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Abstract 
Motivation: RNA molecules can undergo complex structural dynamics, especially during transcription, which influ-

ence their biological functions. Recently developed high-throughput chemical probing experiments study RNA co-

transcriptional folding to generate nucleotide-resolution ‘reactivities’ for each length of a growing nascent RNA and 

reflect structural dynamics. However, the manual annotation and qualitative interpretation of reactivity across these 

large datasets can be nuanced, laborious, and difficult for new practitioners. We developed a quantitative and sys-

tematic approach to automatically detect RNA folding events from these datasets to reduce human bias/error, stand-

ardize event discovery, and generate hypotheses about RNA folding trajectories for further analysis and experi-

mental validation.  

Results: Detection of Unknown Events with Tunable Thresholds (DUETT) identifies RNA structural transitions in 

cotranscriptional RNA chemical probing datasets. DUETT employs a feedback control-inspired method and a linear 

regression approach and relies on interpretable and independently tunable parameter thresholds to match qualita-

tive user expectations with quantitatively identified folding events. We validate the approach by identifying known 

RNA structural transitions within the cotranscriptional folding pathways of the Escherichia coli signal recognition 

particle (SRP) RNA and the Bacillus cereus crcB fluoride riboswitch. We identify previously overlooked features of 

these datasets such as heightened reactivity patterns in the SRP RNA about 12 nucleotide lengths before base pair 

rearrangement. We then apply a sensitivity analysis to identify tradeoffs when choosing parameter thresholds. Fi-

nally, we show that DUETT is tunable across a wide range of contexts, enabling flexible application to study broad 

classes of RNA folding mechanisms. 

Availability: https://github.com/BagheriLab/DUETT 

Contact: jblucks@northwestern.edu, n-bagheri@northwestern.edu 

1 Introduction  

RNA molecules play diverse functional roles ranging from catalysis of 

splicing and peptide bond formation, regulation of mRNA processing and 

gene expression, and molecular scaffolding and localization (Sharp, 2009; 

Cech and Steitz, 2014). These functions are in turn mediated by RNA 

structures that form in complex cellular environments. RNA structures are 

diverse and can prohibit or promote interactions with other RNAs, pro-

teins, and metabolites to enable a broad range of RNA function. For ex-

ample, bacterial RNA structures inhibit transcription elongation 

(Jagadeeswaran et al., 2010), translation initiation (Afonin et al., 2016), 

and RNA degradation (Hui et al., 2015).. In eukaryotes, there is growing 

evidence that RNA structure impacts gene expression processes (Rouskin 

et al., 2014; Ding et al., 2014; Spitale et al., 2015; Talkish et al., 2014). 

However, we know little about how newly synthesized, or nascent RNAs 

fold during transcription (Woodson, 2010; Pan and Sosnick, 2006). Due 

to the relative timescales of RNA folding and transcription, RNA mole-

cules begin to fold as they emerge from RNA polymerase (Dethoff et al., 

2012) (Figure 1A). RNAs can transition between states in its cotranscrip-

tional folding pathway that dictate RNA folding and function. For exam-

ple, riboswitches dynamically alter their structure during transcription in 

response to ligand binding, leading to ligand-dependent structural, and 

regulatory switching (Smith et al., 2009). In addition, there is emerging 

evidence that cotranscriptionally-formed RNA structures influence vari-

ous processes in eukaryotes such as splicing (Shukla and Oberdoerffer, 

2012) and 3’ end processing of histone mRNAs (Saldi et al., 2016). There 

has been great interest in developing both computational and experimental 

approaches to uncover RNA cotranscriptional folding pathways and their 

implications for cellular RNA function. 

Recently developed experimental techniques can characterize cotran-

scriptional RNA folding at nucleotide resolution (Strobel et al., 2017; 

Watters, Strobel, et al., 2016) by utilizing high-throughput chemical prob-

ing of RNA structure (Strobel et al., 2018). SHAPE (selective 2’-hydroxyl 

acylation analyzed with primer extension) are chemical probes that form 

adducts at the 2’-OH of each nucleotide (Merino et al., 2005). When cou-

pled with high-throughput sequencing, SHAPE experiments reveal de-

tailed reactivity patterns that uncover RNA structural properties – highly 

reactive positions indicate lack of structure and lowly reactive positions 

indicate constraint due to structure or interaction with other binding part-

ners (Bindewald et al., 2011; Steen et al., 2010; Watters, Yu, et al., 2016). 
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An experimental variant called cotranscriptional SHAPE-Seq was devel-

oped to probe the structure of each intermediate length RNA during tran-

scription (Figure 1) (Strobel et al., 2017; Watters, Strobel, et al., 2016). 

This experiment results in a matrix of reactivities, where rows correspond 

to reactivity at each length of a growing nascent RNA chain, and columns 

represent reactivity changes at specific nucleotides across different RNA 

lengths (Figure 1B). Both dimensions of the reactivity matrix reflect pos-

sible changes in RNA structural state that can occur during transcription. 

For example, a decrease (or increase) in reactivity down a column high-

lights a possible folding (or unfolding) event during transcription.  

However, analysis of the cotranscriptional reactivity matrices has been 

mostly qualitative, relying on manual identification of reactivity trends to 

identify key regions that have biological significance. As the number and 

complexity of these datasets grow, quantitative and automated techniques 

are needed to robustly identify patterns. This automated quantitative ap-

proach is challenging, as cotranscriptional SHAPE-Seq datasets with com-

plete annotations and validated structures are not bountiful. This scarcity 

of  “ground truth” examples presents difficulties when defining statistical 

models (Hogenboom et al., 2011) and prohibits application of machine 

learning models (Margineantu et al., 2010), which have been implemented 

in other applications such as emulating visual detection of meaningful re-

activities as labeled by experimental experts (Woods and Laederach, 

2017). These limitations suggest that we require a systematic method to 

identify signatures of RNA structural dynamics from cotranscriptional re-

activity datasets that use interpretable, user-guided rules. 

To overcome this challenge, we sought to develop a quantitative and 

automated approach to identify trends in cotranscriptional SHAPE-Seq 

datasets. We designed a systematic detection method that remains user-

tunable with an interpretable set of parameters to easily match qualitative 

user expectations with quantitatively identified folding events. Other com-

putational approaches have successfully emulated subjective human-

driven analyses such as extracting RNA design rules from a crowd-

sourced game (Lee et al., 2015). Due to the complexity of RNA structures 

and the flexibility of SHAPE-Seq applications/implementations, we opted 

to detect generic events. This philosophy is common in domains with 

poorly defined events, such as identifying unknown genomic deletions and 

insertions (Ye et al., 2009; Jiang et al., 2015).  

We present a framework for detecting events in cotranscriptional 

SHAPE-Seq datasets termed Detection of Unknown Events with Tunable 

Thresholds (DUETT). DUETT detects swing events using a strategy in-

spired by proportional-integral feedback control (Jr. and Parker, 2007) and 

detects ramp events using linear regression. Swing events represent rapid 

reactivity changes that occur over a small number of transcript lengths. In 

contrast, ramp events represent slower changes that span many transcript 

lengths. DUETT provides automated threshold parameter optimization, 

but DUETT also allows user-defined parameter tuning to match a wide 

range of experimental contexts. We first define these methods and identify 

parameters that robustly identify known folding events within the cotran-

scriptional folding pathway of the E. coli Signal Recognition Particle 

(SRP) RNA. We extend the methodology to analyze the folding pathways 

of the B. cereus crcB fluoride riboswitch and corroborate previous manu-

ally-identified transitions. In both datasets, our analysis reveals unex-

pected behavior, such as subtle reactivity increases that consistently occur 

roughly 12 nucleotide lengths before a reactivity decrease, suggesting a 

highly-reactive transient state. Finally, we conduct parameter sensitivity 

analysis to explore the relationship between DUETT’s parameter values 

and detected events. The flexibility and interpretability of our approach 

enables the broad application of DUETT to many high-throughput exper-

imental systems that require event detection. 

2 Methods 

2.1 Event detection  

Structural events are characterized by significant reactivity changes at spe-

cific nucleotide positions, across sequential transcript lengths. We con-

sider two common, yet distinct, phenomena in cotranscriptional SHAPE-

Seq datasets: swing and ramp events. These two qualitatively different 

classes of events motivate separate detection methods for each event type. 

DUETT methods and motivations are located in Supplementary Materials. 

Assumptions are explicitly listed alongside their design consequences in 

Supplementary Table S1.      

2.2 Application to cotranscriptional SHAPE-Seq datasets 

We applied DUETT to two RNA sequences characterized by previous co-

transcriptional SHAPE-Seq experiments (Watters, Strobel, et al., 2016): 

the E. coli. SRP RNA and the B. cereus crcB fluoride riboswitch. These 

published datasets were obtained from the Small Read Archive (SRA) 

(http://www.ncbi.nlm.nih.gov/sra) with the BioProject accession code 

PRJNA342175. The data was processed with Spats v1.01 

(https://github.com/LucksLab/spats/releases/) and the reactivity calcula-

tion scripts are located at https://github.com/LucksLab/Cotrans_SHAPE-

Seq_Tools/releases/. 

3 Results 

We validated DUETT by identifying known cotranscriptional structural 

events that occur in the folding pathways of two RNA molecules: the E. 

coli. signal recognition particle (SRP) RNA and the B. cereus. fluoride 

riboswitch (Watters, Strobel, et al., 2016; Batey et al., 2000; Wong et al., 

2007). We used the automated approach to select PIR threshold parame-

ters and manually selected the same linear ramp thresholds across all da-

tasets. During the automated search, the increasing PIR thresholds cause 

the number of detected events to rapidly decrease until reaching an elbow 

(Supplementary Figure S2). The point closest to the origin lies near the 

elbow and corresponds to the optimized threshold values, similar to how 

numbers of clusters are chosen in clustering algorithms (Gao et al., 2018). 

We applied DUETT on each of three experimental replicates for each sys-

tem and retained events conserved across all replicates to decrease the 

likelihood of spurious events. This approach creates similar results as av-

eraging all replicate datasets before applying DUETT (Supplementary 

Figure S3) but avoids scenarios where a single replicate has anomalous 

values. DUETT identified both known and novel structural events, and we 

propose novel hypotheses for further study. We discover patterns and 

events that are difficult for a human to identify. We conclude with para-

metric sensitivity analysis to explore the relationship between user-de-

fined threshold parameters and observed events. 

3.1 Validation on E. coli SRP RNA cotranscriptional 

SHAPE-Seq datasets and identification of previously 

unidentified reactivity patterns  

Previous studies have shown that during transcription, the E.coli SRP 

RNA forms a transient 5’ hairpin (H1) that rearranges into a long helical 

structure with a hairpin loop and multiple inner loops (Batey et al., 2000; 

Wong et al., 2007; Watters, Strobel, et al., 2016), which we label H2-H5 

(Figure 2). Several of these transitions have been validated by prior bulk 

studies (Wong et al., 2007; Watters, Strobel, et al., 2016), and by single 

molecule optical trapping experiments (Fukuda et al., 2018). A previous
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Figure 1. DUETT provides an automated and systematic method to detect cotranscriptional RNA folding events from SHAPE-Seq data. 

A) RNA can dynamically alter structure during transcription that affect downstream biological functions. B) Cotranscriptional SHAPE-Seq 

probes RNA structural properties by measuring reactivity patterns where high and low reactivity correspond to unstructured and constrained re-

gions of RNA, respectively. DUETT is a flexible method to identify large reactivity changes that are indicative of RNA structural transitions. 

Here DUETT is applied to a mock dataset to identify an increase in reactivities in several consecutive nucleotides which is consistent with the 

typical ‘low-high-low’ pattern observed for RNA hairpin structures. 

analysis of cotranscriptional SHAPE-Seq datasets (Watters, Strobel, et al., 

2016) focused on manual annotation of patterns within the reactivity ma-

trix. We thus sought to apply DUETT to these datasets to automatically 

identify reactivity changes that are reflective of these structural transitions. 

Within the cotranscriptional SHAPE-Seq datasets, many upramps (pos-

itive-slope ramps) begin near the 3’ end of the nascent RNA shortly after 

the nucleotide’s (nt) transcription by RNAP (Figure 2). This close associ-

ation suggests SHAPE adduct formation occurs almost immediately after 

exiting RNAP. Due to experimental limitations s (Strobel et al., 2018), 

these short RNA fragments are difficult to detect, leading to reduced reac-

tivity signal. However, as the RNA elongates, SHAPE adducts at these 

same positions become increasingly detectable, which could lead to the 

presence of gradually increasing reactivity upward ramps in these regions. 

As a result, we infer that upramps close to the nt’s exit from RNAP are 

likely experimental artifacts due to their position near the 3’ end of the 

RNA.  

3.1.1  DUETT identifies expected H1 formation and rearrangement 

The major cotranscriptional rearrangement event for the E. coli SRP RNA 

occurs when H1 refolds into the final extended structure (Yu et al., 2018; 

Fukuda et al., 2018). Corresponding to the formation of H1, DUETT iden-

tified upswings in bases 14-15 and 18-19 around nascent RNA length 45 

nt, and upramps that conclude around length 50 nt (Figure 2). These posi-

tions remain unpaired in the intermediate H1 hairpin, validating the corre-

spondence between upswings/upramps and the formation of unpaired, re-

active regions. This hairpin rearranges into the long helical structure, 

which DUETT identifies as downswing events between lengths 116 and 

127 nt in bases 11, 14-15, and 17-19. These identifications are consistent 

with recent computational modeling (Yu et al., 2018) and single molecule 

optical tweezer experiments (Fukuda et al., 2018) that propose the rear-

rangement of H1 to occur in the window that DUETT detects.  

3.1.2  Multiple expected reactivity changes further validate DUETT  

Another key feature of the E. coli SRP RNA cotranscriptional folding 

pathway is the formation of native base pairs and loops after the formation 

of H1, but before the rearrangement of H1 into the final native structure 

(Wong et al., 2007; Watters, Strobel, et al., 2016; Fukuda et al., 2018; Yu 

et al., 2018). DUETT identifies expected reactivity signatures of bases 26-

29 and 31 through length 100 nt. Upon initial transcription, bases 26-28 

and 31 have upswings corresponding to their unpaired state, and bases 28-

29 and 31 have downswings at 100 nt that agree with the previously pro-

posed 100 nt structure in which these nucleotides are paired (Watters, 

Strobel, et al., 2016). Identification of other unpaired positions provides 

additional validation of DUETT event detection. A cluster of upramps/up-

swings in bases 40-42 between lengths 55 and 90 nts corresponds to the 

unpaired, interior loop region in H3. Finally, bases 57-58, 86 and 97 have 

upramps/upswings immediately after transcription that corroborates their 

unpaired status as the apex nucleotides in the hairpin loop of the final re-

arranged structure, or within internal loops and bulges, respectively.  

3.1.3  Unexpected events highlight overlooked structural dynamics 

While DUETT identified previously validated and observed reactivity 

changes within the SRP RNA cotranscriptional folding pathway, it also 

identified novel and unexpected events such as a downswing in base 14 

and upswings in bases 36-38 at lengths 87 and 84 nts, respectively. These 

events are discordant with the previously proposed folding model of the 

SRP RNA: base 14 remains unpaired in H1 and bases 36-38 pair with ba-

ses 74-76 between lengths 75-100 nts. However, these detected events do 

not appear spurious. The downswing in base 14 is concurrent with other 

undetected downswings in neighboring bases 11 and 15 (Supplementary 

File 1), and the upswings in bases 36-38 are concurrent and qualitatively 

similar with one another. These unexpected events occur in the transition 

that forms the H2 and H3 loops and suggests a transient state that causes 

decreased reactivity in base 14 and increased reactivity in bases 36-38. 

In addition, base 40 was reported to be paired by length 100 nt (Watters, 

Strobel, et al., 2016) that corresponds to an undetected downswing at 94 

nt (Supplementary File 1). Though base 40 has lower reactivity than bases 

41-42 (Supplementary File 1), its reactivity is higher than expected from 

a base pair. Our DUETT results suggest that U40 is more labile than pre-

viously reported (Watters, Strobel, et al., 2016). We attribute this accessi-

bility to U40’s position at a helix end as well as part of a GU pair with 

G72 in the native structure and these features are known to be generally 

less stable (Jaeger et al., 1989; Papanicolaou et al., 1984). 

Another unexpected set of events include the downswings of bases 26-

27 at length 108 nt, which is earlier than the stable rearrangement of H1 
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Figure 2. DUETT identifies known RNA folding events in the cotranscriptional SHAPE-Seq reactivity matrix derived from the E. coli SRP 

RNA. Four previously proposed intermediate structural conformations of SRP RNA are shown with arrows linking specific bases to identified 

reactivity changes. DUETT identifies multiple instances of hairpin formation/rearrangement and we propose structural explanations for previously 

unidentified novel events. DUETT displays detected swing and ramp events as a colored box and line, respectively, with red and blue denoting an 

increase and decrease, respectively. A green line connects concurrent events between different nucleotides. The RNA polymerase exit channel 

footprint that occludes the last 5 RNA nucleotides is annotated in grey. Nucleotides that participate in identified SHAPE-Seq reactivity transitions 

are color coded. RNA structures are from Figure 2 of (Watters, Strobel, et al., 2016) with helices H1-H5 annotated. SHAPE reactivity is normalized 

to lie in between the range 0-1 and shown in greyscale and box area. 

into the final helical structure. These downswings in bases 26-27 are con-

current with two upswing events at bases 44 and 86 and an upramp in base 

86. Base 44’s upswing is likely a spurious event due to a replicate anomaly 

(Supplementary File 1) but base 86 is a bulged nt in the native structure 

that forms opposite of base pairs involving positions 27-28. This concur-

rency suggests that the bulge formation in base 86 occurs simultaneously 

with bases 26-27 pairing up and agrees with the previously proposed 

model (Watters, Strobel, et al., 2016).  

We also observed unforeseen upswings about 12 nt lengths before 

downswings, suggesting a highly-reactive transient state. Bases 17-18, 27, 

29, and 31 exhibit upswings roughly 12 nt lengths before their downswing 

events (Figure 2). The order in which these downswings occurs is con-

sistent with the order of transcription, suggesting an order of folding 

events based on initial exposure and transcription. Coincidentally, when 

bases 26-27 or bases 29-31 undergo stabilizing structural dynamics, the 

preceding upswing pattern occurs in the 3’ base(s) of that group. Similarly, 

the preceding upswing followed by downswing behavior in bases 17-18 

and suggests that increased flexibility in the 3’ side transiently occurs be-

fore becoming stabilized. We note the difficulty in manually detecting 
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DUETT quantitatively identifies RNA structural dynamics 

these patterns of events, justifying our automated and systematic ap-

proach. These observations lead us to believe that the detected events are 

not spurious, lack an explanation by previously published studies, and 

highlight the discoveries enabled by our systematic method.  

3.2 DUETT identifies known and novel structural transi-

tions in the cotranscriptional folding pathway of a fluo-

ride riboswitch.  

We next sought to determine if DUETT could identify events in the B. 

cereus fluoride riboswitch cotranscriptional SHAPE-Seq data (Watters, 

Strobel, et al., 2016). The B. cereus fluoride riboswitch is an RNA se-

quence that lies in the 5’ untranslated region of the crcB gene and cotran-

scriptionally folds into mutually exclusive structures that regulate down-

stream transcription depending upon whether the fluoride anion is bound 

(Baker et al., 2012). Previous cotranscriptional SHAPE-Seq experiments 

were done in either fluoride-positive (10 mM NaF) or fluoride-negative (0 

mM NaF) conditions. Manual analysis revealed distinct reactivity patterns 

that are reflective of ligand binding, and the bifurcation of the folding 

pathway in a fluoride-dependent manner. We thus applied DUETT to both 

conditions to identify both known and potentially novel RNA folding 

events.  

3.2.1  Similarity of events before length 69 nt between conditions 

Before the structural divergence at the nascent RNA length of 69 nt, 

DUETT-detected events agree with the proposed model that RNA struc-

tures are similar in both fluoride conditions (Watters, Strobel, et al., 2016). 

Upswings in both conditions occur between 40 nt and 55 nt in bases 15-

16, 24, 27, 30, and 33-34 (Figures 3 and 4), which confirm their unpaired 

state. Additionally, in the fluoride-positive condition, bases 12-13 and 16 

have downswings around length 60 that suggest they form a critical pseu-

doknot, in which two helices are now interleaved, prior to the previously 

proposed length 69 nt structure that contains this pseudoknot. Only base 

12 has a downswing around length 60 in the fluoride-negative condition, 

which could indicate a less stable pseudoknot and thus a less stable ap-

tamer. Base 30 has a consistent upswing in both conditions between 

lengths 49 and 53 nt, and the previously proposed model (Watters, Strobel, 

et al., 2016) suggests that bases 28-30 are paired within a hairpin stem 

spanning nts 28-37 before length 58 nt. This base 30 upswing occurs when 

the hairpin stem theoretically forms (lengths 51-54) and may indicate de-

layed hairpin stability due to its short 3 bps length. The detected events 

before length 69 nt reflect similar RNA structures that form independent 

of the presence of fluoride (Watters, Strobel, et al., 2016). 

3.2.2  Identification of delayed terminator nucleation agrees with 

the previous riboswitch folding model 

A key feature of the B. cereus crcB fluoride riboswitch folding pathway 

uncovered in previous work is a delay in the folding of the terminator RNA 

structure when fluoride is present (Watters, Strobel, et al., 2016). Corre-

spondingly, DUETT identified events that agree with this delayed termi-

nator nucleation. Exclusively in the fluoride-negative condition, bases 12-

16 were previously proposed to unpair by length 77 nt, allowing bases 52-

55 to pair with bases 60-63 (Watters, Strobel, et al., 2016). Both condi-

tions exhibit upswings for bases 52-55 around lengths 70-75 nt due to dif-

ferent reasons: increased reactivity prior to hairpin formation in the fluo-

ride-negative condition (similar to upswings observed before downswings 

in the SRP RNA dataset) and unpaired bases in the fluoride-positive con-

dition. The fluoride-negative bases immediately decrease in reactivity 

(upon pairing off) while the fluoride-positive bases retain high reactivity 

(Supplementary Files 2 and 3). However, DUETT did not identify these 

downswings in the fluoride-negative case due to averaging reactivities 

within the sliding window that causes the upswing data to dominate iden-

tification for several following lengths; we further explore the effects of 

window size in Supplementary Materials. The delayed terminator nuclea-

tion in the fluoride-positive condition manifests as a series of downswings 

around length 90 nt exclusively in the fluoride-positive condition, which 

corresponds to forming the hairpin stem, but only after a delay of about 10 

nts transcribed(Watters, Strobel, et al., 2016). In addition, bases 56 and 59 

exhibit upswings/upramps in both conditions, corroborating their unpaired 

nature within the loop of the terminator hairpin.  

DUETT identified expected events that occur after terminator for-

mation, when transcription is expected to halt exclusively in the fluoride-

negative condition (Watters, Strobel, et al., 2016; Ren et al., 2012). As 

expected by their reactive nature in the fluoride-positive condition (Figure 

4), bases 69-71 and 75 remain unpaired and contain upswings shortly after 

transcription. These upswings are expectedly missing in the fluoride-neg-

ative condition except for bases 69 and 70 (Figure 3), which exhibit unex-

pected upswing at length 95 and 99 nt, respectively. These events may 

have occurred because the RNAP transcribed past the expected termina-

tion site in the bulk cotranscriptional SHAPE-Seq experiment.  

It was previously shown that the double mutant G69A, A70U prevents 

formation of the terminator stem, meaning that their pairing with bases 46-

45 is a requisite of termination (Baker et al., 2012; Watters, Strobel, et al., 

2016). A separate study, using a similar riboswitch sequence, found that a 

single long range reverse Hoogsteen base pair in the region shared by the 

aptamer and terminator stem area is pivotal in functional switching be-

tween termination and antitermination (Zhao et al., 2017). These findings, 

coupled with the base 69 and 70 upswing, suggest that a subpopulation of 

fluoride riboswitch do not form the base pairs leading to increased reac-

tivity and lost terminator function. However, the mechanism is unclear and 

requires further study. This previously overlooked observation demon-

strates DUETT’s ability to identify interesting events for follow-up anal-

ysis. 

3.2.3  Detected events in bases 10 and 48 confirm long-range inter-

actions 

DUETT corroborates two previously reported long-range interactions in 

the fluoride-positive condition: A10-U38 and A40-U48 (Watters, Strobel, 

et al., 2016). These interactions were hypothesized to increase stability of 

the aptamer and persist only when fluoride binds (Watters, Strobel, et al., 

2016). In the fluoride-negative condition, we observe an upswing in both 

base 10 and base 11 at length 60 nt, which corresponds to the opening of 

the initial hairpin which could enable pseudoknot formation during ap-

tamer formation (Figure 3). Conversely these upswings are absent in the 

fluoride-positive condition because the A10-U38 interaction prohibits in-

creased SHAPE reactivity (Figure 4). The other long-range interaction, 

A40-U48, was proposed to unpair between the lengths 77 and 88 nt upon 

terminator hairpin nucleation (Watters, Strobel, et al., 2016), which we 

also observe with an upswing in U48 at length 85 nt in the fluoride-posi-

tive data (Figure 4). 

Additionally, A39 is situated between these two long-range interactions 

and exhibits an unexpected downswing and upswing in the fluoride- neg-

ative condition at 69 and 87 nt, respectively. After 77 nt, A39 exhibits 

structural divergence with an unexpected upswing at 87 nt. Previous NMR 

characterization of this system showed that A39 (A35 in their numbering) 

undergoes local structural dynamics when no fluoride is bound and is sta-

bilized when fluoride is bound (Zhao et al., 2017). These swing events 

may reflect those local structural changes. Conversely, the fluoride-posi-

tive condition lacks this upswing most likely due to the neighboring A10-
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Figure 3. DUETT identifies changes in the B. cereus fluoride riboswitch without fluoride cotranscriptional SHAPE-Seq reactivity matrices. 

When comparing to events identified with the fluoride added condition (Figure 4), DUETT identifies multiple known and novel reactivity events, 

indicated by arrows to nucleotides participating in these events. The figure is annotated as in Figure 2. RNA structures and pseudoknot (highlighted 

in yellow) are drawn from Figure 6 of (Watters, Strobel, et al., 2016). 

U38 long-range interaction and continued aptamer presence. Altogether, 

DUETT detects swing events in bases 10-11, A39, and U48 that are con-

sistent with the proposed aptamer stabilization via long-range interactions. 

3.2.4   DUETT identifies new A22 dynamics 

DUETT identified SHAPE hyperreactivity in A22 via an upswing at 

length 60 nt in the fluoride-positive condition, which was associated with 

aptamer stabilization due to ligand binding (Watters, Strobel, et al., 2016). 

This upswing is followed by a sharp downswing at length 78 nt, while 

another upswing shortly afterwards was undetected. The second upswing 

went undetected due to the short duration of the previous downswing, 

which causes high and low reactivity positions to lump together during the 

sliding window averaging. Afterwards, the reactivity plateaus at a high 

value comparable to length 69 nt. The fluoride-negative condition has sim-

ilar dynamics but are less extreme and were detected as ramps (Supple-

mentary Files 2 and 3) demonstrating that swing and ramp events differ-

entiate small from large changes as intended. We conclude that base 22 

has similar dynamics (except in magnitude) across both conditions until 

about length 90 nt where only the fluoride-positive condition exhibits the 

rebound upswing. The difference in magnitude of A22 reactivity between 

the conditions was previously concluded to be indicative of ligand- medi-

ated aptamer stabilization and destabilization, respectively (Watters, 

Strobel, et al., 2016). While the fluoride-negative downswing was thought 

to be due to aptamer destabilization, the analogous fluoride-positive 

downswing disagrees and lacks a mechanistic explanation since the ap-

tamer is expected to be stable. A22’s complex behavior was overlooked 

earlier due to the visual upper limit (set as a reactivity value of 4) set in 

the original reactivity matrix figures (Watters, Strobel, et al., 2016). While 

the upper limit simplifies data visualization, DUETT accounts for all mag-

nitudes and partially insulated from disadvantages in human visualiza-

tions. Altogether, DUETT identified several expected structural differ-

ences between the fluoride conditions, and we generate multiple hypothe-

ses to explain unknown or unexpected events. 

3.3 Threshold parameters confer a tradeoff between true 

positive and false positive/negative events  

DUETT balances the detection of true positive events with detection of 

erroneous false positive/negative events. Determining this balance high-

lights user preferences; if identifying small magnitude events is  priori-

tized, then thresholds can be relaxed to increase finding true positive  
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Figure 4. DUETT identifies changes in the B. cereus fluoride riboswitch with fluoride cotranscriptional SHAPE-Seq reactivity matrices. 

These results are compared to Figure 3 to identify structural divergences between the fluoride conditions. The figure is annotated as in Figure 3. 

events at the cost of also increasing the number of false positives. 

Parametric sensitivity analysis explores the true positive-false positive 

tradeoff. We demonstrate that large events are retained despite drastic 

threshold parameter adjustments. We highlight two scenarios in the E. coli 

SRP RNA dataset using a stringent and a lenient set of PIR thresholds 

(additional sensitivity tests are found in Supplementary Materials). The 

stringent PIR scenario (100% increase in each threshold) yielded fewer 

overall events (Supplementary Figure S4, right) relative to the original 

baseline (center). False positive events, such as the event in base 44 that 

arose from a single anomalous replicate, are removed. Similarly, qualita-

tively small true positives are also removed: the downswing at length 88 

nt in base 14 and the downswings around 100 nt in bases 28-29. We pre-

viously observed that base 14’s downswing is likely non-spurious and 

marks a new discovery. Similarly, the downswings in bases 28-29 are at-

tributed to their pairing off before the final structure. These removals un-

derscore the tradeoff that while higher thresholds lower false positives, 

they also turn true positives into false negatives. We chose a large increase 

but retained many of the originally detected events, suggesting that large 

events have a wide acceptable range of threshold values. 

Conversely, the lenient scenario (Supplementary Figure S4, left; 50% 

decrease in each threshold) leads to more true and false positives. The up-

swings in bases 26 and 33 around length 90 nt become detected. By in-

spection, these events seem non-spurious and occur concurrently with 

other similar events (Supplementary File 1) leading to the conclusion that 

these are previously undetected true positive events. Conversely, the leni-

ent scenario creates potential false positive events. For example, the up-

swings in base 40 at 118 nt and all upswings in base 44 do not resemble 

upswings. The upswings in base 44 are especially misleading; one repli-

cate has increased reactivity while the others remain flat (Supplementary 

Figure S4). We conclude that the lenient scenario reveals spurious events.  

We chose drastic perturbations to threshold parameter values to inter-

rogate their effect on detection rates. Many originally detected events re-

mained in the stringent scenario and relatively few spurious events arose 

in the lenient scenario, suggesting that our methodology yields concordant 

results across a wide acceptable range of thresholds. We provide addi-

tional sensitivity analysis on window length and linear ramp thresholds in 

Supplementary Materials.  

4 Conclusion 

DUETT emulates human visual inspection of cotranscriptional SHAPE-

Seq data in an automated, efficient and systematic manner to reduce po-

tential user bias discover novel events that are difficult to manually detect. 

Cotranscriptional SHAPE-Seq complements aptamer structure and dy-

namics information (known from crystallography and NMR) with the abil-

ity to probe nascent RNA structures during transcription. When interpret-

ing cotranscriptional SHAPE-Seq data, it is also important to keep in mind 

that halted nascent RNA structures are probed and fleeting structural 

changes are difficult to detect. As we demonstrate, DUETT detects many 

of the previously identified signatures of nascent structures within three 

model systems and identifies several new events absent from manual vis-

ual analysis. Experimentalists can now quickly establish transcription 

lengths and nucleotides of interest from reactivities to be further inter-

preted and developed into a structural model. Additionally, the automated 

analysis allows experimentalists to use their reactivity measure of choice. 
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In this study, we chose ρ reactivities for the ability to compare reactivities 

between different length transcripts and across different experiments. We 

note that correlations within a ρ reactivity vector make interpretation of 

detected events harder, especially when concurrent up and down events 

occur, as it could be reflective of either structural changes or reactivity 

calculation. We hope this method is readily adopted when studying new 

RNA systems, or interrogating publicly available datasets in the RNA 

Mapping DataBase (RMDB) (Cordero et al., 2012). DUETT is a powerful 

method to identify structural events that evade manual identification in 

cotranscriptional SHAPE-Seq data.  
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DUETT methods 

Swing event detection is motivated by PI control  

Feedback control is widely deployed throughout the process systems 

industries to mitigate fluctuations of key process variables about a desired 

system state (Minorsky, 1922). One common application is to maintain 

steady-state response by taking corrective action based on the measured 

deviation of controlled system variables from their nominal steady-state 

values. PI controllers scale the strength of their corrective action based on 

both the proportion (𝑃) to, and integral (𝐼) of, the measured deviation 

from steady state. The 𝑃 and 𝐼 terms provide a convenient framework for 

quantifying the magnitude and duration of the system’s deviation from 

steady state, which we use to detect significant SHAPE reactivity events. 

Swing events are characterized by abrupt changes in SHAPE reactivity 

during transcript elongation. These events may be represented as devia-

tions (∆) about a constant reactivity value:  

∆$= 𝑧$'( − 𝑧 $*+ :$ 

where 𝑖 indexes transcript length, 𝑧 is SHAPE reactivity, and 𝑧 $*+ :$  is 

mean reactivity within a sliding window of length 𝑛 starting at position 

𝑖 − 𝑛 and ending at position 𝑖. DUETT quantifies the absolute magnitude 

and duration of these deviations at each transcript length by adopting both 

𝑃 and 𝐼 terms: 

𝑃$ = ∆$, 

𝐼$ =
(

+
∆$

$'(

$'(*+
, 

where 𝐼 is normalized by the window size. A third quantity captures the 

relative magnitude (𝑅) of deviations: 

𝑅$ =
∆0

1 234 :2

. 

DUETT detects an upswing when each of the 𝑃, 𝐼, and 𝑅 (PIR) values 

exceed set thresholds. Higher 𝑃 and 𝑅 thresholds require that reactivity 

changes are large and distinct enough from the local steady state (Supple-

mentary Figure S1). Higher 𝐼 thresholds ensure that deviations reflect 

sustained reactivity changes rather than brief noise-driven fluctuations 

(Supplementary Figure S1). All threshold values are positive; a zero-value 

denotes constant reactivity.  

Downswing events are detected similarly using the additive inverse of 

the PIR thresholds. The downswing 𝑅 threshold requires a slight modifica-

tion to retain an equivalent magnitude to its upswing counterpart: 

𝑅56,89:+ = −
;<=,>?

(';<=,>?
. 

For example, an upswing event with 50% increase relative to the local 

steady-state reactivity (𝑅56,@A = 0.5) is of equivalent magnitude to a 

downswing event with 33% decrease (𝑅56,89:+ = 0.33). 

We introduce two additional threshold parameters to further mitigate 

the impact of minor fluctuations. We remove swing events that are shorter 

than a specified duration threshold as we assume that structurally in-

formative events generally persist for longer durations (Supplementary 

Table S1). Conversely, we merge swing events separated by a distance 

less than a gap threshold to reject noise-driven fluctuations that inter-

sperse real swing events. 

 Automated parameter selection for swing event de-

tection 

DUETT provides a method to automatically select PIR thresholds for any 

given dataset. Due to the subjective nature of event detection, the auto 

 

Figure S1. Three threshold parameters detect true positive events 

from true negative ones. Swing and ramp events differ in terms of event 

length and have their own set of threshold parameters for detection. 

DUETT detects swing events using a strategy inspired by control theory 

where proportional (𝑃) and relative (𝑅) thresholds filter out noise at low 

and high magnitudes, respectively, and the integral (𝐼) threshold filters out 

anomalous high values that persist for short durations. In silico illustra-

tions and representative PIR values are shown for events in the region of 

interest (grey). DUETT detects ramp events using linear regression, where 

the ramp p-value (𝑝), ramp slope (𝛽) and Durbin-Watson statistic (𝐷𝑊𝑆) 

thresholds filter out high noise, low slope ramps, and swing events that 

may be erroneously classified as ramps, respectively. We show p, 𝛽 and 

𝐷𝑊𝑆 values for the fitted line (solid line). p is shown as -log10(p) so larger 

values pass the set threshold values (dotted line). 

 

mated strategy relies on a heuristic similar to the elbow rule in cluster 

analysis (Ketchen and Shook, 1996). The heuristic identifies a threshold 

combination that balances lenient with stringent thresholds. The automat-

ed search starts with low PIR thresholds where both noise and real events 

are detected. DUETT scans over combinations of increasing PIR threshold 

values (within a user-defined range) and records the number of detected 

events. We expect a sharp decrease in the number of detected events as 

threshold values increase, followed by a leveling off, forming an elbow. 

DUETT identifies the vertex of the elbow—representing detection of true 

events—by finding the PIR threshold values that correspond to a detection 

output closest to the origin. If needed, the automatically identified thresh-

olds serve as a starting point for manual tuning. 

 Ramp event detection using linear regression  

Ramp events correspond to gradual changes in reactivity over broad 

stretches of sequential transcript lengths. The swing event detection meth-

od overlooks ramp events because it emphasizes rapid changes in reactivi-

ty over few transcript lengths. Instead, DUETT detects ramp events using 

a strategy based on linear regression. Given a user-specified ramp length 
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corresponding to the minimum expected ramp length, lines of the form 

𝑦 = 𝛽𝑥 are fit within windows sliding down each column of the SHAPE-

Seq data matrix. Here, 𝑥 is a vector of sequential integers with length 

equal to the ramp length, 𝑦 is the measured reactivities within the corre-

sponding window, and 𝛽 is a regression coefficient. 

A ramp is detected when a fitted line passes three user-specified thresh-

olds: a maximum p-value calculated from a one sample t-test for the re-

gression coefficient, a minimum regression coefficient (𝛽), and a mini-

mum Durbin-Watson Statistic (𝐷𝑊𝑆). Manual tuning of these thresholds 

is required to confidently detect ramp events. Fortunately, these parame-

ters are readily interpretable (Supplementary Figure S1). The p-value 

threshold controls the robustness of event detection against measurement 

noise; low values improve specificity at the expense of sensitivity. The 𝛽 

threshold constrains ramp steepness; high values exclude relatively flat 

ramp events with low average change in reactivity. Finally, the 𝐷𝑊𝑆 

threshold tunes the selectivity of ramp versus swing event detection. 

Swing events yield strong positive autocorrelation among residuals about 

the regression line (Supplementary Figure S1, right panel of row 4), while 

residuals associated with true ramp events are uncorrelated. A 𝐷𝑊𝑆 

threshold of unity precludes misclassification of swing events as ramps by 

filtering events whose sequential residuals are positively correlated 

(Nerlove and Wallis, 1966).  

 Identifying concurrent events 

Multiple events across different nucleotide positions detected at similar 

transcript lengths likely reflect a common structural change. For example, 

a pair of upswings independently detected at two different nucleotide 

positions are involved in the same structural rearrangement if they occur at 

approximately the same transcript length. We label such instances as 

concurrent events by applying a concurrency distance proximity thresh-

old. 

 Computational development and graphical user in-

terface  

DUETT was programmed in the freely available statistical software envi-

ronment R and RStudio. We provide the source code and a graphical user 

interface as an R Shiny app located at 

https://github.com/BagheriLab/DUETT. The app facilitates parameter 

tuning by continually updating figures as parameter values are varied by 

the user. The app also provides a suite of formatting tools for generating 

appropriate figures and tables. 
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Figure S2. Automated PIR threshold selection identifies the balance between too lenient and too stringent parameter sets. DUETT provides an 

automated method to select appropriate PIR thresholds for A) the SRP RNA, B) the fluoride riboswitch under 0mM NaF, and C) the fluoride riboswitch 

under 10 mM NaF datasets. After scanning over potential combinations of PIR threshold values, DUETT identifies the threshold set closest to the origin 

(red point with dotted line from origin). This point corresponds to the elbow criterion identifying the point when spurious detection is avoided while 

retaining true events. The horizontal axis is the sum of all three PIR thresholds and both axes are normalized. This calculation is done in 4-dimensions (𝑃, 𝐼, 
𝑅, and number of events) and the selected threshold values may not appear closest to the origin when plotted in 2D.  
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Figure S3. Similar results are created when applying DUETT to the average of replicates. Figure 1 shows results from identified events that are shared 

in each of the three replicate datasets on the SRP RNA. Here, all three replicates are averaged then event detection is conducted. The PIR thresholds are 

slightly more stringent than in Figure 1 because few events pass all thresholds and are conserved in all replicates. Each PIR threshold was increased by 0.1.  
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Figure S4. Sensitivity analysis of user-defined threshold values illustrates the tradeoff between true positive and false positive/negative 

detection. A) The original PIR thresholds (center) are compared to a lenient scenario (left, 50% decrease in all threshold values) and a stringent 

scenario (right, 100% increase in all threshold values) on the SRP dataset. In general, lenient thresholds increase sensitivity towards small magni-

tude events, but false positive events are detected with greater likelihood. Conversely, stringent thresholds have fewer false positive events, but 

the likelihood of detecting false negative events increases. Large magnitude events tend to be insensitive to large threshold deviations. B) Indi-

vidual nucleotide positions are highlighted where reactivity profiles of all three replicate datasets are shown. Events are annotated as in Figure 1 

except that reactivities and swing events are shown with diamonds. 
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Additional sensitivity analysis 

Window length 

We explore how window lengths affect event detection. Generally, longer 

window lengths lead to higher sensitivity (more true and false positives) 

because reactivities from shorter/earlier transcript lengths affect the aver-

age window used in PIR equations. With a 100% longer window (Sup-

plementary Figure S5 right), this effect is shown with base 14, resulting in 

detected upswings. As a tradeoff, spurious events are included such as the 

downswing in base 37 (Supplementary Figure S5 right). On the other 

hand, a shorter window generally decreases sensitivity (Supplementary 

Figure S5 left). The upswings in base 40 after 75 nt are no longer steep 

enough to be included and the overall number of swing events has de-

creased.  

A longer window does not globally increase event detection sensitivity 

as evident in false negatives for downswings in base 14 at length 87 nt 

(Supplementary Figure S5). This observation is due to two effects. First, 

the transcript lengths before 87 nt have an upward trend, and the longer 

window length averages over lower reactivity transcript lengths and caus-

es the downswing to appear less significant. Second, the integral length for 

𝐼 defaults to the same value as the window length, and longer integral 

lengths lower sensitivity. Instead, specifying a shorter window length (5) 

for the 𝐼 length generally increases sensitivity and recapitulates the down-

swings in bases 11 and 14 (Supplementary Figure S6).  

This analysis demonstrates that longer windows and shorter windows 

generally enhance and decrease sensitivity, respectively, but scenarios 

exist that go against this rule. Our detailed analysis serves as a cautionary 

tale that there are tradeoffs between identifying false and true events. 

Durbin-Watson Statistic 

We provide sensitivity analysis for the Durbin-Watson statistic (𝐷𝑊𝑆). 

We recommend a default setting between 1 and 1.25 as lower values tradi-

tionally correspond to a positive correlation, and we test a lenient (0.1) 

and a stringent threshold (1.5). As expected, the lenient and stringent 

thresholds have more and fewer detected ramps, respectively (Supplemen-

tary Figure S7). The lenient threshold allows linear ramps where the re-

siduals are not uniformly distributed down the length of the ramp. For 

example, the downramp in base 14 has points clustered above and below 

the ramp, and we argue that this pattern does not conform to our expecta-

tions of a ramp and appears more like a downswing (it is detected as a 

downswing). In contrast, the upramp in base 41 appears genuine but is 

removed with the stringent 𝐷𝑊𝑆. Though minor, the flat region around 

length 50 nt creates a sequence of negative residuals that correspond to a 

positive autocorrelation, which fails the stringent 𝐷𝑊𝑆. However, we 

observe that the upramp in base 42 is preserved because it lacks a flat 

region as large as in base 41. These three examples showcase how the 

𝐷𝑊𝑆 threshold parameter removes ramps that resemble swing events 

Overall, we apply large threshold changes and most qualitatively large 

events are still identified in all scenarios. This demonstrates that large and 

clean events can be insensitive to threshold changes, and the true positive-

false positive tradeoff is applicable to qualitatively small or noisy events. 

Consequently, it is likely that the SHAPE-Seq event detector identifies 

large RNA structural events with similar accuracy as a human, but the 

detector can also systematically identify small events whereas a human 

might not. Similarly, RNA structural events are not clearly defined and 

encompass a degree of subjectivity meaning that tradeoffs between identi-

fying true positives and avoiding false positives/negatives must be consid-

ered. Altogether, these complexities justify the need for our quantitative 

and systematic approach. 
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Figure S5. Sensitivity analysis of window length. Window length effect is shown A) in general and B) with specific examples on the SRP dataset. The 

window length determines the number of positions that are averaged together before PIR calculation. Longer lengths generally lead to higher sensitivity of 

true positives because the longer window retains earlier reactivities. In contrast, shorter lengths are less sensitive and generally lead to fewer events and false 

positives/negatives. 
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Figure S6. Higher 𝑰 length generally lowers sensitivity and longer window length does not always raise sensitivity. By default, 𝐼 length is the same as 

the window length (left) but can be specified separately (right). Lower and higher values of 𝐼 length generally increase and lower sensitivity, respectively. 

Examples are drawn from the SRP dataset. 
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Figure S7. Sensitivity analysis of the Durbin-Watson statistic. 𝐷𝑊𝑆 ranges from 0-4 where 2 represents our ideal scenario of no autocorrelation in the 

residuals. We present effects of lower and higher 𝐷𝑊𝑆 thresholds and compare the quality of fitted linear ramps on the SRP dataset. Generally, lower 𝐷𝑊𝑆 

thresholds are more lenient where lines are fitted on less line-like segments. To simplify visual analysis, all swing events were removed. 
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Table S1. Explicit assumptions and design implications in DUETT 

# Assumption Design implication 

1 Low magnitude measurements have noise that appear large in a 

proportional sense 
𝑃 thresholds filter out low magnitude noise 

2 High magnitude measurements have high magnitude noise that 

appear large in an absolute sense 
𝑅 thresholds filter out high magnitude noise 

3 Short-lived swing events are likely due to noise 𝐼 and event length thresholds filter out short events 

4 
Real swing events may become fragmented due to noise 

Merge together short but adjacent swing events via event 

gap parameter 

5 True linear ramps have a clean and low noise ramp Ramp p-value threshold filters out noisy ramps 

6 True linear ramps have a non-trivial slope 𝛽 threshold (slope) filters out shallow ramps 

7 Ramp residuals should be uniform down the length of the ramp; 

Ramps should be longer than swing events 

Durbin-Watson Statistic threshold filters out non-uniform 

residuals; avoids ramps fitted on swing events 

8 Events that occur nearby in terms of transcript length are likely to 

be related 
Concurrent events are identified within a specified length 
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Table S2. Automated PIR and user-defined linear ramp threshold parameters for the SRP and fluoride riboswitch 

examples 

 

SRP RNA settings  F riboswitch settings (0 mM NaF left, 10 mM NaF right) 

PIR  PIR 

Window length 9  Window length 9 9 

𝑃 0.3  𝑃 0.35 0.3 

𝐼 0.025  𝐼 0.05 0.05 

𝑅 0.1  𝑅 0.025 0.025 

𝐼 length default  𝐼 length default default 

Noise length 4  Noise length 4 4 

Event gap 1  Event gap 1 1 

 
   

 
 

Ramp  Ramp 

Ramp length 30  Ramp length 30 30 

p-value 1.00E-04  p-value 1.00E-04 1.00E-0.4 

𝛽 0.15  𝛽 0.15 0.15 

𝐷𝑊𝑆 1.25  𝐷𝑊𝑆 1.25 1.25 

 
   

 
 

Concurrent distance 1  Concurrent distance 1 1 
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Supplementary File descriptions 

Supplementary Files 1-3 contain the profiles for each nucleotide in E. coli SRP and the B. cereus crcB fluoride riboswitch datasets without fluoride and with 

fluoride, respectively. Upswings, downswings, upramps, and downramps are shown with red diamonds, blue diamonds, red lines, and blue lines, respective-

ly. Concurrent events are denoted with a dotted green line. 
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