149 strain, we tracked the number of viable cells over time in 582 

streptomycin-free media (twelve replicates per time point) and at 1/32, 1/16, 1/8, and 1/4 x MICR 583 

streptomycin (six replicates per time point). An independent test plate was used for sampling at 584 
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each time point. Lower (Set A) and higher (Set B) streptomycin concentrations were split across 585 

separate plates and sampled at different times. Cultures were inoculated with 20µl of 5 x 105-fold 586 

diluted overnight culture. At each sampling time, we plated 5 x 4µl spots of undiluted cultures (10% 587 

sampling by volume). The number of viable cells was estimated from total colony count following 588 

incubation. Comparison of streptomycin-free controls from both sets (A and B) indicated that the 589 

plate set effect was non-significant (ANOVA: p = 0.10); thus, controls were pooled for further 590 

analysis of the streptomycin effect (see Suppl. Text, section 8, for further details). 591 

 592 

Mathematical model of establishment 593 

 594 

Model: We denote by pw the probability that a small number of inoculated cells grows into a large 595 

population, i.e. that the culture reaches detectable OD as described above. Among a set of n 596 

independent replicates, the number of cultures showing growth is thus described by a 597 

Binomial(n,pw) distribution.  598 

 599 

In the “null” model, similar to previous work [46, 45], a simple expression for pw is derived under the 600 

assumptions that: (i) the number of cells in the inoculum is Poisson-distributed with mean 𝑁(; (ii) 601 

each cell, independently, establishes a surviving lineage with probability pc, which depends only on 602 

antibiotic concentration x; and (iii) culture growth is observed provided at least one cell establishes a 603 

surviving lineage. Then the probability of observing culture growth, as a function of mean inoculum 604 

size and antibiotic concentration, can be written as follows (Suppl. Text, section 10): 605 

 606 

𝑝)(𝑁(, 𝑥) = 1 − 𝑒12(34(5) 607 

         = 1 −	𝑒12(7883#4(5)   (Eqn. 1) 608 

 609 

In the second line, we have rewritten the expression in terms of the “effective mean inoculum size”, 610 

𝑁(9:: = 𝑁(𝑝$(0), which is the mean number of established lineages in the absence of antibiotics; and 611 

the “relative establishment probability”, 𝑝#$(𝑥) = 	𝑝$(𝑥)/𝑝$(0). Although we expect that 𝑝$(0) is 612 

close to 1, 𝑁( and 𝑝$(0) play indistinguishable roles in this model, so that in practice we can only 613 

estimate their product. This definition of effective inoculum size based on cells that grow in benign 614 

conditions is similar to the usual quantification of “viable” cells according to successful formation of 615 

a colony; we simply assess growth in liquid rather than on solid medium. Scaling up 𝑁(9::  by the 616 

dilution factor applied to the inoculating culture, we have an estimate of bacterial density in this 617 

culture, equivalent to the historical “most probable number” method [56, 57]. If cells are 618 
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phenotypically heterogeneous (i.e. vary in their propensity to establish), or if the individual units in 619 

the inoculum are actually clumps of cells, then pc should be interpreted as the mean establishment 620 

probability among individuals (Suppl. Text, section 10.1). 621 

 622 

More generally, we need not assume that cells establish independently. If we suppose simply that 623 

the number of established lineages is Poisson-distributed with some mean a (which is supported 624 

empirically by the distribution of colony-forming units counted in highly diluted cultures; Suppl. Fig. 625 

1), we have the relationship 626 

 627 

𝑝)(𝑁(, 𝑥) = 1 − 𝑒1=(2(,5)    (Eqn. 2) 628 

 629 

where a, and hence pw, have an arbitrary dependence on mean inoculum size and antibiotic 630 

concentration. In the statistical “full model”, we estimate a distinct pw (or equivalently a, by the one-631 

to-one mapping in Eqn. 2) in each test condition. Relative establishment probability is then generally 632 

defined by 𝑝#$(𝑁(, 𝑥) = 	𝛼(𝑁(, 𝑥)/𝛼(𝑁(, 0). Nested models, including the null model above, make 633 

additional assumptions about the form of a (see Suppl. Text, section 10, for details). 634 

 635 

Likelihood-based model fitting and comparisons: These stochastic models are fit to experimental 636 

population growth data using likelihood-based methods (Suppl. Text, section 11). Specifically, under 637 

each model we obtain a maximum likelihood estimate and a 95% confidence interval (determined by 638 

the range of parameter values that would not be rejected by a likelihood ratio test at 5% significance 639 

level) on the parameter pw, which can be transformed to an estimate for a. In the case of relative 640 

establishment probability, 𝑝#$(𝑥) = 	𝛼(𝑥)/𝛼(0), we use a profile likelihood confidence interval 641 

accounting for the uncertainty in both numerator (i.e. results at antibiotic concentration x) and 642 

denominator (i.e. results in antibiotic-free conditions). The fit of nested models is compared using 643 

the likelihood ratio test (LRT) at 5% significance level, i.e. a c2 test on model deviance with degrees 644 

of freedom equal to the difference in number of fitted parameters between the two models. 645 

 646 

To test the null model of the inoculum size effect, we neglect any experimental error in preparing 647 

overnight culture dilutions, and assume that mean inoculum size 𝑁( is inversely proportional to the 648 

applicable dilution factor. Effective mean inoculum size, 𝑁(9::, is estimated by fitting Eqn. 1 to 649 

population growth data in antibiotic-free media. Per-cell relative establishment probability 𝑝#$  then 650 

remains as the single free parameter to fit at each tested antibiotic concentration. The goodness of 651 
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fit of the null model (Eqn. 1) is assessed for each test concentration separately, using the LRT to 652 

compare it to the fit of the full model (Eqn. 2). 653 

 654 

All model fitting was implemented in R, version 3.3.1 (The R Foundation for Statistical Computing, 655 

2016). 656 

 657 
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Figures 678 

 679 

 680 

 681 

Figure 1: Design of seeding experiments to estimate establishment probability. An overnight 682 

culture of the resistant strain is highly diluted and used to inoculate 96-well plates containing growth 683 

media (LB broth) with antibiotic at various concentrations (shades of blue). The number of cells 684 

inoculated per well follows a Poisson distribution (examples plotted for mean inoculum size of 0.5, 1, 685 

or 2 cells per well). Within these culture wells, stochastic population dynamics imply that each 686 

inoculated cell may either produce a large number of descendants (establishment) or produce 687 

no/few descendants that ultimately die out (failure to establish). Plates are incubated for 3 days and 688 

optical density is measured to score growth in wells (OD595 > 0.1; dark green). The number of 689 

replicate cultures showing growth is used to estimate the per-cell establishment probability at each 690 

antibiotic concentration by fitting a mathematical model. 691 
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(a)     (b) 693 

                 694 
Figure 2: Establishment probability of single PA01:Rms149 streptomycin-resistant cells, estimated 695 

from seeding experiments. (a) Visual representation of the growth data, indicating the number of 696 

replicate cultures (out of 96) that grew in each test condition up to 3d post-inoculation. (b) 697 

Estimated relative per-cell establishment probability (𝒑@𝒄), scaled by the probability in 698 

streptomycin-free medium, as a function of streptomycin concentration, scaled by the standard MIC 699 

value of the resistant strain (MICR = 2048µg/ml; Table S1). Results are shown for two separate 700 

experiments. Plotted points indicate the maximum likelihood estimate of 𝑝#$  and error bars indicate 701 

the 95% confidence interval, using the fitted model selected by the likelihood ratio test (experiment 702 

1: Model B’, fixed environmental effect; experiment 2: Model C’, the null model [Eqn. 1]. Both of 703 

these models pool data across three inoculation densities; see Suppl. Text, section 10, for details). 704 

Significance of the streptomycin effect is determined by fitting a generalized linear model to the 705 

population growth data (n.s.: not significant, p > 0.05; ** p=0.01 in expt. 1, p=2e-7 in expt. 2, and 706 

p=2e-8 pooling both experiments; *** p < 2e-16 in both experiments; see Suppl. Text, section 14.1, 707 

for full results). 708 
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(a)       (b) 710 

   711 
Figure 3: Inoculum size effects on MIC and probability of population growth of the resistant 712 

PA01:Rms149 strain in streptomycin. (a) MIC as a function of inoculum size. Cultures were 713 

inoculated with PA01:Rms149 at four different inoculum sizes. MIC was evaluated as the minimal 714 

tested streptomycin concentration that prevented detectable growth up to 3d post-inoculation; a 715 

qualitatively similar pattern arose if growth was evaluated at 20h (Fig. S2). The y-axis is scaled by the 716 

MIC of this strain at standard inoculation density (MICR). The points represent six replicates at each 717 

inoculum size, with the line segments indicating their median. (b) Null model of the inoculum size 718 

effect (Eqn. 1) fit to culture growth data. Probability of population growth (pw) is plotted as a 719 

function of effective mean inoculum size (𝑁(9::, calibrated by the results in streptomycin-free media; 720 

see Fig. S4). Black: streptomycin-free; red: streptomycin at 1/16 x MICR; blue: 1/8 x MICR. These 721 

results are based on growth in streptomycin up to 5d post-inoculation; see Suppl. Text, section 15, 722 

for results at 3d post-inoculation. Points indicate the proportion of replicate cultures showing 723 

growth, i.e. the maximum likelihood estimate (MLE) of pw in the full model, with error bars indicating 724 

the 95% confidence interval (CI). The solid line shows the best fit of the null model (i.e. Eqn. 1 725 

parameterized with the MLE of 𝑝#$) and the shaded area corresponds to the 95% CI. According to the 726 

likelihood ratio test, the null model deviance from the full model is not significant at any 727 

streptomycin concentration (streptomycin-free: p=0.55; 1/16 x MICR: p=0.28; 1/8 x MICR: p=0.71; see 728 

Suppl. Text, section 15, for full results). 729 
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(a)      (b) 731 

 732 
Figure 4: Effects of sub-MICR streptomycin treatment on PA01:Rms149 resistant cell dynamics. (a) 733 

Proportion of dead cells after 7h in sub-MICR streptomycin. The proportion of dead cells in 734 

streptomycin-treated cultures was estimated using live-dead staining and flow cytometry. Points 735 

represent six independent treatment replicates at each concentration and line segments indicate 736 

their mean. Differences from the streptomycin-free control cultures were assessed using a one-way 737 

ANOVA followed by a post-hoc Dunnett’s test (n.s.: not significant, p > 0.05; *: p = 9e-3, **: p < 1e-738 

4). Effects identified as significant do not change if we exclude an outlier replicate (shaded-in points) 739 

showing consistently elevated dead cell fractions (Table S3). (b) Viable cell population dynamics in 740 

sub-MICR streptomycin. Points with connecting lines indicate the mean number of viable cells across 741 

six replicate cultures per streptomycin concentration, per sampling time point (or twelve replicates 742 

for streptomycin-free controls); the error bars indicate standard error. Fig. S7 shows all individual 743 

replicates. Viable cell numbers were estimated by plating undiluted culture samples; plots are 744 

truncated when colonies became too dense to count. Significance of each streptomycin 745 

concentration compared to the streptomycin-free control was assessed by a post-hoc Dunnett’s test 746 

(n.s.: not significant, p=0.87; * p=4e-4; ** p<1e-4). 747 
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 749 
Figure 5: Estimated relative per-cell establishment probability of the PA01:PAMBL2 meropenem-750 

resistant strain as a function of meropenem concentration. Concentration is scaled by the standard 751 

MIC of this strain in meropenem (MICR = 512 µg/ml; Table S1). Plotted points indicate the maximum 752 

likelihood estimate of 𝑝#$  and error bars indicate the 95% confidence interval, using the fitted model 753 

selected by the likelihood ratio test (Model C’, the null model [Eqn. 1], which pools data across two 754 

tested inoculation densities). Significance of the meropenem effect is determined by fitting a 755 

generalized linear model (GLM) to population growth data (n.s.: not significant, p > 0.05; * p = 0.02; 756 

*** p < 2e-16; see Suppl. Text, section 14.2, for full results). 1/4 x MICR meropenem was excluded 757 

from the GLM because zero replicates established. 758 
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 760 
Figure 6: Impact of a large sensitive population on the establishment probability of a resistant cell. 761 

The PA01:Rms149 resistant strain was seeded either alone (black) or into a low-density (cyan) or 762 

high-density (orange) sensitive PA01 population, across a range of streptomycin concentrations. 763 

Results are shown from two separate experiments, testing different subsets of conditions 764 

(experiment 1 – data points in squares with solid line; experiment 2 – data points in circles with 765 

dashed line). Within each experiment, the estimated relative establishment probability per resistant 766 

cell (𝑝#$) in each condition is normalized by the result for the resistant strain alone in streptomycin-767 

free media. Points indicate the maximum likelihood estimate of 𝑝#$  and error bars indicate the 95% 768 

confidence interval, using the fitted model selected by the likelihood ratio test (Model C’, the null 769 

model [Eqn. 1] for both experiments). At streptomycin concentrations of particular interest, the 770 

number of replicates in which the resistant strain established in the presence of no or low-density 771 

sensitive (pooled where applicable) vs. high-density sensitive was compared using a two-sided 772 

Wilcoxon rank-sum test, with significance annotated on the plot (1/16x MICR: experiment 1, p=0.17; 773 

1/8x MICR: experiment 1, p < 2.2e-16 and experiment 2, p=4.8e-8; 1/4x MICR: experiment 2, p=0.042, 774 

not significant after Bonferroni correction); see Suppl. Text, section 16, for further details. 775 
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