Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Local online learning in recurrent networks with random feedback

James M. Murray
doi: https://doi.org/10.1101/458570
James M. Murray
Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, 10032
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

A longstanding challenge for computational neuroscience has been the development of biologically plausible learning rules for recurrent neural networks (RNNs) enabling the production and processing of time-dependent signals such as those that might drive movement or facilitate working memory. Classic gradient-based algorithms for training RNNs have been available for decades, but they are inconsistent with known biological features of the brain, such as causality and locality. In this work we derive an approximation to gradient-based learning that comports with these biologically motivated constraints. Specifically, the online learning rule for the synaptic weights involves only local information about the pre- and postsynaptic activities, in addition to a random feedback projection of the RNN output error. In addition to providing mathematical arguments for the effectiveness of the new learning rule, we show through simulations that it can be used to train an RNN to successfully perform a variety of tasks. Finally, to overcome the difficulty of training an RNN over a very large number of timesteps, we propose an augmented circuit architecture that allows the RNN to concatenate short-duration patterns into sequences of longer duration.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted October 31, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Local online learning in recurrent networks with random feedback
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Local online learning in recurrent networks with random feedback
James M. Murray
bioRxiv 458570; doi: https://doi.org/10.1101/458570
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Local online learning in recurrent networks with random feedback
James M. Murray
bioRxiv 458570; doi: https://doi.org/10.1101/458570

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4230)
  • Biochemistry (9118)
  • Bioengineering (6764)
  • Bioinformatics (23960)
  • Biophysics (12108)
  • Cancer Biology (9508)
  • Cell Biology (13748)
  • Clinical Trials (138)
  • Developmental Biology (7621)
  • Ecology (11673)
  • Epidemiology (2066)
  • Evolutionary Biology (15487)
  • Genetics (10625)
  • Genomics (14307)
  • Immunology (9473)
  • Microbiology (22811)
  • Molecular Biology (9083)
  • Neuroscience (48906)
  • Paleontology (355)
  • Pathology (1480)
  • Pharmacology and Toxicology (2566)
  • Physiology (3837)
  • Plant Biology (8320)
  • Scientific Communication and Education (1468)
  • Synthetic Biology (2294)
  • Systems Biology (6176)
  • Zoology (1298)