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Abstract 
Non-coding transcriptional regulatory elements are critical for controlling the spatiotemporal 

expression of genes. Here, we demonstrate that the number of bases in enhancers linked to a 

gene reflects its disease pathogenicity. Moreover, genes with redundant enhancer domains are 

depleted of cis-acting genetic variants that disrupt gene expression, and are buffered against 

the effects of disruptive non-coding mutations. Our results demonstrate that dosage-sensitive 

genes have evolved robustness to the disruptive effects of genetic variation by expanding their 

regulatory domains. This resolves a puzzle in the genetic literature about why disease genes 

are depleted of cis-eQTLs, suggesting that eQTL information may implicate the wrong genes at 

genome-wide association study loci, and establishes a framework for identifying non-coding 

regulatory variation with phenotypic consequences.  
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Introduction 
Non-coding regulatory elements, such as transcriptional enhancers, are critical for the precise 

spatiotemporal regulation of gene expression. Transcriptional regulation is a highly complex 5 

process often mediated by arrays of enhancer elements separated from their regulated genes 

by over one megabase1. Studies in Drosophila have demonstrated that key developmental 

genes are often regulated by multiple “shadow” enhancers with redundant activity patterns to 

protect against genetic perturbations1-3. Recent work suggests that a similar organizational 

structure may be present in mammalian genomes. Mammalian developmental genes have been 10 

reported to be near more enhancer elements than the average gene4,5, and targeted deletions 

of ultraconserved enhancers regulating key developmental genes has led to viable mice, 

occasionally with subtle abnormal phenotypes6-8. Moreover, differences in activity of enhancer 

elements are often not reflected by changes in gene expression9-11.  

 15 

In keeping with the key role that non-coding enhancer elements play in gene regulation, many 

groups have recently shown that enhancers are enriched for disease-associated common 

genetic variants12-14. In contrast, disease-associated rare variants have mostly been identified 

within the protein-coding regions of genes, and studies employing whole-exome sequencing 

(WES) have effectively implicated genes and disease-causing mutations in conditions including 20 

epilepsy, idiopathic pulmonary fibrosis, ALS, and others15-17. Despite intense interest in 

developing complementary approaches to implicate rare non-coding disease mutations, 

progress has been limited, and many studies employing whole-genome sequencing (WGS) 

have failed to discover equivalently large sets of rare variant signals in non-coding regions18-21. 

Our limited understanding of enhancer biology is a major roadblock in the successful application 25 

of WGS for disease diagnosis. In particular, disruptive non-coding mutations are difficult to 

recognize, as the specific functional nucleotides within enhancers remain unknown22-24. The 

target genes of enhancers are also poorly resolved, as experimental methods have limited 

resolution and/or limited throughput, while computational methods often suffer from poorly 

understood accuracy23,25-28. These limitations complicate the systematic study of enhancers in 30 

rare disease genetic mapping studies. Thus, the development of a framework to study 

enhancers in human disease will have major implications for genetic mapping studies.  

 

Inspired in part by the shadow enhancer model, we hypothesized that the disease pathogenicity 

of a gene could be predicted by its regulatory landscape. Here, we use computational 35 

predictions of enhancer-gene interactions to develop a simple scoring system to rank genes by 
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the number of functional regulatory nucleotides in their enhancer elements. Remarkably, this 

scoring system, which we term the “enhancer domain score”, is highly reflective of gene 

pathogenicity and is independent of and complementary to existing metrics of intolerance and 

constraint. This result also provides a genome-wide assessment of the performance of 40 

computational methods for predicting which important enhancers regulate human genes. We 

show that the enhancer domain score negatively correlates with whether the associated gene 

carries a cis-acting eQTL, suggesting that mammalian disease genes have evolved a 

robustness to regulatory genetic variation, similar to past observations in Drosophila. Notably, 

candidate causal genes at genome-wide association study (GWAS) loci have high enhancer 45 

domain scores, suggesting these genes may be less likely to be discovered using eQTLs. 

Indeed, we provide evidence showing that eQTL information tends to implicate the wrong causal 

genes at these GWAS loci. Finally, we show that the identification of these enhancer regions of 

genes provides an appropriate framework for the identification of disease-causing mutations in 

regulatory sequences and emphasizes the importance of using approaches that assess the 50 

cumulative burden of genetic variation falling in implicated enhancer regions.  

Results 

Genes with large functional regulatory domains are associated with developmental 

diseases 

We hypothesized that the transcriptional regulatory landscape of a gene reflects properties of 55 

the gene itself. We therefore sought to construct an enhancer regulatory score for human genes 

and assess its ability to prioritize genes important in human disease (Fig. 1A). The association 

of cis-acting regulatory elements with their target genes remains an outstanding problem in the 

field of genomics and gene regulation23,25. While many approaches have been developed to 

address this challenge, most methods are currently constrained to a limited number of enhancer 60 

elements or tissue types. To generate a genome-wide compendium of transcriptional enhancer 

elements and their target genes, we initially relied on predictions based on correlation between 

predicted enhancer activity and gene expression from 127 human tissues profiled from the 

Epigenome Roadmap project using the approach developed by Ernst et al. and Liu et al. 

(“activity-linking”, Fig. 1B)4,29.  65 

 

Under the shadow enhancer model, developmental genes in Drosophila have multiple 

redundant enhancers to buffer against deleterious regulatory mutations2,3. We therefore 

hypothesized that human genes with more linked enhancers are more important in mammalian 
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development and, as a consequence, human disease. To test this hypothesis, we ranked genes 70 

by five metrics that reflect the size of their transcriptional regulatory elements:  

 

(i) The number of discrete enhancer elements linked to a gene  

(ii) The total number of nucleotides within all linked enhancers 

(iii) The total number of nucleotides that show evolutionary conservation within all 75 

linked enhancers (union of conserved elements across vertebrates, placental 

mammals and primates, see Fig. S1)  

(iv)  The total number of nucleotides in cis-regulatory modules predicted by the 

UniBind database within linked enhancers30 

(v) The total number of nucleotides in transcription factor binding sites annotated by 80 

the UniBind database within linked enhancers30 

 

Strikingly, genes highly ranked by these metrics are significantly enriched for haploinsufficient 

genes (Fig. S2), developmentally important genes in mouse (Fig. 1C), and genes deposited in 

the Online Mendelian Inheritance in Man (OMIM) database and linked to human disease (Fig. 85 

S2), suggesting a general biological principle whereby developmentally-important genes have 

larger functional regulatory domains. Among the five metrics tested, the total number of 

conserved nucleotides within all linked enhancers (metric #3) was consistently the most 

enriched metric for disease-relevant genes (Fig. 1C, Fig. S2). In subsequent analyses we use 

this metric as a proxy for the total number of functional elements in linked enhancers. We refer 90 

to this as a gene’s “enhancer domain score”, or “EDS” (list of genes by EDS available in Table 

S1, distribution of EDS for all genes shown in Fig. 1D).  

 

We observed that genes ranking highly by EDS are enriched for many different disease gene 

sets, including OMIM, Developmental Disorders Genotype-Phenotype Database (DDG2P) 95 

genes31, and genes with a “likely pathogenic” or “confirmed pathogenic” ClinVar variant (Fig. 

1E). These “high EDS genes” (top 3000 genes by EDS, cut-off chosen based on comparable 

numbers of human constrained genes, Methods) are also substantially more likely to be 

haploinsufficient and lead to embryonic lethality when knocked out in mouse. Furthermore, this 

enrichment persists over a range of EDS cut-offs and is strongest for genes with the greatest 100 

EDS (Fig. 1F,G). As a negative control, we note that high EDS genes are strongly depleted for 

olfactory receptors (Fig. 1E), consistent with previous reports that mutations in olfactory 

receptors are tolerated in humans and do not lead to developmental disease31,32. We also split 
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DDG2P developmental disease genes by the affected organ, and observed that high EDS 

genes are enriched for developmental diseases affecting a wide range of human organs (Fig. 105 

1H)31. This indicates that the EDS score is not driven by the effect of any individual tissue but 

Figure 1. Enhancer domain score is associated with gene pathogenicity. (A). Overview of the approach to quantify the enhancer 
domain size for a gene based on linked enhancer elements. (B) Overview computational approach to linking enhancers to nearby 
genes (”Activity-linking”). Enhancer-gene links are assigned by the correlation between enhancer activity and gene expression across 
127 human tissues. (C) Comparison of enrichment for MGI mouse essential genes using genes ranked highly by five regulatory metrics: 
total number of enhancers, total count of enhancer nucleotides, total count of conserved enhancer nucleotides, total number of 
nucleotides within predicted cis-regulatory modules (CRM), and total number of nucleotides within transcription factor binding sites 
(TFBS). The top 3000 genes ranked by each metric are used for the enrichment foreground set. Conserved enhancer nucleotides 
represents union of conserved nucleotides across vertebrates, placental mammals and primates (D) Distribution of enhancer domain 
scores using activity-linking to assign enhancers to nearby genes. (E) Genes ranking highly by the enhancer domain score are enriched 
for disease-relevant gene sets. Top 3000 genes used as foreground. (F,G) High EDS genes are enriched for MGI essential genes 
(panel F) and OMIM disease genes (panel G) across a wide range of cut-offs. Red area corresponds to top 3000 genes, used in all 
subsequent analyses as “high EDS genes”. (H) Enrichment of high EDS genes within developmental disease gene sets is high across 
disease genes that affect a variety of human organs.  
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that the relationship between the functional enhancer nucleotide count and gene pathogenicity 

may represent a fundamental biological principle.  

 

To control for possible artifacts from the enhancer-gene linking approach used, we repeated the 110 

analyses presented above using an independent enhancer-gene linking approach (“proximity-

linking”) that assigns enhancers to their nearest gene using the GREAT algorithm and does not 

consider enhancer activity patterns or gene expression33. We observed that genes ranking 

highly under the proximity-linking EDS are likewise enriched for the disease gene sets (Fig. S3), 

indicating the enrichment observed for activity-linking EDS is not due to artifacts from the 115 

activity correlation approach used above.  

 

The enhancer domain score provides information independent of population-based 

metrics of gene intolerance and constraint  

In recent years, constraint-based metrics of gene essentiality have been developed that reflect 120 

the absence of loss-of-function (LoF) variants (pLI32) or the discordance between LoF, 

missense, and synonymous variants in the human population (RVIS34). Genes that rank highly 

by the pLI or RVIS metrics have been shown to be significantly more likely to be involved in 

human disease. These rankings are therefore commonly applied to prioritize causal genes from 

clinical genetics studies35. To investigate whether the enhancer domain score adds value 125 

beyond constraint-based gene metrics, we selected the top 3000 genes ranked by each method 

(EDS, pLI and RVIS), corresponding to a pLI cut-off of 0.918 and RVIS cut-off of 18.5%, and 

compared each set to identify similarities and differences in disease relevance. We used this 

cut-off so that each set has the same number of genes to ensure a fair comparison among 

methods. We observed that genes ranked highly by pLI are significantly more likely to be ranked 130 

highly by RVIS, and vice versa (~50% mutual overlap for top 3000 genes from each set), 

consistent with the common origins of both metrics in population-based sequencing data (Fig. 

2A). In contrast, fewer genes with high EDS scores are ranked within the top 3000 genes by 

either pLI or RVIS (~25% vs. 50% overlap between pLI and RVIS, Fig. 2A, Fig. S4).  

 135 
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GO enrichment of genes unique to either pLI/RVIS or EDS reveals that the former gene set 

(high pLI or high RVIS, low EDS) is enriched for core, housekeeping cellular functions including 

mRNA processing, DNA replication and cell division (Fig. 2B, Table S2). These genes are 

essential to cellular function, but not involved in a specific human developmental process. In 

Figure 2. Enhancer domain score is complementary to gene constraint metrics. (A) Venn diagram overlap of top 3000 genes 
ranked by pLI, RVIS and enhancer domain scores. High EDS genes sum to 3001 due to a tie. (B) Top GO categories enriched in 
pLI/RVIS-only gene sets (top, red) and EDS-only gene sets (bottom, blue). Full list of GO enrichments listed in Tables S2 and S3. (C) 
Top, Top enriched UniProt categories in EDS-only gene sets. Bottom, examples of homeobox transcription factors with high EDS 
rank and low pLI/RVIS ranks (outside top 3000 for both pLI and RVIS). (D) RVIS and pLI scores are strongly dependent on gene 
coding sequence (CDS) length. Shaded area corresponds to commonly applied cut-offs for gene intolerance. (E) Distribution of CDS 
lengths for protein coding genes. Red line corresponds to 2kb, with 65% of human genes less than 2kb in length. F. The EDS metric 
is less correlated with CDS length (x-axis) than pLI/RVIS using activity-linking enhancer domain scores (y-axis). G. Left, Venn 
diagram groups of gene sets corresponding to bars in bar plot. Middle, EDS (activity-linking) in genes with CDS length < 2kb is more 
predictive than pLI or RVIS for genes in OMIM database. Right, In genes with CDS length > 2kb, greatest enrichment for OMIM 
genes observed when considering genes ranked highly by all three metrics (pLI, RVIS and EDS). 
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contrast, the latter gene set (low pLI and low RVIS, high EDS) is enriched for genes involved in 140 

pattern specification, embryonic development and organ development GO categories (Fig. 2B, 

Table S3). As a particularly striking example of the discrepancy between EDS and constraint-

based metrics, we noticed that genes with high EDS but poor pLI/RVIS scores are significantly 

enriched for the “Homeobox” UniProt category (Fig. 2C, FDR<2.8x10-28), including members of 

the HOX, IRX, NKX and PITX families (Table S3). Many of these genes have well-documented 145 

roles in congenital disease, including NKX2-5 for congenital heart disease, HOXD13 for 

synpolydactyly and PITX1 in limb malformations36-38 (Fig. 2C). In aggregate, these 88 

homeobox genes have a median pLI of 0.43 and RVIS percentile of 47%, dramatically weaker 

than the commonly-applied cut-offs of 0.90 for pLI and 20% for RVIS, illustrating that these are 

not borderline genes that were narrowly missed by pLI and RVIS (Fig. 2C).  150 

 

We investigated the reason why many critical developmental transcription factors and other 

congenital disease genes would rank poorly by pLI and RVIS, and noticed that gene length is a 

major factor behind this discrepancy (Fig. 2D). In particular, 65% of all human genes have 

coding sequences less than 2kb in length (~667 amino acids, Fig. 2E). These short genes have 155 

3.1-fold and 4.4-fold fewer pLI/RVIS-defined highly constrained genes compared to long genes 

with coding sequences longer than 2kb (p=4.44x10-272 for pLI, p<2.2x10-308 for RVIS, Fisher’s 

exact test). This is likely due to the increased statistical power present for long genes to identify 

a depletion of LoF and missense variants in comparison to expectations. This length-dependent 

effect is especially pronounced for genes with coding sequences less than 1kb in length, where 160 

only 5.0% and 1.3% of genes reach the pLI and RVIS intolerance thresholds, compared to 

35.6% and 46.2% for long genes, respectively. In contrast, we observe that while EDS is also 

associated with gene length (Fig. 2F, Fig. S4B), the effect is more attenuated than pLI and 

RVIS scores.  

 165 

To further investigate the effect of gene length on disease gene prioritization, we compared the 

enrichment of OMIM disease genes for different gene sets from Fig. 2A. For shorter genes 

(coding sequence < 2kb), EDS is the only informative metric for OMIM gene enrichment (group 

“C” vs. groups A, B, D in middle panel of Fig. 2G), while for long genes, the greatest enrichment 

of OMIM genes is observed for the set of genes that rank highly by all three metrics (group “D” 170 

in right panel of Fig. 2G). Collectively, these results demonstrate that the EDS is an informative 

metric for prioritizing disease genes, and that the EDS is complementary to population-based 

constraint metrics such as pLI and RVIS. Of particular importance to interpreting variation in 
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patient genomes, the EDS metric provides an approach for recognizing disease-causing genes 

that are too small to provide sufficient guidance about pathogenicity using intolerance and 175 

constraint scores based on currently available population genetic data.  

 

Enhancer domain scores in individual organs reflects specific disease phenotypes 

The activity of an enhancer is often restricted to a small set of tissues. We therefore reasoned 

that the number of functional nucleotides in tissue-specific enhancers could predict the affected 180 

tissues for developmental disease genes. In contrast, pLI and RVIS are metrics that reflect the 

effects of purifying selection at the level of the organism and currently cannot be adapted to 

generate tissue-specific constraint scores. To calculate a tissue-specific enhancer domain 

score, we split the tissues used to calculate the original EDS into 18 “tissue groups” that reflect 

different organs of the body (see Table S4 for grouping). We counted the number of conserved 185 

regulatory nucleotides for tissue-specific enhancers present in each of the 18 tissue groups to 

obtain a tissue-specific EDS (Fig. S5A, see Methods). Any individual tissue group will have 

fewer linked enhancers than the full set of 127 tissues. Indeed, a median of 2,354 genes in the 

18 tissue groups were assigned a tissue-specific EDS, in contrast to 19,038 genes for the 

original EDS (Fig. S5B,C). Given the greater influence of noise, we only considered the top 250 190 

genes (top ~10%) ranked by tissue-specific EDS per tissue group as a proof-of-concept 

analysis.  

 

To assess whether the tissue-specific enhancer domain score is informative, we considered the 

affected organs for diseases involving the top 250 genes of each tissue-specific EDS. We relied 195 

on annotations from the DDG2P database that includes clinician-curated information on the 

organ specificity of developmental diseases31. We observed that genes involved in diseases 

affecting different organs are enriched for the corresponding tissue-specific EDS. For example, 

genes with associated musculature phenotypes are significantly more likely to rank highly by the 

skeletal muscle-specific EDS. Additionally, genes with associated 200 

“heart/cardiovascular/lymphatic” phenotypes are significantly more likely to rank highly by the 

heart and fat-specific EDS (Fig. S5D). These results offer a demonstration that the count of 

functional nucleotides within tissue-specific enhancers can reflect individual organs affected by 

disease genes. 

 205 

The enhancer domain score reflects resilience against genetic perturbations and 

complexity of gene expression  
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We investigated three possible explanations for the strong relationship between EDS and 

disease-relevance: genes with larger regulatory domains (i) have more complex spatiotemporal 

gene expression patterns, (ii) are more resistant to environmental perturbations, or (iii) are more 210 

resistant to perturbation from genetic variants.  

 

First, we investigated the spatiotemporal expression patterns of high EDS genes by considering 

the number of tissues or cell types in which they are expressed. We expect that genes with the 

least complex expression patterns would be ubiquitously expressed (i.e. promoter-driven 215 

constitutive expression), while those with more complex expression patterns might be 

expressed in an intermediate number of tissues, reflecting more precise gene expression 

regulation. We considered the 18 tissue groups from the Roadmap Epigenomics Project from 

above, and observed that genes with higher EDS bins are indeed less likely to be ubiquitously 

expressed, and are more likely to have expression in an intermediate number of tissues (Fig. 220 

S6A,B). As many of these 18 tissue groups are adult tissues and could behave differently from 

earlier developmental time points, we also considered two sets of fetal tissues: 1) a subset of 8 

embryonic tissues from the Roadmap Epigenomics Project samples, and 2) 87 cell type clusters 

identified from single-cell sequencing of 50+ mouse organs, tissues and cell lines at different 

developmental time points39. Both developmental gene expression datasets likewise indicate 225 

that fewer high EDS genes have ubiquitous expression, and are instead more likely expressed 

in an intermediate number of tissues (Fig. S6C-F). These results suggest that the enhancer 

domain score is in part connected with a gene’s spatiotemporal gene expression pattern. 

 

Second, we investigated whether genes with greater EDS are more resistant to environmental 230 

perturbations. For this analysis, we quantified the stability in gene expression across human 

individuals. We used data from the GTEx consortium40, which has generated RNA-seq data 

collected from ≥70 adult human individuals in 48 different human tissues (range: 70 to 491 

individuals per tissue). Surprisingly, stability in gene expression is inversely correlated with 

EDS, as genes with the largest regulatory domains have the most variable expression across 235 

individuals (Fig. S7A). As the GTEx consortium profiled only adult post-mortem samples, we 

also considered the possibility that expression of high EDS genes is highly constrained at earlier 

developmental time points. We therefore compiled gene expression data from panels of human 

iPS-derived cardiomyocytes (42 individuals41) and iPS-derived sensory neurons (51 

individuals42). Both iPS-derived cell types have been reported to exhibit fetal-like gene 240 

expression patterns42,43. We observed the same trend as seen in adult tissues where high EDS 
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percentile genes have greater expression variability, suggesting this is a general, rather than 

adult-specific, trend (Fig. S7B,C). Together, these data suggest that larger regulatory domains 

do not promote more stable gene expression patterns, but instead that high EDS genes have 

greater variability in gene expression across individuals. 245 

 

Finally, we investigated whether a greater number of functional regulatory nucleotides makes a 

gene more resistant to expression perturbation from genetic variants. We quantified the 

proportion of eGenes, which are genes affected by expression quantitative trait loci (eQTLs) that 

in consequence show allele-dependent differences in expression across human individuals40. 250 

Under a null model with no regulatory buffering, we would expect that high EDS genes are more 

likely to be eGenes, owing to their larger regulatory elements that have more opportunities to 

overlap disruptive genetic variants. Instead, in each of the 48 GTEx tissues, we observed that 

high EDS genes are ~20% less likely to be eGenes than all genes (p=4.16x10-24, paired t-test 

across 48 tissues, Fig. 3A,B, Fig. S8A,B). We observed a similar trend for cell lines resembling 255 

earlier developmental time points using eQTL data from iPS-derived cardiomyocytes and iPS-

derived sensory neurons (Fig. S9), indicating this trend is not specific to adult tissues. We also 

compared the coefficient of determination for predicting gene expression across GTEx 

individuals using local, common genetic variation (i.e. elastic net R2 in PrediXcan), and 

observed that high EDS genes have significantly weaker R2 values than all genes (Figs. 3D-F, 260 

S10 and S11). Together, these results suggest that a high regulatory nucleotide count buffers a 

gene’s expression against the effects of genetic variation. 

 

To explore the mechanism by which high EDS genes are buffered against regulatory genetic 

variation, we hypothesized that the enhancer domain score reflects, at least in part, the degree 265 

of regulatory redundancy available for a gene. To test this possibility, we quantified the degree 

of enhancer redundancy per gene by calculating a pairwise Jaccard index for enhancer activity  

across 127 human tissues between all pairs of enhancers regulating a gene (Figs. 3G and 

S12A). Consistent with our hypothesis, we observe that genes with a high pairwise Jaccard 

index (i.e. the gene has multiple enhancers with similar activity patterns across tissues) are less 270 

likely to be eGenes, across a wide range of EDS bins (Figs. 3H, S8D and S12B,C). These 

results suggest that the relationship between EDS and eGenes is due at least in part to the 

evolution of redundancy of regulatory sequence.  
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Figure 3. Genes with high EDS and redundant enhancer domains are resilient to genetic perturbations. (A) Top 3000 EDS 
genes are significantly depleted for eQTL eGenes from the GTEx project. Error bars correspond to standard deviation of depletion 
(normalized to the set of “All genes”) across 48 GTEx tissues with n 70 samples. (B) eGene depletion depends on a gene’s EDS 
ranking, with the top 20% of genes most depleted. Error bars represent standard deviation across 48 GTEx tissues tested. All values 
are scaled to the mean rate of eGenes across percentile bins for each tissue, as GTEx sample sizes, and therefore statistical power, 
differ per tissue. (C) Depletion of eGenes in high EDS gene set persists after restricting to highly constrained genes. Error bars 
correspond to standard deviation across 48 GTEx tissues. p-values from Fisher’s exact test. (D) Inverse relationship between EDS 
percentile and PrediXcan R2 for gene expression using GTEx dataset across 48 tissues. Proportion of genes with predicted gene 
expression R2>0.1 by elastic net regression in Wheeler et al. 2016 using local common genetic variation. (E) Inverse relationship 
between EDS percentile and median PrediXcan elastic net R2 of genes (values from Wheeler et al. 2016). Only subset of genes with 
significant heritability (FDR<0.1) used for calculations. (F) Genes in top 20% EDS bin (blue) have lower PrediXcan predicted expression 
R2 compared to all other genes (red). Density plots for all 48 GTEx tissues in Figs. S10 and S11. p-value from Mann-Whitney U test for 
the two full distributions (i.e. without binning genes with R2>0.25). (G) Identification of genes with high enhancer redundancy by 
quantification of pairwise enhancer activity patterns across human tissues Left, Example gene with high enhancer redundancy. Right, 
Example gene with low enhancer redundancy. (H) High enhancer redundancy is associated with reduced rate of eGenes (orange) 
compared to low redundancy genes (blue). p-values correspond to paired t-test between high and low Jaccard index bins conducted 
across 48 GTEx tissues, error bars represent standard deviation. Proportion of eGene values were scaled to the mean value of all bins 
in Fig. 3B  
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The GTEx consortium previously observed that genes with high LoF intolerance were also 275 

depleted as eGenes, and attributed this effect to purifying selection against deleterious 

regulatory variants44. To test these two possibilities (regulatory buffering vs. purifying selection 

in the regulatory regions of genes), we quantified the depletion of eGenes in the subset of highly 

constrained genes (pLI>0.9 or RVIS <20%). Consistent with the purifying selection hypothesis, 

we observed that highly constrained genes have a significantly lower proportion of eGenes 280 

compared to all genes (~15% decrease, p=6.45x10-14, Fisher’s exact test, Fig. 3C and S8C). 

However, within these highly constrained human genes, genes with high EDS are even less 

likely to be eGenes than compared to all highly constrained genes, demonstrating a role for 

regulatory buffering as well (~14% decrease from all highly constrained genes, p=6.58x10-14, 

paired t-test across 48 tissues). These results suggest that regulatory buffering and purifying 285 

selection act together to reduce the likelihood of eQTL linkages for high EDS genes. 

 

eQTLs tend to nominate non-causal genes at GWAS loci  

Genetic mapping of complex diseases has revealed that most association signals reside in non-

coding DNA regions. As enhancer elements can regulate genes over 1Mb away, the 290 

identification of causal genes at these loci remains an outstanding problem. Given that the EDS 

framework is informative for interpreting rare diseases, we hypothesized that it also applies to 

complex human traits and diseases. We considered loci from ten genome-wide association 

studies based on the diversity of affected organ systems and large number of significant genetic 

loci implicated in each study (>75 loci per study, studies listed in Table S5)45-54. Consistent with 295 

the results we obtained for Mendelian diseases (e.g. Fig. 1E,H), we observed that in nine of the 

ten GWASs tested, candidate GWAS genes (initially defined as the single nearest gene to each 

“lead SNP”, commonly selected as the SNP with the strongest p-value) are significantly 

enriched for high EDS genes, confirming that genes involved in complex human traits and 

diseases have high enhancer domain scores (Fig. 4A).  300 

 

As most GWAS loci are non-coding and believed to influence gene expression, many 

investigators have used eQTL information to prioritize causal genes at individual GWAS loci45-54, 

and have integrated eQTL and GWAS data to perform transcriptome-wide association studies 

(TWAS) for discovering causal genes genome-wide55-57. While applying eQTL information to 305 

prioritize biologically relevant causal genes is appealing, our data indicate that (i) GWAS genes 

have higher-than-normal EDS (Fig. 4A), and (ii) genes with high EDS are 
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Figure 4. Candidate causal genes at GWAS loci have high EDS and are different from eQTL targets. (A) Candidate GWAS genes 
from ten GWAS studies are enriched for high EDS genes. Candidate GWAS genes were identified by selecting the single nearest gene 
to the lead SNP at each GWAS locus. p-values are from Fisher’s exact test of the proportion of high EDS genes within candidate 
GWAS genes compared to all genes. (B) eQTL targets at GWAS loci have lower EDS scores than nearest genes. Comparison of 
proportion of high EDS genes within the set of eQTL target genes at GWAS loci vs. nearest genes. p-values from Fisher’s exact test of 
proportion of high EDS genes in each gene set. (C) Example comparison of the entire distribution of EDS scores for nearest genes vs. 
eQTL targets for one GWAS study (resting heart rate). p-value from Mann-Whitney U test of EDS scores for genes in each gene set. 
Pseudocount of 1 added before log transformation. (D,E) Significantly enriched GO biological process terms for sets of nearest genes, 
eQTL target genes and TWAS significant genes for two GWAS studies. Full list of all enriched GO terms for ten GWAS studies 
considered are available in Table S5. (F) Literature-based causal genes at GWAS loci are mostly not eQTL targets. eQTLs were 
identified from the GTEx project and selected from any available tissue. Best eQTL gene was selected on the basis of the strongest p-
value. List of loci and correct assignments available in Table S5. (G) Literature-based causal GWAS genes have higher EDS scores 
than eQTL targets of the GWAS loci. p-value from Mann-Whitney U test. Pseudocount of 1 added before log transformation.  
 

Enrichment of high EDS genes at GWAS loci

31 of 74 (42%) nearest genes have high EDS

21 of 103 (20%) eQTL targets have high EDS
(some loci have multiple eQTL targets)

Height GWAS Resting Heart Rate GWAS
eQTL target genes (1290 genes)
No GO Biological Process category with FDR<0.05

eQTL target genes (134 genes)
No GO Biological Process category with FDR<0.05

TWAS significant genes (617 genes)
No GO Biological Process category with FDR<0.05

A B C

D E

Cartilage development

Chondrocyte development

Skeletal system development

Negative regulation of transcription
from RNA polymerase II promoter

Positive regulation of transcription
from RNA polymerase II promoter

0 2 4 6 8
-log(FDR for GO BP enrichment)

FDR=0.05
Nearest genes (599 genes): GO Biological Processes

Cardiac muscle fiber development

Membrane depolarization during
SA node cell action potential

Muscle contraction

Membrane depolarization during
cardiac muscle cell action potential

Regulation of heart rate
by cardiac conduction

0 1 2 3
-log(FDR for GO BP enrichment)

Nearest genes (75 genes): GO Biological Processes
FDR=0.05

20 more
enriched terms

eQTL found, best eQTL gene is literature causal gene

eQTL found, literature causal gene not present

eQTL found, literature causal gene present but not best

No eQTL at GWAS locus

41

18

15

8

F 82 GWAS loci with literature-based causal genes G Literature causal gene EDS vs. eQTL targets

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

High EDS genes

pMann-Whitney = 8.24x10-6

Nearest genes

eQTL targets

log10(enhancer domain score)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

High EDS genes

pMann-Whitney = 3.3x10-3

Nearest genes

eQTL targets

log10(enhancer domain score)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Genes near resting heart rate GWAS loci

Nearest gene implicates literature-based causal gene at 56 of 82 loci (68%)

All genes
Blood Pressure

Lipid traits
Height

Age of Menarche
IBD (Crohn’s/UC)

Schizophrenia
T2D / CAD

Obesity
Atrial Fibrillation

Resting Heart Rate

0 1 2

G
W

A
S

 tr
ai

t

Fold-enrichment of high EDS genes

p=2.05x10-7

p=9.06x10-9

p=0.08
p=9.32x10-3

p=1.42x10-7

p=3.37x10-14

p=8.02x10-8

p=3.32x10-4

p=1.26x10-4

p=5.17x10-10

TWAS not performed

eQTL targets have
lower EDS than nearest gene

0.00 0.25 0.50 0.75 1.00

No difference

T2D / CAD
Atrial fibrillation

Resting Heart Rate
Schizophrenia

Obesity

Fold-difference: high EDS genes in
eQTL targets vs. nearest gene

p=2.82x10-3

Lipid traits p=0.076

p=2.60x10-3

p=4.88x10-8

p=7.52x10-3

p=1.77x10-2

Height
Blood Pressure

Age of Menarche
IBD (Crohn’s/UC) p=1.50x10-4

p=1.14x10-5

p=0.12
p=1.90x10-4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2018. ; https://doi.org/10.1101/459123doi: bioRxiv preprint 

https://doi.org/10.1101/459123
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

depleted from being eGenes (Fig. 3). Furthermore, GWAS loci tend to have more SNPs in 

linkage disequilibrium14, leading to a greater likelihood that the locus is also associated with 310 

additional eQTL regulatory signals unrelated to the trait of interest. When considered together, 

these observations suggest that eQTL prioritization approaches could be prone to implicating 

wrong genes with low EDS due to regulatory buffering at true causal genes.  

 

To test this possibility, we first compared the EDS scores of eQTL target genes at GWAS loci 315 

against the EDS scores of nearest genes, the default but imprecise approach for assigning 

genes to each GWAS locus26,28. Consistent with our hypothesis, the EDS scores of eQTL target 

genes were significantly lower than the nearest genes (fold difference < 1 for all ten GWASs, 

p<0.05 for 8/10 GWASs, Mann-Whitney U test). This trend persisted when only considering 

eQTLs identified in specific disease-relevant tissues (Fig. S13). These data indicate that eQTLs 320 

have a tendency to implicate low EDS genes (Fig. 4B,C).  

 

The discrepancy between nearest gene targets and eQTL targets can be due to two effects:  

 

(i) Current eQTL studies often implicate incorrect, non-causal genes. True causal genes 325 

have higher EDS scores and therefore require greater eQTL sample sizes to detect. 

(ii) Current eQTLs studies tend to implicate the correct causal genes. These causal 

genes currently identified by eQTLs are biased towards low EDS because these are 

most easily identified at current levels of statistical power.  

 330 

We reasoned that if scenario #2 is true, GO enrichments of eQTL target genes will yield more 

biologically relevant categories than GO enrichments of nearest genes to GWAS loci, as the 

nearest gene approach is recognized to be imprecise26,28. In contrast, under scenario #1 we 

expect GO enrichment results of eQTL target genes to be less biologically relevant. Across the 

GWAS studies we tested, we observed a consistent trend where eQTL target genes have 335 

weaker or no enrichment for disease-relevant GO categories when compared to nearest genes, 

consistent with scenario #1 (eQTLs implicate non-causal genes) and suggesting that eQTL 

target genes are generally not biologically relevant (example GO enrichments in Fig. 4D,E, full 

list of GO enrichments for all ten GWAS traits in Table S5). We also observed that genes with 

significant associations in transcriptome-wide association studies (which integrate GWAS and 340 

eQTL information) have low EDS distributions and are likewise not enriched for disease-relevant 
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GO categories (Fig. 4D, Fig. S14, Table S5)56. Together, these results suggest that eQTLs and 

eQTL-based techniques often nominate non-causal genes at GWAS loci.  

 

To further investigate whether eQTLs implicate the correct causal genes, we compiled a list of 345 

68 literature-based causal genes at 82 GWAS loci selected from all published GWAS studies 

(Table S5). These loci were chosen if the candidate causal gene satisfied one of the following 

three criteria: (i) the gene is implicated in the Mendelian form of the GWAS trait in OMIM (e.g. 

chondrodysplasia for height, long QT syndrome for cardiac QT interval length, Wolfram 

Syndrome for Type II Diabetes), (ii) the gene was implicated at the GWAS locus by a focused 350 

experimental study (e.g. IRX3/5 at rs1421085/FTO obesity locus), or (iii) the gene is targeted by 

a therapeutic that treats the disease studied in the GWAS (e.g. HMGCR for cholesterol, DRD2 

for neuropsychiatric disease). We further excluded loci where the lead SNP or any SNP in 

strong linkage disequilibrium (r2>0.8, CEU cohort from 1000 Genomes project) overlapped a 

protein-coding exon of the candidate causal gene, as these loci could act through non-355 

regulatory mechanisms.  

 

At these 82 GWAS loci, the literature-based causal gene is the top eQTL target (by p-value) in 

only 22% of cases, and is one of the targets (FDR<0.05 in GTEx project, any tissue) in 32% of 

cases (including the 22% where it is the best hit, Fig. 4F). eQTL information is incorrect for 18% 360 

of loci where the literature-based causal gene is not an eQTL target, but a different gene at the 

locus is. In contrast, assigning the nearest gene to each GWAS locus correctly identified the 

literature-based causal gene at 68% of loci (Table S5). Finally, we note that literature-based 

causal genes have higher EDS scores than eQTL targets of the 82 GWAS loci (Fig. 4G), further 

indicating that eQTLs preferentially implicate non-causal, low EDS gene targets, rather than the 365 

probable correct causal gene. In summary, our results suggest that the genes most relevant for 

disease have higher EDSs and are consequently less likely to be implicated by eQTLs.  

 

High burden of rare variants within regulatory regions associates with allele-specific 

expression 370 

The importance of common non-coding variants in complex human diseases has been well 

established in recent years12-14,58. In contrast, rare variant mapping studies have generally been 

unable to identify significant disease association signatures in non-coding regions, despite an 

expectation that many such signals exist18-21. A prediction from the EDS analyses presented 

thus far is that disease genes generally have larger enhancer domains, and will therefore be 375 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2018. ; https://doi.org/10.1101/459123doi: bioRxiv preprint 

https://doi.org/10.1101/459123
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

protected from rare non-coding point mutations through the same regulatory buffering 

mechanisms presented above. In consequence, we would expect that an effect on gene 

expression may depend on the presence of multiple point mutations falling in the regulatory 

regions of a gene.  

 380 

 

 

Figure 5. Burden of rare SNVs in regulatory regions is associated with increased rate of allele-specific expression. (A) 
Overview of framework for conducting rare SNV burden analyses. Briefly, the number of rare SNVs (MAF<0.01) within enhancer 
elements active in a tissue are counted and compared against the allele-specific expression of the gene. All analyses in Fig. 4 
performed using activity-linking. Proximity-linking results are presented in Supplementary Fig S11. (B) Mean number of rare SNVs 
per gene across individuals. Analyses in panels C-F are performed separately for genes where mean burden across individuals is 
less than or greater than 1. (C,D) Greater burden of rare SNVs is associated with higher rates of ASE events using enhancers linked 
to genes by the activity-based linking method. Curve corresponds to Loess curve across GTEx tissues, shaded region represnts 95% 
CI. (E,F) Genes with high EDS scores (orange, top 3000 by EDS) have lower rates of ASE events at same rare variant cut-off 
numbers than genes with low EDS (all genes outside top 3000, blue). ASE values are scaled to the set of all genes (panels C and D). 
Curve corresponds to Loess curve across GTEx tissues, shaded region represents 95% CI.  
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To test this prediction, we first asked whether a high burden of rare non-coding single nucleotide 

variants (SNVs) in regulatory regions can perturb gene expression, as measured by the 

presence of allele-specific expression. We hypothesized that while environmental perturbations 385 

would often lead to biallelic changes in expression, the genetic perturbation of a cis-acting 

regulatory element should lead to a monoallelic change in gene expression. These monoallelic 

expression patterns can be identified by detection of allele-specific expression, based on the 

imbalance of transcript expression in individuals with a heterozygous exonic variant. We 

developed a framework to compare the burden of rare SNVs (MAF<0.01) in enhancer elements 390 

linked to genes against the ASE rate (Fig. 5A,B, Table S4). The GTEx project offers an ideal 

dataset to apply this framework, with 148 individuals profiled by both whole-genome sequencing 

and RNA-seq across 48 tissues (GTEx v7). We observeda that an increased SNV burden is 

associated with greater ASE rates in a dose-dependent manner (Fig. 5C,D, Fig. S15A-C, see 

Methods for details on analysis). Notably, this relationship is strongest when considering the 395 

SNV burden across the entire predicted enhancer elements (both conserved and non-

conserved nucleotides), and is attenuated when considering only the SNV burden in conserved 

nucleotides (Fig. S16), indicating that genetic variants at non-conserved regulatory nucleotides 

can disrupt gene expression. In subsequent analyses, we focus on the SNV burden in the entire 

enhancer elements. 400 

 

As a control, we shifted the position of the linked enhancers used in our analyses by 200kb and 

500kb both upstream and downstream from their original positions, to maintain the total number 

of regulatory nucleotides linked to each gene. In all cases (different shifting windows, gene sets 

tested, and linking methods), the SNV burden in the shifted enhancers was more weakly 405 

associated with the ASE rate than the true set of linked enhancers (Fig. S17). Together, these 

results indicate that a high SNV burden in enhancers is more likely to result in allele-specific 

expression of the linked gene, and suggests that quantifying regulatory burden in disease 

studies can aid in identification of potential causal genes.  

 410 

Finally, we tested whether the expression of high EDS genes is less likely to be disrupted by a 

high SNV burden. We split genes into high and low EDS groups (top 3000 EDS genes vs. all 

genes outside the top 3000), and observed that the burden-ASE curve is attenuated for high 

EDS genes, indicating that nearby high EDS genes, a greater SNV burden is needed to achieve 

the same rate of transcriptional disruption as low EDS genes (Fig. 5E,F, Fig. S15D,E). In 415 
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summary, these results indicate that high EDS genes, which are enriched in human disease, 

are more resistant to regulatory perturbation. 
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Discussion 420 

In this study, we show that the number of functional nucleotides predicted to regulate a gene is 

closely related to the gene’s importance in development and disease. This nucleotide count, 

which we call the “enhancer domain score”, is predictive for disease-causing genes and 

provides information independent of existing commonly-used metrics of gene essentiality, 

including pLI and RVIS. When EDS differs with these population-scale metrics of gene 425 

constraint, EDS is often more effective at identifying developmental and disease genes, 

especially in genes with short coding sequences. We show that genes with a high EDS, and 

especially those with redundant enhancer elements, are depleted for eQTLs and have evolved 

robustness to regulatory variation. To illustrate the implications of this relationship, we focus on 

the problem of identifying causal disease genes from GWAS studies. We show that candidate 430 

causal genes at GWAS loci have high EDS and are distinct from eQTL targets of the same loci, 

suggesting that using eQTL overlaps to prioritize causal GWAS genes can be misleading. 

Furthermore, by showing a significant relationship between EDS and disease-causing genes 

and between the burden of variation in linked enhancers and gene expression, we establish a 

framework to interpret the burden of rare non-coding signals from whole-genome sequencing 435 

studies. Collectively, these results provide new insights into the identification of disease genes, 

as well as the disruption of gene regulation by regulatory variants. 

 

Recent studies indicate that the majority of genetic variants that disrupt TF binding or chromatin 

modifications at enhancer elements do not have an effect on gene expression9-11. This 440 

observation has been attributed to a number of factors, including “futile” regulatory activity and 

regulatory redundancy11. Our results support the role of regulatory redundancy to explain this 

discrepancy, and in particular highlights that disease-relevant genes have large enhancer 

domains and will be most buffered against genetic variation. A number of recent studies have 

experimentally mapped enhancer-gene regulatory links by using CRISPRi to experimentally 445 

inactivate enhancers and profiling gene expression differences25,59. A prediction from our results 

is that the expression of disease-relevant genes will be buffered against strong expression 

effects due to the inactivation of individual enhancer elements, and that the detection of 

enhancer-gene links for disease-relevant genes will require substantially higher sensitivity or 

multi-enhancer inactivation approaches. Indeed, in a recent preprint, Gasperini et al. found that 450 

housekeeping and non-housekeeping genes are disrupted at equal rates by CRISPRi-based 

enhancer inactivation59, seemingly in contradiction to results showing that non-housekeeping 

genes are regulated by more enhancer elements and should therefore be more likely to be 
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affected4,5, which the authors hypothesized could be due to the effects of redundant shadow 

enhancers. 455 

 

The computational approaches we used to link enhancers to genes are perceived to have 

substantial false positive and false negative rates26-28. Thus, it is striking that the enhancer 

domain score we calculated is effective for predicting disease genes. One explanation for the 

success of the EDS is that while any individual predicted enhancer-gene link is unreliable, 460 

aggregation of all predicted enhancer-gene links across 127 human tissues results in a robust 

and informative score. We also observed that enrichment for disease genes is highest when we 

count the number of evolutionarily conserved nucleotides, but occurs when considering other 

metrics that reflect enhancer functionality, including the number of all enhancer nucleotides, the 

number of nucleotides in TF binding sites, and number of discrete enhancer elements that 465 

regulate a gene. We believe that the success of the EDS using conserved nucleotides therefore 

reflects filtering for high-confidence enhancer elements, as the majority of computationally-

predicted enhancer elements do not display activity in vivo60. As high-quality genome-wide 

predictions of enhancers and enhancer-gene links become available, the accuracy of the 

enhancer domain score and tissue-specific EDS can be improved, and non-conserved 470 

nucleotides can also be incorporated into the enhancer domain score. Other regulatory 

elements, including promoters and open chromatin sites can also be included alongside 

enhancers to construct a comprehensive regulatory score. Additionally, a machine learning 

model can be trained to incorporate additional regulatory features, including the number of 

enhancers, pairwise Jaccard index, and the site-frequency spectrum of genetic variation at 475 

regulatory regions.  
 

Our observation that candidate GWAS genes have high EDS has implications for using eQTL 

data to prioritize causal genes. Consistent with our results, other recent studies have also noted 

the limitations of using eQTL information in GWAS analysis61,62. While we expect the causal 480 

genes at GWAS loci will be eQTL targets with sufficient study sample sizes, our results support 

a conjecture raised by Hormozdiari et al. where the causal eQTL signals at GWAS loci are 

“secondary signals in comparison to the stronger associations found in current eQTL studies”63. 

As eQTL study sample sizes grow and the causal GWAS eQTL interactions are detected, 

additional non-causal signals will concurrently be discovered that obscure prioritization of the 485 

causal gene. Co-localization analyses61,63,64 that aim to identify instances where GWAS and 

eQTL loci share the same causal genetic variant should therefore be critical for prioritizing 
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causal genes using eQTL data. Recent co-localization studies have noted a limited causal 

variant overlap between GWAS and eQTL signals, supporting our data suggesting that most 

eQTL signals at GWAS loci (identified without co-localization of causal SNPs) are non-causal. 490 

However, the co-localization approach may be more fruitful when eQTL studies have larger 

sample sizes and are performed under additional environmental conditions and with more cell 

types. 

 

Finally, our observation that high EDS genes are more resilient against regulatory perturbations 495 

has implications for the discovery of causal non-coding rare variants in human disease studies. 

Recent whole-genome sequencing studies have had limited success in identifying rare non-

coding single nucleotide variants associated with disease, in particular when focusing on 

individual regulatory elements18,19. The prevalence of regulatory buffering in disease-relevant 

genes suggests that a burden framework will be most appropriate for discovering significant 500 

signals in the non-coding genome, and suggests that enhancer-gene linking approaches are 

already suitable for identifying the regions within which to develop gene-specific regulatory 

burden scores. Our results also help explain the longstanding puzzle of why dosage-sensitive 

genes that cause rare human diseases have many pathogenic mutations in exons but so few 

point mutations in regulatory regions. Collectively, our work implies that the focus of attention for 505 

regulatory variation should encompass a burden approach for point mutations and implies that 

other mutational classes may be of particular importance, such as short tandem repeats and 

structural variants.  
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Methods 525 

Calculation of the enhancer domain score 
To maximize the set of transcriptional regulatory elements across tissues, we considered 
predicted enhancer elements from the Roadmap Epigenomics Consortium65. Enhancer 
predictions from the 15-state ChromHMM model are available for 127 human tissues/cell types 
and were downloaded from egg2.wustl.edu/roadmap/web_portal. We used two computational 530 
approaches to predict enhancer-gene interactions: activity-linking (primary method used in main 
figures) and proximity-linking (independent approach that treats each tissue individually and 
does not use RNA-seq information, used in Supplementary Figures). Activity-linking-based 
enhancer-gene links using the 15-state ChromHMM model across the same 127 human tissues 
were obtained from Liu et al. 201729 (code originally developed in Ernst et al. 20114) and were 535 
downloaded from www.biolchem.ucla.edu/labs/ernst/roadmaplinking (“RoadmapLinks.zip” file). 
Proximity-based enhancer-gene links were generated using GREAT v3.0.0 webtool 
(great.stanford.edu/public/html/index.php33), using default settings (“Basel plus extension” 
linking method, 5kb upstream, 1kb downstream, plus distal up to 1000kb). We ran GREAT after 
splitting the set of ChromHMM Epigenome Roadmap enhancers into bins of 500,000 enhancers 540 
each.  
 
To calculate an enhancer domain score across all tissues, we used mergeBed (BEDTools 
v2.26.066) to merge the set of regulatory elements linked to each gene. We considered 
evolutionarily conserved nucleotides identified by phastCons for three comparisons: 545 
phastCons100way, phastCons46wayPlacental and phastCons46wayPrimates. To count the 
number of evolutionarily conserved nucleotides, we downloaded BED files of evolutionarily 
conserved elements from the UCSC Genome Table Browser and assigned them to linked 
enhancer elements using the intersectBed tool (BEDTools v2.26.0). Correlations between 
enhancer nucleotides and conserved nucleotides (Fig. S1 and S3D,E) were calculated in R, and 550 
plots were generated using the hexbinplot function (hexbin package) with the xbins=100 setting. 
We obtained BED files for cis-regulatory modules and TF binding sites across human tissues 
from the UniBind database (unibind.uio.no)30.  
 
Enrichment of disease genes in high EDS genes 555 
Sources of disease gene lists used to generate Fig. 1E are listed in Table S6. All gene lists 
were first converted to Ensembl Gene IDs using Ensembl Gene IDs and gene symbols listed in 
the Ensembl GRCh38 GTF file. The list of organs affected by developmental diseases (used for 
Fig. 1H) was generated by using grep on the “organ specificity list” column in the DDG2P 
spreadsheet. We calculated enrichment by considering the proportion of high EDS genes in the 560 
gene set, compared to the set of high EDS genes in the entire human genome.  
 
Comparison of EDS to pLI and RVIS 
pLI scores were downloaded from ExAC v0.3.1 
(ftp.broadinstitute.org/pub/ExAC_release/release0.3.1/functional_gene_constraint/fordist_clean565 
ed_exac_r03_march16_z_pli_rec_null_data.txt), and RVIS scores were downloaded from RVIS 
v3 (http://genic-intolerance.org/data/GenicIntolerance_v3_12Mar16.txt), using scores 
constructed on the ExAC data release. GO enrichments were performed using DAVID v6.8 
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(https://david.ncifcrf.gov/) with a background set of 20,047 genes that have EDS scores, pLI 
scores and RVIS scores annotated. All gene lists used for GO enrichment calculations, and 570 
resulting lists of enriched GO categories are available in Tables S2 and S3.  
 
Tissue-specific enhancer domain scores 
We grouped 121 of 127 human tissues and cell types from the Epigenome Roadmap project 
into 18 tissue groups based on groupings provided by the Roadmap consortium (see Metadata 575 
at egg2.wustl.edu/roadmap/web_portal/meta.html). Six additional tissue groups (Adrenal, Bone, 
Cervix, Kidney, Ovary, Spleen) were excluded as only one Roadmap tissue sample mapped per 
group, which could lead to problems with lack of enhancer sample size and high noise. A list of 
the groupings, including excluded samples, is available in Table S4. To identify tissue-specific 
enhancer elements, for each tissue group, we merged all enhancers and quantified the number 580 
of additional tissues (outside the original tissue group) where the enhancer was present, 
selecting enhancers active in fewer than 10 additional samples. Tissue-specific EDS scores 
were calculated following the same process as the organism-level EDS. p-values for enrichment 
of disease genes within the top 250 genes for any individual tissue-specific EDS score were 
calculated using Fisher’s exact test comparing to the set of all genes. Multiple testing correction 585 
was performed with the Benjamini-Hochberg correction.  
 
Spatiotemporal gene expression patterns by EDS bins 
We used two sets of RNA-seq data across human and mouse tissues to assess spatiotemporal 
expression patterns for genes: gene expression across 57 human tissues profiled by the 590 
Roadmap Epigenomics project (downloaded from the Roadmap Epigenomics portal, 
https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/), and mouse single-cell RNA-
seq from different time points (embryonic, fetal & adult, downloaded as “MCA_Figure2-batch-
removed.txt.tar.gz” from Han et al. 2018, available at figshare.com/s/865e694ad06d5857db4b). 
As the Roadmap Epigenomics dataset samples different organs in different levels of detail (e.g. 595 
10 regions of the adult brain vs. 1 sample for each of kidney, spleen, liver), we grouped tissues 
into 17 “tissue groups” to avoid biasing our analyses (note, for tissue-specific EDS scores, we 
used 18 tissue groups. The discrepancy is due to incomplete RNA-seq profiling for Roadmap 
tissues). As many of the tissue groups represent adult time points, we also considered a 
separate set of 8 embryonic tissue groups. Tissue-to-group assignments are listed in Table S4. 600 
The mouse single-cell RNA-seq dataset we obtained was processed to assign cells into 87 cell 
clusters from a variety of embryonic, fetal and adult tissues. We generated a single RNA-seq 
expression vector per cell cluster by summing across all constituent cells, converted mouse 
gene expression data to human using Ensembl’s BioMart database (mouse gene GRCm38.p6), 
and for genes with multiple human orthologs, selected the ortholog with highest gene 605 
expression. We then converted counts to RPKM and set a minimum cut-off of 10 RPKM.  
 
Gene expression variability by EDS bins 
To measure variability of gene expression, we used three datasets of gene expression across 
individuals: the GTEx v7 dataset (48 tissues with >80 individuals each), gene expression across 610 
iPS-derived cardiomyocytes (Knowles et al., 2017, 42 individuals in control untreated group), 
iPS-derived sensory neurons (Schwartzentruber et al., 2017, 51 individuals). For GTEx 
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samples, we calculated the coefficient of variation per gene (when expressed, TPM>=1 cutoff) 
across individuals, and aggregated across tissues using the mean and minimum. Both mean 
and minimum yielded the same trend (top 20% EDS bin has greatest coefficient of variation), 615 
and we show violin plots for mean coefficient of variation in Fig. S7.  We set minimum 
expression cut-offs of 10 RPKM for the Knowles et al. and Schwartzentruber et al. datasets 
(TPM data was not available), also finding the same trend observed in GTEx samples.  
 
Proportion of eGenes by EDS bins 620 
We performed eQTL analyses using processed data from 48 tissues generated by the GTEx 
consortium (v7). Data was downloaded from the public GTEx portal (filename containing eQTL 
links for all tissues: GTEx_Analysis_v7_eQTL.tar.gz), and eGene lists and significant SNP-gene 
associations were taken from the *.v7.signif_variant_gene_pairs.txt.gz files. The sample sizes 
for the 48 tissues ranges from 80 to 491. For each tissue, we considered the number of eGenes 625 
discovered within each EDS bin compared to the total number of genes in the EDS bin. Top 
genes by EDS in Figs. 3A,C and S8A,C were chosen as those ranking in the top 3000 by 
activity and proximity-linking, respectively.  
 
To calculate Pairwise Jaccard indices, we merged all linked enhancers across tissues per gene. 630 
For each linked enhancer, we constructed a binary activity vector of length 127, indicating 
whether the enhancer is active in each of 127 human tissues profiled by the Epigenome 
Roadmap project. Activity for linked enhancers was defined as overlapping a ChromHMM-called 
enhancer element (15-state model) in the corresponding tissue. For each gene with more than 3 
linked enhancers, we calculated the average pairwise Jaccard index across enhancers using 635 
the binary activity vectors per enhancer.  
 
PrediXcan prediction performance in GTEx by EDS bins 
To supplement the eQTL/eGene analyses, we also assessed whether the coefficient of 
determination R2 of the fitted elastic net regression of gene expression on cis-genotypes in 640 
GTEx individuals was dependent on a gene’s EDS bin. We obtained R2 values from PrediXcan 
trained on GTEx v7 (available at predictdb.org, under the “download-by-tissue” folder) and used 
the “pred.perf.R2” variable in the gtex_v7_[tissue]_imputed_europeans_tw_0.5_signif.db files 
accessed using the RSQLite package in R.  
 645 
GWAS analyses 
We identified ten GWAS studies with >75 loci from the NHGRI-EBI GWAS catalog67 covering 
traits with a range of ages of onset and affected tissues. In the first part of our analysis, we 
defined GWAS candidate genes as the single nearest gene to the lead SNP at each locus using 
the GREAT tool (v3.0.0)33. We identified eQTL target genes of these same loci using eQTL data 650 
from the GTEx project (v7), selecting significant eGenes using the 
*_v7.signif_variant_gene_pairs.txt files. We identified eGenes using eQTLs present in any 
tissue (main analyses), as well as only those in a trait-relevant tissue (used in Fig. S13). 
Significant TWAS genes for each trait were downloaded from Mancuso et al. 201756. GO 
enrichments for all gene sets were performed using DAVID v6.8 (https://david.ncifcrf.gov/).  655 
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To compile a list of candidate causal genes at GWAS loci, we scanned the literature for 
instances where loci were nearby a corresponding Mendelian disease gene, where the locus 
was studied in a focused experimental study, or when the locus is nearby a gene targeted by a 
therapeutic for the same disease. For each lead SNP in these loci, we identified all SNPs in 660 
strong LD (r2>0.8, EUR cohort from 1000 Genomes project) and removed the subset of loci that 
overlapped a protein-coding exon in the putative causal gene (note that loci overlapping other 
non-causal genes were not removed). After filtering, we were left with 68 literature-based causal 
genes at 82 GWAS loci.  
 665 
SNV burden in regulatory regions 
We compiled lists of enhancers active per tissue using the tissue groupings previously used for 
Fig. S5 (groupings listed in Table S4). For SNV burden analyses, we considered SNVs within 
the entire enhancer elements, as well as those within evolutionarily conserved regions (merger 
of phastCons elements across Primates, Vertebrates and Placental Mammals). We pre-670 
processed genotype information from the GTEx project (dbGAP accession phs000424.v7.p2) to 
select for rare variants. As the GTEx sample size is modest (148 individuals), we used allele 
frequency information from the BRAVO database (TOPMed Freeze 5, 
https://bravo.sph.umich.edu/freeze5/hg38/) after mapping BRAVO variants from hg38 to hg19 
using the LiftoverVCF tool in Picard tools (v2.9.0). We mapped MAF<0.01 variants to enhancer 675 
elements grouped by tissue group, and for each GTEx individual, we counted the number of 
rare variants per gene, per tissue group for each of the four enhancer sets (activity-linked entire 
enhancers, proximity-linked entire enhancers, activity-linked conserved enhancer elements, and 
proximity-linked conserved enhancer elements).  
 680 
Next, we linked the SNV burden to allele-specific expression of genes. Allele-specific 
expression information per gene, per tissue and per individual was obtained from the GTEx 
project (phs000424.v7.p2). For each GTEx individual, we filtered the processed ASE data to 
create (i) a list of genes per tissue with significant allelic expression (adjusted p-value < 0.05), 
and (ii) a background list of all genes per tissue tested for allelic expression (i.e. containing a 685 
heterozygous SNP). As we wanted to assess whether a high burden of SNVs in linked 
enhancers was associated with allelic expression, we matched enhancer tissue groups to 
corresponding tissues profiled by the GTEx project (see Table S4 for list). In total, we matched 
37 GTEx tissues to 14 different enhancer groupings from the Epigenome Roadmap project.  
 690 
We first noticed that a small number of GTEx individuals had significant allelic expression for a 
very large number of genes (e.g. one individual had allele-specific expression for 9,462 genes in 
skin, but ASE for <1000 genes in all other tissues). We hypothesized these could be due to 
sequencing or data processing artifacts. For each GTEx tissue, we therefore removed the 10 
individuals with the greatest number of genes showing significant allelic expression. A small 695 
number of genes also consistently showed allele-specific expression across a large number of 
individuals. A literature search revealed that many of these are imprinted genes (e.g. MEG3, 
PLAGL1, L3MBTL1) or HLA genes. To avoid potentially confounding signals, we therefore 
removed genes listed in the Imprinted Gene Catalog (http://igc.otago.ac.nz) and genes identified 
in a global survey of imprinting (Baran et al. 201568). The full list of 109 genes excluded from 700 
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ASE analysis is listed in Table S7. Finally, we also removed samples marked as outliers by the 
GTEx project 
(https://www.gtexportal.org/home/documentationPage#staticTextAnalysisMethods).  
 
In considering the distribution of regulatory SNV burdens per gene (e.g. Figs. 5B and S15A), 705 
we realized that genes with high and low average SNV burdens would need to be analyzed 
separately. In genes with low average SNV burden, most individuals have 0 or 1 rare SNV in a 
linked enhancer. In these genes, the raw number of rare SNVs directly reflects the relative 
burden (e.g. observing 5 SNVs is high if most other individuals have <1). In contrast, the mean 
SNV burden for high count genes has a wide spread, and SNV burdens need to be z-score 710 
transformed before analysis (e.g. observing 5 SNVs in an individual could be either high or low, 
depending on whether the mean SNV count across individuals is 1.5 or 20). After we split genes 
into high and low count groups (mean SNV count >1 and <1, respectively), in each tissue we 
calculated the proportion of gene-by-individual pairings with allele-specific expression at each 
SNV burden cut-off. As the proportion of genes showing ASE per tissue is different, we merged 715 
tissues together to generate the plots shown in Figs. 5C-F and S15B-E after scaling each tissue 
to the ASE rate in all genes (“0+” bin for low count genes and “All” for high count genes). Loess 
curves and 95% CI were generated using the geom_smooth function in ggplot2.  
  
  720 
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Supplementary Tables 
 
Table S1: List of genes with enhancer domain scores, pLI and RVIS scores. 
 
Table S2: List of enriched GO categories for genes with high pLI/RVIS scores and low EDS 725 
 
Table S3: List of enriched GO categories for genes with low pLI/RVIS scores and high EDS 
 
Table S4: List of tissue groupings and matched groupings between Epigenome Roadmap 
enhancers and GTEx tissues 730 
 
Table S5: GWAS GO enrichment categories and assignment of literature-based causal genes 
 
Table S6: Sources of disease gene lists used in enrichment analyses 
 735 
Table S7: List of literature-based imprinted genes removed during ASE analysis 
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